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A pairwise maximum entropy model accurately
describes resting-state human brain networks
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Seiki Konishi1, Yasushi Miyashita1 & Naoki Masuda3

The resting-state human brain networks underlie fundamental cognitive functions and consist

of complex interactions among brain regions. However, the level of complexity of the resting-

state networks has not been quantified, which has prevented comprehensive descriptions of

the brain activity as an integrative system. Here, we address this issue by demonstrating that

a pairwise maximum entropy model, which takes into account region-specific activity rates

and pairwise interactions, can be robustly and accurately fitted to resting-state human brain

activities obtained by functional magnetic resonance imaging. Furthermore, to validate the

approximation of the resting-state networks by the pairwise maximum entropy model, we

show that the functional interactions estimated by the pairwise maximum entropy model

reflect anatomical connexions more accurately than the conventional functional connectivity

method. These findings indicate that a relatively simple statistical model not only captures the

structure of the resting-state networks but also provides a possible method to derive

physiological information about various large-scale brain networks.
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D
uring rest, the human brain is not idle but shows a large
amount of spontaneously fluctuating activity that is
highly correlated between multiple brain regions1,2.

Previous studies used positron emission tomography or
functional magnetic resonance imaging (fMRI) to reveal that
brain regions interact with each other during rest and constitute
several resting-state networks (RSNs)3–6. The RSNs, including the
default mode network (DMN)5,6 and the fronto-parietal network
(FPN)7,8, are highly reproducible across different healthy
individuals9 and are considered to underlie fundamental and
intrinsic functions such as self-referential cognitive processes10,11,
maintenance of memory12 and attentional cognitive processes8.
These functions are considered to originate from complex
functional interactions among the brain regions belonging to
the RSNs13. However, the level of complexity that is observed in
the activities of an ensemble of brain regions and in the structure
of these functional interactions has not been quantified for the
RSNs. As a result, it remains challenging to comprehensively
understand this ensemble brain activity as an integrative large-
scale neural system14,15.

For microscopic neural tissues, maximum entropy models
(MEMs) have been successful in estimating the complexity of
neural activity patterns. For example, the pairwise MEM method
(that is, a second-order model) seeks to fit a relatively simple
binary-state model containing up to second-order interaction
terms (that is, firing rates and pairwise interaction) to empirical
data of spatiotemporal spike trains. If the pairwise MEM is
accurately fitted to the data, activity patterns of neurons can be
described with a combination of averaged activity at each
recording site and pairwise correlation. If it does not, we cannot
ignore higher-order interactions such as triplet interactions
originating from an external common input, and accurate
descriptions of the activity patterns of neurons would require
more complicated (that is, higher-order) MEM models. In fact,
the pairwise MEM accurately describes firing patterns in the
retinal tissues of primates recorded electrophysiologically
in vitro16–21, firing patterns and local field potentials (LFPs) in
human cortical tissues in vitro22 and large-scale firing patterns in
the visual cortex of monkeys and cats in vivo23,24. These findings
suggest the possibility that the human brain activity patterns
during rest are not so complex and can be accurately described by
pairwise MEMs.

If the pairwise MEM accurately explains large-scale brain
activity patterns during rest, the MEM method will give us much
richer information about functional interactions in the RSNs than
the widely used functional connectivity (FC) analysis, which is
based on Pearson’s correlation coefficient between a pair of brain
regions. Although FC often implies broader classes of methods
for inferring connectivity in the brain, we use this term to refer to
the methods on the basis of Pearson’s correlation coefficient in
this paper. The FC-based analysis (based on Pearson’s correlation
coefficient) has successfully revealed that specific functional
connexions are enhanced during specific cognitive processes25,26,
and the FC map serves as a promising indicator of several
diseases27,28, stages of development29,30 and levels of
intelligence31. However, because FC is calculated as Pearson’s
correlation coefficient between activities of pairs of regions3,4, the
FC-based method is founded on the implicit assumption that the
pairwise interactions are independent of each other32. If different
pairwise interactions influence each other, the observed
correlation between regions A and B may be a natural
consequence of, for example, the correlation between regions A
and C and that between regions B and C. In fact, a study
employing monkeys shows that, even when a pair of brain regions
does not have a direct anatomical connexion, the FC between
them is often large if the regions receive common input from a

third region33. Other studies also show that a significant FC value
between a pair of regions does not distinguish a direct (that is,
monosynaptic) connexion from an indirect (that is, polysynaptic)
connexion34,35. The FC-based methods may discard possibly rich
information that would be revealed if we take into account that
functional interactions influence each other8.

