17 research outputs found

    Validation of the binary designation Symbiodinium thermophilum (Dinophyceae)

    No full text
    The binary designation Symbiodinium thermophilum was invalid due to the absence of an illustration as required by Article 44.2 of the ICN. Herein, it is validated. This species is the most common symbiont in reef corals in the southern Persian/Arabian Gulf, the world's hottest body of water sustaining reef coral growth

    Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf

    Get PDF
    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~. 40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site

    Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf

    Get PDF
    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~ 40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site

    Population Collapse Dynamics in Acropora downingi, an Arabian/Persian Gulf Ecosystem‐Engineering Coral, Linked to Rising Temperature

    No full text
    As in the tropical Atlantic, Acropora populations in the southern Persian/Arabian Gulf plummeted within two decades after having been ecosystem engineers on most wave‐exposed reefs since the Pleistocene. Since 1996/1998 live coral cover in the Gulf declined by over 90% in many areas, primarily due to bleaching and diseases caused by rising temperatures. In the formerly dominant table‐coral species A. downingi, population dynamics corresponding to disturbance regimes was quantified in three transition matrices (lower disturbance pre‐1996; moderate disturbance from 1998 to 2010 and 2013 to 2017, disturbed in 1996/1998, 2010/11/12, 2017). Increased disturbance frequency and severity caused progressive reduction in coral size, cover, and population fecundity. Small size‐classes were bolstered more by partial colony mortality than sexual recruitment. Some large corals had a size refuge and resisted die‐back but were also lost with increasing disturbance. Matrix and biophysical larval flow models suggested one metapopulation. Southern, Arabian, populations could be connected to northern, Iranian, populations but this connectivity was lost under assumptions of pelagic larval duration at rising temperatures shortened to a third. Then, the metapopulation disintegrated into isolated populations. Connectivity required to avoid extinctions increased exponentially with disturbance frequency and correlation of disturbances across the metapopulation. Populations became unsustainable at eight disturbances in 15 years, when even highest theoretical recruitment no longer compensated mortality. This lethal disturbance frequency was 3‐fold that of the moderately disturbed monitoring period and 4‐fold of the preceding low‐disturbance period—suggesting ongoing shortening of the disturbance‐free period. Observed population collapse and environmental changes in the Gulf suggest that A. downingi is heading toward at least functional extinction mainly due to increasingly frequent temperature‐induced mortality events, clearly linked to climate change
    corecore