141 research outputs found

    A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies

    Get PDF
    Here we design and optimize a genetically encoded fluorescent indicator, iAChSnFR, for the ubiquitous neurotransmitter acetylcholine, based on a bacterial periplasmic binding protein. iAChSnFR shows large fluorescence changes, rapid rise and decay kinetics, and insensitivity to most cholinergic drugs. iAChSnFR revealed large transients in a variety of slice and in vivo preparations in mouse, fish, fly and worm. iAChSnFR will be useful for the study of acetylcholine in all organisms

    A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies

    Get PDF
    Here we design and optimize a genetically encoded fluorescent indicator, iAChSnFR, for the ubiquitous neurotransmitter acetylcholine, based on a bacterial periplasmic binding protein. iAChSnFR shows large fluorescence changes, rapid rise and decay kinetics, and insensitivity to most cholinergic drugs. iAChSnFR revealed large transients in a variety of slice and in vivo preparations in mouse, fish, fly and worm. iAChSnFR will be useful for the study of acetylcholine in all organisms

    Citrate-capped gold nanoparticles for the label-free detection of ubiquitin C-terminal hydrolase-1

    Get PDF
    Ubiquitin C-terminal hydrolase-1 (UCH-L1) is a specific neuronal endoprotease that cleaves the specific peptide bond between ubiquitin molecules. UCH-L1 is released in serum and cerebrospinal fluid after severe brain injury and is considered to be an important biomarker of brain injury. A common polymorphism of UCH-L1 (S18Y) is also linked to a reduced risk of Parkinson's disease. In addition to its function in neuronal tissues, UCH-L1 may also play a part in the progression of certain non-neuronal cancers. UCH-L1 is highly expressed in primary lung tumors and colo-rectal cancers, suggesting a role in tumorigenesis. We report here the development of a sensitive and accurate UCH-L1 assay based on the surface plasmon resonance (SPR) absorbance of gold nanoparticles. We created a unique UCH-L1 substrate containing a ubiquitin molecule with two terminal thiol groups. This UCH-L1 substrate interacted with gold nanoparticles via the terminal thiol groups and induced clustering of the nanoparticles, which was detected by SPR absorbance at 650 nm. UCH-L1 proteolytically cleaved the substrate and the clustered gold nanoparticles were dispersed and could be detected by a shift in the SPR absorbance to 530 nm. This change in absorbance was proportional to the concentration of UCH-L1 and can be used for the quantification of functional UCH-L1. The currently available fluorescence-based UCH-L1 assay is affected by a high background signal and a poor detection limit, especially in the presence of serum. The assay reported here can detect concentrations of UCH-L1 as low as 20 ng ml-1(0.8 nM) and the presence of serum had no effect on the detection limit. This assay could be adapted for the rapid determination of the severity of brain injury and could also be applied to high-throughput screening of inhibitors of UCH-L1 enzymatic activity in Parkinson's disease and cancer

    Nicotine in the Endoplasmic Reticulum

    Get PDF
    Nicotine activates plasma membrane (PM) nicotinic receptors (nAChRs), but also permeates into the endoplasmic reticulum (ER) and cis-Golgi, and there binds to nascent nAChRs. Other psychiatric and abused drugs may also enter the ER and bind their classical targets. Further progress requires direct proof, quantification, and time resolution of these processes in live cells and in the brain of animals. Therefore, we are developing genetically encoded fluorescent biosensors to study the subcellular pharmacokinetics of neural drugs

    Ultra-high throughput functional enrichment of large monoamine oxidase (MAO-N) libraries by fluorescence activated cell sorting

    Get PDF
    Directed evolution enables the improvement and optimisation of enzymes for particular applications and is a valuable tool for biotechnology and synthetic biology. However, studies are often limited in their scope by the inability to screen very large numbers of variants to identify improved enzymes. One class of enzyme for which a universal, operationally simple ultra-high throughput (>106 variants per day) assay is not available is flavin adenine dinucleotide (FAD) dependent oxidases. The current high throughput assay involves a visual, colourimetric, colony-based screen, however this is not suitable for very large libraries and does not enable quantification of the relative fitness of variants. To address this, we describe an optimised method for the sensitive detection of oxidase activity within single Escherichia coli (E. coli) cells, using the monoamine oxidase from Aspergillus niger, MAO-N, as a model system. In contrast to other methods for the screening of oxidase activity in vivo, this method does not require cell surface expression, emulsion formation or the addition of an extracellular peroxidase. Furthermore, we show that fluorescence activated cell sorting (FACS) of large libraries derived from MAO-N under the assay conditions can enrich the library in functional variants at much higher rates than via the colony-based method. We demonstrate its use for directed evolution by identifying a new mutant of MAO-N with improved activity towards a novel secondary amine substrate. This work demonstrates, for the first time, an ultra-high throughput screening methodology widely applicable for the directed evolution of FAD dependent oxidases in E. coli