Unlike the functional interactions estimated by the FC-based
method, functional interactions estimated by the pairwise MEM
method are not a simple collection of pairwise interactions that
are determined independently of each other. The method infers
organization of functional interactions based on global activity
patterns (that is, activities of more than two sites that are
considered simultaneously), not on the assumption that activity
patterns of region pairs are independent of those of other pairs.
Therefore, if the pairwise MEM can accurately describe the RSNs,
the MEM method is expected to provide a better method for
assessing integrative network structure than the FC-based
method.

In the present study, we first quantify the complexity inherent
in activities of an ensemble of brain regions during rest by fitting
the MEM to resting-state fMRI data in the RSNs. Then, to
validate the approximation of the RSNs by the pairwise MEM, we
demonstrate that the interactions estimated by the pairwise MEM
are more physiologically informative than those estimated by FC
in the sense that anatomical connexions are more accurately
predicted. The pairwise MEM even outperforms other methods
that take into account global activity patterns beyond a collection
of independently estimated pairwise interactions, including the
partial correlation method36,37 and the mutual information (MI)
method37–39.

Results
Acquisition and processing of data. We applied the pairwise
MEM to fMRI signals obtained from the brain regions belonging
to the DMN5,6 and FPN7,8, two representative RSNs. We
separately applied the pairwise MEM to the DMN and FPN,
which are relatively independent of each other in the sense that
they are thought to have different functions15,40. The coordinates
of the brain regions were anatomically defined based on a meta-
analysis of resting-state fMRI data obtained from 183 healthy
participants41,42. The DMN and FPN consisted of 12 and 11
regions, respectively (Table 1). We obtained B45 h of resting-
state fMRI data from six healthy young adult participants (B7.5 h
per participant). Using the data, we extracted the low-frequency
signals (0.01–0.1 Hz) from all the brain regions included in the
DMN or FPN (Fig. 1a), binarized the signals (Fig. 1b) and fitted
the MEM to the binarized signals (Fig. 1c).

Accurate fitting of the pairwise MEM to resting-state fMRI
signals. In Fig. 2a,b, each data point represents the estimated and
empirical probabilities that a binarized activity pattern (that is,
state vector in Fig. 1c) occurs. If the points are on the diagonal
(lines in Fig. 2a,b), the model would perfectly explain the
empirical activity patterns. For comparison, the results for the
MEM estimated under the restriction that different regions do
not interact (that is, independent MEM) are also presented in the
figures. Figure 2a,b suggests that, in both the DMN and FPN, the
pairwise MEM explains the empirical frequency of the activity
patterns much more accurately than the independent MEM. In
both the DMN and FPN, the probability of the pattern estimated
by the pairwise MEM was generally closer to the empirical
probability than that estimated by the independent MEM for both
rare and frequent patterns (Fig. 2c,d). The pairwise MEM results
in a high accuracy (85% for the DMN and 94% for the FPN). An
accuracy of 85%, for example, indicates that the application of the
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pairwise MEM reduces the distance between the estimated and
empirical distributions of patterns by 85% as compared with the
independent MEM (see equation (2) in the Methods). These
results show that the pairwise MEM accurately describes the
fMRI signals in the RSNs.

