184 research outputs found

    Taxonomic study of the Japanese Dacrymycetes

    Get PDF
    The class Dacrymycetes is a rather small group of brown-rot wood-decaying jelly fungi characterised by forked basidia and an orange to yellow gelatinous to cartilaginous fruit body. In Japan, dacrymycetous fungi had not been investigated for a long time, justifying a taxonomic re-examination. In the present study we attempted an investigation of the dacrymycetous fungal flora of Japan, and recognised 28 taxonomic entities, including five new taxa, i.e. Dacrymyces ancyleus, D. aureosporus, D. pinacearum, D. subarcticus and Dacryopinax sphenocarpa, and nine new records. Due to the present survey, the total number of dacrymycetous species recorded from Japan increased from 28 to 42. Of the newly described species, Dacrymyces ancyleus is characterised by recurved, cylindrical basidiocarps and hyphae with clamp connections. Dacrymyces aureosporus resembles D. chrysospermus, but differs in wall thickness of its marginal hyphae. Dacrymyces pinacearum and D. subarcticus represent new coelomycetous anamorphic species. Dacryopinax sphenocarpa has sharp, spathulate basidiocarps, and hyphae with clamp connections. Descriptions, illustrations and photographs of fruit bodies are presented with some taxonomic notes. Molecular phylogenetic analyses were conducted to verify the species identification, and the remaining problems in Dacrymycetes taxonomy are discussed based on these data

    Fifty-Year Trend Towards Suppression of Wolbachia-Induced Male-Killing by Its Butterfly Host, Hypolimnas bolina

    Get PDF
    Some intracellular symbionts of arthropods induce a variety of reproductive alterations in their hosts, and the alterations tend to spread easily within the host populations. A few cases involving the spread of alteration-inducing Wolbachia bacteria in natural populations with time have been reported, but the investigations on the increasing trend in counteracting the bacterial effect on hosts in natural populations (i.e., increased resistance in hosts against the alterations) have been limited. In the present study, the prevalence of an alteration, killing of male Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae) butterflies by their inherited Wolbachia strain in the wild in Japan, was surveyed over a continuous 50-year period, which is far longer than ever before analyzed in studies of dynamics between reproductive alteration-inducing symbionts and their host arthropods. Thus, the results in this study provide the first instance of a long-term trend involving a change in reproductive alteration; and it strongly suggests a change in the opposite direction (i.e., suppression of male-killing) in natural populations. This change in the current combination of the Wolbachia and butterflies appears to be dependent upon the host taxon (race)

    Revision of Cerinomyces (Dacrymycetes, Basidiomycota) with notes on morphologically and historically related taxa

    Get PDF
    Publisher Copyright: © 2021 The AuthorsCerinomyces (Dacrymycetes, Basidiomycota) is a genus traditionally defined by corticioid basidiocarps, in contrast to the rest of the class, which is characterized by gelatinous ones. In the traditional circumscription the genus is polyphyletic, and the monotypic family Cerinomycetaceae is paraphyletic. Aiming for a more concise delimitation, we revise Cerinomyces s.l. with a novel phylogeny based on sequences of nrDNA (SSU, ITS, LSU) and protein-coding genes (RPB1, RPB2, TEF1-α). We establish that monophyletic Cerinomyces s.s. is best characterized not by the corticioid morphology, but by a combination of traits: hyphal clamps, predominantly aseptate thin-walled basidiospores, and low content of carotenoid pigments. In our updated definition, Cerinomyces s.s. encompasses five well-supported phylogenetic clades divided into two morphological groups: (i-iii) taxa with arid corticioid basidiocarps, including the generic type C. pallidus; and (iv-v) newly introduced members with gelatinous basidiocarps, like Dacrymyces enatus and D. tortus. The remaining corticioid species of Cerinomyces s.l. are morphologically distinct and belong to the Dacrymycetaceae: our analysis places the carotenoid-rich Cerinomyces canadensis close to Femsjonia, and we transfer the clamps-lacking C. grandinioides group to Dacrymyces. In addition, we address genera related to Cerinomyces s.l. historically and morphologically, such as Ceracea, Dacryonaema and Unilacryma. Overall, we describe twenty-four new species and propose nine new combinations in both Cerinomycetaceae and Dacrymycetaceae.Peer reviewe

