220 research outputs found

    Effects of Temperature on Seta Elongation in Atrichum Undulatum

    Get PDF
    Author Institution: Department of Botany, The Ohio State University, Columbus, Ohio 43210Field-collected gametophytes of Atrichum undulatum were placed in two growth chambers which were maintained at the same light intensity and light period, but at two different temperature regimes. After sporophyte development, differences in seta lengths were observed. Measurements of cell lengths revealed that attached setae grown in the high-temperature regime (12°-22°C) were longer than those grown in a low-temperature regime (3°-12°C), as a result of both more cell divisions and a larger average cell length. Thus, temperature appeared to influence both cell division and cell elongation in the setae of Atrichum undulatum

    HST hot-Jupiter transmission spectral survey: Haze in the atmosphere of WASP-6b

    Get PDF
    We report Hubble Space Telescope (HST) optical to near-infrared transmission spectroscopy of the hot Jupiter WASP-6b, measured with the Space Telescope Imaging Spectrograph (STIS) and Spitzer's InfraRed Array Camera (IRAC). The resulting spectrum covers the range 0.294.5μ0.29-4.5\,\mum. We find evidence for modest stellar activity of WASP-6b and take it into account in the transmission spectrum. The overall main characteristic of the spectrum is an increasing radius as a function of decreasing wavelength corresponding to a change of Δ(Rp/R)=0.0071\Delta (R_p/R_{\ast})=0.0071 from 0.33 to 4.5μ4.5\,\mum. The spectrum suggests an effective extinction cross-section with a power law of index consistent with Rayleigh scattering, with temperatures of 973±144973\pm144 K at the planetary terminator. We compare the transmission spectrum with hot-Jupiter atmospheric models including condensate-free and aerosol-dominated models incorporating Mie theory. While none of the clear-atmosphere models is found to be in good agreement with the data, we find that the complete spectrum can be described by models that include significant opacity from aerosols including Fe-poor Mg2_2SiO4_4, MgSiO3_3, KCl and Na2_2S dust condensates. WASP-6b is the second planet after HD189733b which has equilibrium temperatures near 1200\sim1200 K and shows prominent atmospheric scattering in the optical.Comment: 18 pages, 15 figures, 7 table

    HST hot Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b

    Get PDF
    We present HST optical transmission spectra of the transiting hot Jupiter WASP-12b, taken with the STIS instrument. From the transmission spectra, we are able to decisively rule out prominent absorption by TiO in the exoplanet's atmosphere. Strong pressure-broadened Na and K absorption signatures are also excluded, as are significant metal-hydride features. We compare our combined broadband spectrum to a wide variety of existing aerosol-free atmospheric models, though none are satisfactory fits. However, we do find that the full transmission spectrum can be described by models which include significant opacity from aerosols: including Rayleigh scattering, Mie scattering, tholin haze, and settling dust profiles. The transmission spectrum follows an effective extinction cross section with a power-law of index alpha, with the slope of the transmission spectrum constraining the quantity alphaT = -3528+/-660 K, where T is the atmospheric temperature. Rayleigh scattering (alpha=-4) is among the best fitting models, though requires low terminator temperatures near 900 K. Sub-micron size aerosol particles can provide equally good fits to the entire transmission spectrum for a wide range of temperatures, and we explore corundum as a plausible dust aerosol. The presence of atmospheric aerosols also helps to explain the modestly bright albedo implied by Spitzer observations, as well as the near black body nature of the emission spectrum. Ti-bearing condensates on the cooler night-side is the most natural explanation for the overall lack of TiO signatures in WASP-12b, indicating the day/night cold-trap is an important effect for very hot Jupiters. These finding indicate that aerosols can play a significant atmospheric role for the entire wide range of hot-Jupiter atmospheres, potentially affecting their overall spectrum and energy balance.(abridged)Comment: 19 pages, 14 figures, 5 tables. Accepted for publication in MNRA

    Dynamics of Jupiter’s atmosphere

    Get PDF
    Giant planet atmospheres provided many of the surprises and remarkable discoveries of planetary exploration during the past few decades. Studying Jupiter's atmosphere and comparing it with Earth's gives us critical insight and a broad understanding of how atmospheres work that could not be obtained by studying Earth alone

    Possible detection of phase changes from the non-transiting planet HD 46375b by CoRoT