Robustness of accurate fitting of the pairwise MEM. We then
examined the robustness of the accurate fitting of the pairwise
MEM from three perspectives. First, we evaluated the accuracy of
fit for various values of the threshold for binarization, because the
pairwise MEM requires binarization of the originally continuous
fMRI signals (Fig. 1b). The distributions of the original con-
tinuous signals for the two RSNs are shown in Figure 3a. We then
set various threshold values for binarization within the range of
the fMRI signal, and tested the dependence of the so-called
estimation reliability on the threshold. The estimation reliability
represents the precision with which the parameters in the pair-
wise MEM are estimated (see equation (3) in the Methods). The
pairwise MEM estimated the parameter values with high relia-
bility (499%) when the threshold lay approximately between
� 0.15 and 0.15 (Fig. 3b). Consistent with this result, the fitting of
the pairwise MEM to the data was accurate for threshold values in
this range (480% for the DMN and 490% for the FPN; Fig. 3c).
The threshold of � 0.15, for example, implies that the accuracy of
fit remains high even if the probabilities of the two binarized
states of a brain region are quite uneven (that is, activated with
probability 0.78 and not activated with probability 0.22). These
results suggest that the accuracy of fit is robust as long as the
threshold is located between � 0.15 to 0.15. In the following, we
set the threshold to 0.1 because this value maximized the accuracy
of fit of the pairwise MEM (Fig. 3c).

Second, we confirmed that the high accuracy of our results was
not due to a fallacy of the pairwise MEM when it is applied to too

small populations. When the accuracy of the fitting linearly
decreases with the number of regions N, one theory suggests that
the accurate fitting may be an artifact of a small N43. In this case,
the validity of the pairwise MEM cannot be directly extrapolated
to populations with a large N43. For our data, the accuracy
decreases sub-linearly with N at least for the DMN (Fig. 3d).
Furthermore, the theory indicates that the pairwise MEM can be
informative about empirical data only when it is accurately fitted
to data with N significantly larger than Nc¼ 1/�vdt, where �v and dt
are the averaged activation rate and the length of the time bin,
respectively43. In the present analysis, �v¼ 0.045 s� 1 and
�v¼ 0.041 s� 1 for the DMN and FPN, respectively, and
dt¼ 9.045 s. Therefore, NcE2.5 and 2.7 for the DMN and FPN,
respectively. Figure 3d suggests that the pairwise MEM was
accurate for the two networks up to N¼ 12 and 11, which are
much larger than Nc. Therefore, the high accuracy of the pairwise
MEM for our data is not an artifact of a small N value.

Third, we examined the dependence of the results on the
participants. We split the fMRI data into two groups, that is, the
data obtained from participants no. 1–3 and those obtained from
participants no. 4–6. The interaction weights (that is, elements of
the estimated interaction matrix, denoted by Jij in equation (1);
also see Fig. 1c) obtained from the pairwise MEM were similar
between the two groups (Pearson’s correlation coefficient
r¼ 0.96, Po10� 3 in Fig. 3e; r¼ 0.93, Po10� 3 in Fig. 3f).
Therefore, our results are robust with respect to the participants.

In summary, the pairwise MEM accurately and robustly
explains the collective activities of the brain regions in the RSNs.

Interaction matrices derived by the pairwise MEM and
alternative methods. If the functional interactions estimated by
the pairwise MEM are closely relevant to some physiological

Table 1 | Coordinates of brain regions in the RSNs.

Network Region MNI Coordinates

X Y Z

DMN Anterior medial PFC 1 55 26
Ventro-medial PFC � 3 40 0
Left SFG � 14 36 59
Right SFG 17 35 58
Left ITG �62 � 33 � 20
Right ITG 66 � 17 � 19
Left parahippocampal gyrus � 22 � 26 � 21
Right parahippocampal gyrus 25 � 26 � 18
PCC � 2 � 29 39
Left lateral parietal �47 � 71 35
Right lateral parietal 54 �61 36
Posterior cingulate 3 � 53 6

FPN Left DLPFC �48 21 38
Right DLPFC 43 21 38
Left MFG �41 1 39
Right MFG 41 1 39
Middle CC 0 � 31 31
Left IPL � 52 � 54 36
Right IPL 52 � 51 43
Left IPS � 31 � 63 42
Right IPS 30 �65 39
Left precuneus � 9 � 76 36
Right precuneus 10 � 73 39

CC, cingulate cortex; DLPFC, dorso-lateral prefrontal cortex; DMN, default mode network; FPN,
fronto-parietal network; IPL, inferior parietal lobe; IPS, inferior parietal sulcus; ITG, inferior
temporal gyrus; MFG, middle frontal gyrus; MNI, Montreal Neurologic Institute; PCC, posterior
cingulate cortex; PFC, prefrontal cortex; RSN, resting-state network; SFG, superior frontal gyrus.
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basis, the relationship would provide further validation of the
approximation of the RSNs by the pairwise MEM. Therefore, we
next examined the possible physiological bases of the interaction
weights between pairs of regions inferred by the pairwise MEM.
For comparison, we referred to large-scale anatomical con-
nectivity determined from previous diffusion tensor imaging
(DTI) of the brains of 80 healthy young human adults44. To
assess the performance of the pairwise MEM, we also generated
four types of interaction matrices as controls, that is, those based
on the FC method, those based on the inverse Gaussian model,
those based on the partial correlation method36,37 and those
based on the MI method37,39 (see Methods). It should be noted
that the four methods do not require binarization of the fMRI
signals.

