127 research outputs found
Anxiety and Depression in Adults with Autism Spectrum Disorder: A Systematic Review and Meta-analysis
Adults with autism spectrum disorder (ASD) are thought to be at disproportionate risk of developing mental health comorbidities, with anxiety and depression being considered most prominent amongst these. Yet, no systematic review has been carried out to date to examine rates of both anxiety and depression focusing specifically on adults with ASD. This systematic review and meta-analysis examined the rates of anxiety and depression in adults with ASD and the impact of factors such as assessment methods and presence of comorbid intellectual disability (ID) diagnosis on estimated prevalence rates. Electronic database searches for studies published between January 2000 and September 2017 identified a total of 35 studies, including 30 studies measuring anxiety (n = 26 070; mean age = 30.9, s.d. = 6.2 years) and 29 studies measuring depression (n = 26 117; mean age = 31.1, s.d. = 6.8 years). The pooled estimation of current and lifetime prevalence for adults with ASD were 27% and 42% for any anxiety disorder, and 23% and 37% for depressive disorder. Further analyses revealed that the use of questionnaire measures and the presence of ID may significantly influence estimates of prevalence. The current literature suffers from a high degree of heterogeneity in study method and an overreliance on clinical samples. These results highlight the importance of community-based studies and the identification and inclusion of well-characterized samples to reduce heterogeneity and bias in estimates of prevalence for comorbidity in adults with ASD and other populations with complex psychiatric presentations
Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation
Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery
2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.
S
Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling
Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets.National Science Foundation (U.S.) (DB1-0821391)National Institutes of Health (U.S.) (Grant U54-CA112967)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (P30-ES002109
Exploring new physics frontiers through numerical relativity
The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
An Integrated Approach to Identifying Cis-Regulatory Modules in the Human Genome
In eukaryotic genomes, it is challenging to accurately determine target sites of transcription factors (TFs) by only using sequence information. Previous efforts were made to tackle this task by considering the fact that TF binding sites tend to be more conserved than other functional sites and the binding sites of several TFs are often clustered. Recently, ChIP-chip and ChIP-sequencing experiments have been accumulated to identify TF binding sites as well as survey the chromatin modification patterns at the regulatory elements such as promoters and enhancers. We propose here a hidden Markov model (HMM) to incorporate sequence motif information, TF-DNA interaction data and chromatin modification patterns to precisely identify cis-regulatory modules (CRMs). We conducted ChIP-chip experiments on four TFs, CREB, E2F1, MAX, and YY1 in 1% of the human genome. We then trained a hidden Markov model (HMM) to identify the labels of the CRMs by incorporating the sequence motifs recognized by these TFs and the ChIP-chip ratio. Chromatin modification data was used to predict the functional sites and to further remove false positives. Cross-validation showed that our integrated HMM had a performance superior to other existing methods on predicting CRMs. Incorporating histone signature information successfully penalized false prediction and improved the whole performance. The dataset we used and the software are available at http://nash.ucsd.edu/CIS/
Chiral Lemniscate Formation in Magnetic Field Controlled Topological Fluid Flows
High shear spinning top (ST) typhoon-like fluid flow in a rapidly rotating inclined tube within a vortex fluidic device (VFD) approaches homochirality throughout the liquid with toroids of bundled single-walled carbon nanotubes (SWCNTs) twisted into stable chiral lemniscates (in the shape of Figure 8s), predominantly as the R-or S-structures, for the tube rotating clockwise (CW) or counterclockwise (CCW). However, this is impacted by the Earth's magnetic field (BE). Theory predicts 1–20 MPa pressure for their formation, with their absolute chirality determined from scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Thus, the resultant lemniscate structures establish the absolute chirality of the inner and outer components of the ST flow. These chiral flows and lemniscates can be flipped to the opposite chirality by changing the orientation of the tube relative to the inclination angle of BE, by moving the geographical location. Special conditions prevail where the tangential angle of the outer and inner flow of the ST becomes periodically aligned with BE, which respectively dramatically reduce the formation of toroids (and thus lemniscates) and formation of lemniscates from the toroids formed by the double-helical (DH) flow generated by side wall Coriolis forces and Faraday waves.fals
