191 research outputs found

    Integrating View Conditions for Image Synthesis

    Full text link
    In the field of image processing, applying intricate semantic modifications within existing images remains an enduring challenge. This paper introduces a pioneering framework that integrates viewpoint information to enhance the control of image editing tasks. By surveying existing object editing methodologies, we distill three essential criteria, consistency, controllability, and harmony, that should be met for an image editing method. In contrast to previous approaches, our method takes the lead in satisfying all three requirements for addressing the challenge of image synthesis. Through comprehensive experiments, encompassing both quantitative assessments and qualitative comparisons with contemporary state-of-the-art methods, we present compelling evidence of our framework's superior performance across multiple dimensions. This work establishes a promising avenue for advancing image synthesis techniques and empowering precise object modifications while preserving the visual coherence of the entire composition

    Deconfined quantum criticality with emergent symmetry in the extended Shastry-Sutherland model

    Full text link
    Motivated by the exotic critical phenomena observed in the Shastry-Sutherland material SrCu2(BO3)2\rm SrCu_2(BO_3)_2 \blue{[Jimenez {\it et al}, Nature {\bf 592}, 370 (2021); Cui {\it et al}, Science {\bf 380}, 1179 (2023)]}, we investigate the ground state nature of the extended Shastry-Sutherland model (SSM) by the state-of-the-art 2D tensor network method. Via large-scale simulations up to 20×2020\times 20 sites, we identify a continuous phase transition between the plaquette valence-bond solid (PVBS) phase and the antiferromagnetic (AFM) phase accompanied by an emergent O(4) symmetry, which strongly suggests a deconfined quantum critical point (DQCP). Furthermore, we map out the phase diagram of the extended SSM and observe the same type of DQCP phenomena with emergent O(4) symmetry and similar critical exponents along the whole critical line. Our results indicate a compelling scenario for understanding the origin of the proximate DQCP observed in recent experiments.Comment: 5+6 pages; 4+5 figures; 3 table

    Recent advances on the synthesis, structure, and properties of polyoxotantalates

    Get PDF
    Polyoxotantalates (POTas) are an important branch of polyoxometalates (POMs) that remain largely undeveloped compared with other members of the POM family including polyoxovanadates, polyoxotungstates, polyoxomolybdates, and polyoxoniobates. Owing to their promising applications in diverse fields such as photo/electrocatalysis, ion conduction, environmental protection, and magnetism, the development of synthetic strategies for new POTas has attracted continuous interest over the past decades. This review summarizes the current status in the development of POTas, including their synthetic methods, crystal structures, physicochemical properties, and potential applications. Additionally, synthetic challenges and prospects are also discussed. It is hoped that this review will be of reference value for the further development of POTas

    Transplantation of Gut Microbiota From High-Fat-Diet-Tolerant Cynomolgus Monkeys Alleviates Hyperlipidemia and Hepatic Steatosis in Rats.

    Get PDF
    Emerging evidence has been reported to support the involvement of the gut microbiota in the host's blood lipid and hyperlipidemia (HLP). However, there remains unexplained variation in the host's blood lipid phenotype. Herein a nonhuman primate HLP model was established in cynomolgus monkeys fed a high-fat diet (HFD) for 19 months. At month 19%, 60% (3/5) of the HFD monkeys developed HLP, but surprisingly 40% of them (2/5) exhibited strong tolerance to the HFD (HFD-T) with their blood lipid profiles returning to normal levels. Metagenomic analysis was used to investigate the compositional changes in the gut microbiota in these monkeys. Furthermore, the relative abundance of remarkably increased and became the dominant gut microbe in HFD-T monkeys. A validation experiment showed that transplantation of fecal microbiota from HFD-T monkeys reduced the blood lipid levels and hepatic steatosis in HLP rats. Furthermore, the relative abundance of significantly increased in rats receiving transplantation, confirming the successful colonization of the microbe in the host and its correlation with the change of the host's blood lipid profiles. Our results thus suggested a potentially pivotal lipid-lowering role of in the gut microbiota, which could contribute to the variation in the host's blood lipid phenotype. [Abstract copyright: Copyright © 2022 Gao, Rao, Wei, Xia, Huang, Tang, Hide, Zheng, Li, Zhao, Sun and Chen.

    Characteristic measurements of silicon dioxide aerogel plasmas generated in a Planckian radiation environment

    Get PDF
    Includes bibliographical references (pages 6-7).The temporally and spatially resolved characteristics of silicon dioxide aerogel plasmas were studied using x-ray spectroscopy. The plasma was generated in the near-Planckian radiation environment within gold hohlraum targets irradiated by laser pulses with a total energy of 2.4 kJ in 1 ns. The contributions of silicon ions at different charge states to the specific components of the measured absorption spectra were also investigated. It was found that each main feature in the absorption spectra of the measured silicon dioxide aerogel plasmas was contributed by two neighboring silicon ionic species

    Iron biofortification in rice: an update on quantitative trait loci and candidate genes

    Get PDF
    ReviewRice is the most versatile model for cereals and also an economically relevant food crop; as a result, it is the most suitable species for molecular characterization of Fe homeostasis and biofortification. Recently there have been significant efforts to dissect genes and quantitative trait loci (QTL) associated with Fe translocation into rice grains; such information is highly useful for Fe biofortification of cereals but very limited in other species, such as maize (Zea mays) and wheat (Triticum aestivum). Given rice’s centrality as a model for Poaceae species, we review the current knowledge on genes playing important roles in Fe transport, accumulation, and distribution in rice grains and QTLs that might explain the variability in Fe concentrations observed in different genotypes. More than 90 Fe QTLs have been identified over the 12 rice chromosomes. From these, 17 were recorded as stable, and 25 harbored Fe-related genes nearby or within the QTL. Among the candidate genes associated with Fe uptake, translocation, and loading into rice grains, we highlight the function of transporters from the YSL and ZIP families; transporters from metal-binding molecules, such as nicotianamine and deoxymugineic acid; vacuolar iron transporters; citrate efflux transporters; and others that were shown to play a role in steps leading to Fe delivery to seeds. Finally, we discuss the application of these QTLs and genes in genomics assisted breeding for fast-tracking Fe biofortification in rice and other cereals in the near futureinfo:eu-repo/semantics/publishedVersio

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent
    corecore