    Full text link
    The present work deals with the detection of phase changes in an exoplanetary system. HD 46375 is a solar analog known to host a non-transiting Saturn-mass exoplanet with a 3.0236 day period. It was observed by the CoRoT satellite for 34 days during the fall of 2008. We attempt to identify at optical wavelengths, the changing phases of the planet as it orbits its star. We then try to improve the star model by means of a seismic analysis of the same light curve and the use of ground-based spectropolarimetric observations. The data analysis relies on the Fourier spectrum and the folding of the time series. We find evidence of a sinusoidal signal compatible in terms of both amplitude and phase with light reflected by the planet. Its relative amplitude is Delta Fp/F* = [13.0, 26.8] ppm, implying an albedo A=[0.16, 0.33] or a dayside visible brightness temperature Tb ~ [1880,2030] K by assuming a radius R=1.1 R_Jup and an inclination i=45 deg. Its orbital phase differs from that of the radial-velocity signal by at most 2 sigma_RV. However, the tiny planetary signal is strongly blended by another signal, which we attribute to a telluric signal with a 1 day period. We show that this signal is suppressed, but not eliminated, when using the time series for HD 46179 from the same CoRoT run as a reference. This detection of reflected light from a non-transiting planet should be confirmable with a longer CoRoT observation of the same field. In any case, it demonstrates that non-transiting planets can be characterized using ultra-precise photometric lightcurves with present-day observations by CoRoT and Kepler. The combined detection of solar-type oscillations on the same targets (Gaulme et al. 2010a) highlights the overlap between exoplanetary science and asteroseismology and shows the high potential of a mission such as Plato.Comment: 4 pages, 6 figure

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    WASP-42 b and WASP-49 b: two new transiting sub-Jupiters

    Full text link
    We report the discovery of two new transiting planets from the WASP survey. WASP-42 b is a 0.500 +/- 0.035 M_jup planet orbiting a K1 star at a separation of 0.0548 +/- 0.0017 AU with a period of 4.9816872 +/- 7.3 x 10^-6 days. The radius of WASP-42 b is 1.080 +/- 0.057 R_jup while its equilibrium temperature is T_eq = 995 +/- 34 K. We detect some evidence for a small but non-zero eccentricity of e=0.060 +/- 0.013. WASP-49 b is a 0.378 +/- 0.027 M_jup planet around an old G6 star. It has a period of 2.7817387 +/- 5.6 x 10^-6 days and a separation of 0.0379 +/- 0.0011 AU. This planet is slightly bloated, having a radius of 1.115 +/- 0.047 R_jup and an equilibrium temperature of T_eq = 1369 +/- 39 K. Both planets have been followed up photometrically, and in total we have obtained 5 full and one partial transit light curves of WASP-42 and 4 full and one partial light curves of WASP-49 using the Euler-Swiss, TRAPPIST and Faulkes South telescopes

    HST hot Jupiter transmission spectral survey: detection of water in HAT-P-1b from WFC3 near-IR spatial scan observations

    Get PDF
    We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087–1.678 μm. These time series observations were taken with the newly available spatial-scan mode that increases the duty cycle by nearly a factor of 2, thus improving the resulting photometric precision of the data. We measure a planet-to-star radius ratio of Rp/R* = 0.117 09 ± 0.000 38 in the white light curve with the centre of transit occurring at 245 6114.345 ± 0.000 133 (JD). We achieve S/N levels per exposure of 1840 (0.061 per cent) at a resolution of Δλ = 19.2 nm (R ∼ 70) in the 1.1173–1.6549 μm spectral region, providing the precision necessary to probe the transmission spectrum of the planet at close to the resolution limit of the instrument. We compute the transmission spectrum using both single target and differential photometry with similar results. The resultant transmission spectrum shows a significant absorption above the 5σ level matching the 1.4 μm water absorption band. In solar composition models, the water absorption is sensitive to the ∼1 m bar pressure levels at the terminator. The detected absorption agrees with that predicted by a 1000 K isothermal model, as well as with that predicted by a planetary-averaged temperature model

    Mapping Exoplanets

    Full text link
    The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to exoplanets makes it impossible to resolve their disk with current or near-term technology. It is still possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times---this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17 pages, including 6 figures and 4 pages of reference
    corecore