    Applying neutral drift to the directed molecular evolution of a β-glucuronidase into a β-galactosidase: Two different evolutionary pathways lead to the same variant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Directed protein evolution has been used to modify protein activity and research has been carried out to enhance the production of high quality mutant libraries. Many theoretical approaches suggest that allowing a population to undergo neutral selection may be valuable in directed evolution experiments.</p> <p>Findings</p> <p>Here we report on an investigation into the value of neutral selection in a classical model system for directed evolution, the conversion of the <it>E. coli </it>β-glucuronidase to a β-galactosidase activity. We find that neutral selection, i.e. selection for retaining glucuronidase activity, can efficiently identify the majority of sites of mutation that have been identified as beneficial for galactosidase activity in previous experiments. Each variant demonstrating increased galactosidase activity identified by our neutral drift experiments contained a mutation at one of four sites, T509, S557, N566 or W529. All of these sites have previously been identified using direct selection for beta galactosidase activity.</p> <p>Conclusions</p> <p>Our results are consistent with others that show that a neutral selection approach can be effective in selecting improved variants. However, we interpret our results to show that neutral selection is, in this case, not a more efficient approach than conventional directed evolution approaches. However, the neutral approach is likely to be beneficial when the resulting library can be screened for a range of related activities. More detailed statistical studies to resolve the apparent differences between this system and others are likely to be a fruitful avenue for future research.</p

    Potenziamento delle stazioni di monitoraggio video esistenti e istallazione di nuove telecamere all’Osservatorio Astrofisico di “Serra la Nave”, a “La Montagnola” e a “Monte Vetore

    Get PDF
    Directed evolution is a method to tune the properties of enzymes for use in organic chemistry and biotechnology, to study enzyme mechanisms, and to shed light on Darwinian evolution in nature. In order to enhance its efficacy, iterative saturation mutagenesis (ISM) was implemented. This involves: 1) randomized mutation of appropriate sites of one or more residues; 2) screening of the initial mutant libraries for properties such as enzymatic rate, stereoselectivity, or thermal robustness; 3) use of the best hit in a given library as a template for saturation mutagenesis at the other sites; and 4) continuation of the process until the desired degree of enzyme improvement has been reached. Despite the success of a number of ISM-based studies, the question of the optimal choice of the many different possible pathways remains unanswered. Here we considered a complete 4-site ISM scheme. All 24 pathways were systematically explored, with the epoxide hydrolase from Aspergillus niger as the catalyst in the stereoselective hydrolytic kinetic resolution of a chiral epoxide. All 24 pathways were found to provide improved mutants with notably enhanced stereoselectivity. When a library failed to contain any hits, non-improved or even inferior mutants were used as templates in the continuation of the evolutionary pathway, thereby escaping from the local minimum. These observations have ramifications for directed evolution in general and for evolutionary biological studies in which protein engineering techniques are applied

    Powersharing and Democratic Survival

    Get PDF
    Democracy is often fragile, especially in states that have recently experienced civil conflict. To protect emerging democracies, many scholars and practitioners recommend political powersharing institutions. Yet there is little empirical research on whether powersharing promotes democratic survival, and some concern that it can limit electoral accountability. To fill this gap, we differentiate between inclusive, dispersive, and constraining powersharing and analyze their effects on democratic survival using a new global dataset. We find sharp distinctions across types of powersharing and political context. Inclusive powersharing, such as ethnic quotas, promotes democratic survival only in post-conflict settings. In contrast, dispersive institutions such as federalism destabilize post-conflict democracies. Only constraining powersharing consistently facilitates democratic survival in societies both with and without recent conflict. Our results suggest that institution-builders and international organizations should prioritize institutions that constrain leaders, including independent judiciaries, civilian control of the armed forces, and constitutional protections of individual and group rights

    Nicotine in the Endoplasmic Reticulum

    Get PDF
    Nicotine activates plasma membrane (PM) nicotinic receptors (nAChRs), but also permeates into the endoplasmic reticulum (ER) and cis-Golgi, and there binds to nascent nAChRs. Other psychiatric and abused drugs may also enter the ER and bind their classical targets. Further progress requires direct proof, quantification, and time resolution of these processes in live cells and in the brain of animals. Therefore, we are developing genetically encoded fluorescent biosensors to study the subcellular pharmacokinetics of neural drugs
    corecore