    A pairwise maximum entropy model accurately describes resting-state human brain networks

    Get PDF
    The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks

    Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation

    Get PDF
    Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of the five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC). LRRC8A and at least one of the other LRRC8 isoforms assemble into heteromers to generate VRAC transport activities. Despite the availability of the LRRC8A structures, the structural basis of how LRRC8 isoforms other than LRRC8A contribute to the functional diversity of VRAC has remained elusive. Here, we present the structure of the human LRRC8D isoform, which enables the permeation of organic substrates through VRAC. The LRRC8D homo-hexamer structure displays a two-fold symmetric arrangement, and together with a structure-based electrophysiological analysis, revealed two key features. The pore constriction on the extracellular side is wider than that in the LRRC8A structures, which may explain the increased permeability of organic substrates. Furthermore, an N-terminal helix protrudes into the pore from the intracellular side and may be critical for gating

    Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins.

    Get PDF
    The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13(G64D), in which Gly at amino acid position 64 is replaced by Asp, and ZIP13(ΔFLA), which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13(G64D) and ZIP13(ΔFLA) protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS

    Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma

    Get PDF
    Enhancer of zeste homologue 2 (EZH2), a member of the polycomb group protein family, plays a crucial role in the regulation of embryonic development and has been associated with the regulation of the cell cycle. Recently, several studies have shown that EZH2 is highly expressed in aggressive tumours, including human breast cancer, prostate cancer, and lymphomas. We thus analysed EZH2 expression using real-time reverse transcription–polymerase chain reaction, and correlated its expression status with various clinicopathological parameters in 66 patients with hepatocellular carcinoma (HCC). We found high expression of EZH2 in human liver cancer cell lines. Furthermore, EZH2 gene-expression levels in tumour tissue specimens (0.34±0.52) were significantly higher (P<0.0001) than those in the corresponding nontumour tissue specimens (0.07±0.09). The incidence of cancer cell invasion into the portal vein was significantly higher (P<0.001) in the high EZH2 expression group (26 of the 33, 79%) than in the low expression group (13 of the 33, 39%). However, there was no significant difference in the disease-free survival rate between the two groups. The findings of this study indicate that EZH2 mRNA expression was upregulated in human HCC and may play an important role in tumour progression, especially by facilitating portal vein invasion

    Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs

    Get PDF
    A new pleosporalean family Tetraplosphaeriaceae is established to accommodate five new genera; 1) Tetraplosphaeria with small ascomata and anamorphs belonging to Tetraploa s. str., 2) Triplosphaeria characterised by hemispherical ascomata with rim-like side walls and anamorphs similar to Tetraploa but with three conidial setose appendages, 3) Polyplosphaeria with large ascomata surrounded by brown hyphae and anamorphs producing globose conidia with several setose appendages, 4) Pseudotetraploa, an anamorphic genus, having obpyriform conidia with pseudosepta and four to eight setose appendages, and 5) Quadricrura, an anamorphic genus, having globose conidia with one or two long setose appendages at the apex and four to five short setose appendages at the base. Fifteen new taxa in these genera mostly collected from bamboo are described and illustrated. They are linked by their Tetraploa s. l. anamorphs. To infer phylogenetic placement in the Pleosporales, analyses based on a combined dataset of small- and large-subunit nuclear ribosomal DNA (SSU+LSU nrDNA) was carried out. Tetraplosphaeriaceae, however, is basal to the main pleosporalean clade and therefore its relationship with other existing families was not completely resolved. To evaluate the validity of each taxon and to clarify the phylogenetic relationships within this family, further analyses using sequences from ITS-5.8S nrDNA (ITS), transcription elongation factor 1-α (TEF), and β-tubulin (BT), were also conducted. Monophyly of the family and that of each genus were strongly supported by analyses based on a combined dataset of the three regions (ITS+TEF+BT). Our results also suggest that Tetraplosphaeria (anamorph: Tetraploa s. str.) is an ancestral lineage within this family. Taxonomic placement of the bambusicolous fungi in Astrosphaeriella, Kalmusia, Katumotoa, Massarina, Ophiosphaerella, Phaeosphaeria, Roussoella, Roussoellopsis, and Versicolorisporium, are also discussed based on the SSU+LSU phylogeny
    corecore