Efficacy of a family practice-based lifestyle intervention program to increase physical activity and reduce clinical and physiological markers of vascular health in patients with high normal blood pressure and/or high normal blood glucose (SNAC): study protocol for a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Previous interventions to increase physical activity and reduce cardiovascular risk factors have been targeted at individuals with established disease; less attention has been given to intervention among individuals with high risk for disease nor has there been determination of the influence of setting in which the intervention is provided. In particular, family practice represents an ideal setting for the provision and long-term maintenance of lifestyle interventions for patients at risk (ie high-normal blood pressure or impaired glucose tolerance).</p> <p>Methods/design</p> <p>The Staged Nutrition and Activity Counseling (SNAC) study is a randomized clustered design clinical trial that will investigate the effectiveness and efficacy of a multi-component lifestyle intervention on cardiovascular disease risk factors and vascular function in patients at risk in primary care. Patients will be randomized by practice to either a standard of care lifestyle intervention or a behaviourally-based, matched prescriptive physical activity and diet change program. The primary goal is to increase physical activity and improve dietary intake according to Canada's Guides to Physical Activity Healthy Eating over 24 months. The primary intention to treat analysis will compare behavioral, physiological and metabolic outcomes at 6, 12 and 24 months post-randomization including estimation of incident hypertension and/or diabetes.</p> <p>Discussion</p> <p>The design features of our trial, and the practical problems (and solutions) associated with implementing these design features, particularly those that result in potential delay between recruitment, baseline data collection, randomization, intervention, and assessment will be discussed. Results of the SNAC trial will provide scientific rationale for the implementation of this lifestyle intervention in primary care.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN:42921300">ISRCTN:42921300</a></p
Gene expression profiling of alveolar soft-part sarcoma (ASPS)
<p>Abstract</p> <p>Background</p> <p>Alveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.</p> <p>Methods</p> <p>For seven patients with confirmed primary or metastatic ASPS, RNA samples were isolated immediately following surgery, reverse transcribed to cDNA and each sample hybridized to duplicate high-density human U133 plus 2.0 microarrays. Array data was then analyzed relative to arrays hybridized to universal RNA to generate an unbiased transcriptome. Subsequent gene ontology analysis was used to identify transcripts with therapeutic or diagnostic potential. A subset of the most interesting genes was then validated using quantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>Analysis of patient array data versus universal RNA identified elevated expression of transcripts related to angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-MET, VEGF, TIMP-2), cell proliferation (PRL, IGFBP1, NTSR2, PCSK1), metastasis (ADAM9, ECM1, POSTN) and steroid biosynthesis (CYP17A1 and STS). A number of muscle-restricted transcripts (ITGB1BP3/MIBP, MYF5, MYF6 and TRIM63) were also identified, strengthening the case for a muscle cell progenitor as the origin of disease. Transcript differentials were validated using real-time PCR and subsequent immunohistochemical analysis confirmed protein expression for several of the most interesting changes (MDK, c-MET, VEGF, POSTN, CYP17A1, ITGB1BP3/MIBP and TRIM63).</p> <p>Conclusion</p> <p>Results from this first comprehensive study of ASPS gene expression identifies several targets involved in angiogenesis, metastasis and myogenic differentiation. These efforts represent the first step towards defining the cellular origin, pathogenesis and effective treatment strategies for this atypical malignancy.</p
Neural networks for genetic epidemiology: past, present, and future
During the past two decades, the field of human genetics has experienced an information explosion. The completion of the human genome project and the development of high throughput SNP technologies have created a wealth of data; however, the analysis and interpretation of these data have created a research bottleneck. While technology facilitates the measurement of hundreds or thousands of genes, statistical and computational methodologies are lacking for the analysis of these data. New statistical methods and variable selection strategies must be explored for identifying disease susceptibility genes for common, complex diseases. Neural networks (NN) are a class of pattern recognition methods that have been successfully implemented for data mining and prediction in a variety of fields. The application of NN for statistical genetics studies is an active area of research. Neural networks have been applied in both linkage and association analysis for the identification of disease susceptibility genes
- …