The anatomical connectivity maps and the interaction matrices
estimated by the five methods are shown in Fig. 4. For both the
DMN (Fig. 4a) and FPN (Fig. 4b), the |Jij| values estimated by the
pairwise MEM are mainly large for pairs of brain regions with
direct anatomical connexion, whereas, in the other methods, |Jij|
is large both for pairs with direct anatomical connexion and
those without such connexion. Therefore, the pairwise MEM
seems to outperform the other four methods in estimating the
anatomical connexions if we regard both positive and negative
large values of Jij as predicting the presence of anatomical
connexion. The use of both positive and negative values is
consistent with the anatomical evidence, because anatomical
results derived from DTI are thought to reflect either excitatory or
inhibitory connectivity between pairs of regions.

Prediction of anatomical connexions by the pairwise MEM and
the other methods. To analyse the results more quantitatively, we

compared the accuracy of the five methods in estimating the
presence or absence of the anatomical connexions between pairs
of regions. Figure 5a,b shows histograms of the values of inter-
action weights (that is, values of the entries of the matrices shown
in Fig. 4) estimated by the five methods. As the absolute value of
the functional interaction weight seems to predict the anatomical
connexions better than the raw values of them, at least for all the
methods except FC, we show the histograms of the absolute
values of the interaction weights. However, for the FC, we also
show the histograms of the raw values of the interaction weights
(that is, correlation coefficient) because they are conventionally
used34,41,45.

Under the pairwise MEM, anatomically connected pairs of
regions in both the DMN and FPN tended to have larger absolute
values of interaction weights than pairs that were not directly
connected in anatomy. The interaction weights for the
anatomically connected pairs were significantly larger than
those for the anatomically unconnected pairs on average
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(Po0.001, two-sample t-tests in both the DMN and FPN;
Fig. 5c,d).

The partial correlation and MI methods yielded similar
significant differences between the anatomically connected pairs
and unconnected pairs (for both models, Po0.001 in DMN,
Po0.05 in FPN, two-sample t-tests; Fig. 5c,d. Also see Fig. 5a,b).
In contrast, the FC and inverse Gaussian models did not predict
anatomical connexions as accurately as the pairwise MEM

(Fig. 5a,b). In the DMN, the interaction weights estimated by
these two methods had larger values when region pairs were
anatomically connected than unconnected (FC: Po0.05, absolute
value of FC: Po0.01, inverse Gaussian model: Po0.01, two-
sample t-tests). However, in the FPN, the difference was
insignificant for both of the two methods (P40.3).

For further comparison the five methods, we carried out a
receiver-operating characteristic (ROC) analysis, which is
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sensitive to the difference in the distribution of the functional
interactions between the anatomically connected and
unconnected pairs (Fig. 6a,b). In short, the curves show the
relationship between the false positive (that is, anatomically
unconnected pairs whose interaction weights exceed a threshold)
and true positive (that is, anatomically connected pairs whose
interaction weights exceed the same threshold; also called the
sensitivity) when we vary the threshold for classifying the region
pairs into anatomically connected and unconnected groups.
When the false positive is small and the true positive is large for a
threshold value, the classification is accurate such that the
interaction weights determined by an estimation method are
relatively consistent with the anatomy. In both the DMN and
FPN, the area under the curve (AUC) for the pairwise MEM was
significantly larger than those for the other four methods (DMN:
Z47.3, Po1.0� 10� 11, Bonferroni-corrected; FPN: Z49.4,
Po1.0� 10� 16, Bonferroni-corrected; Fig. 6c). There was no
significant difference between any other pair of the methods.

Validity of binarizing fMRI signals. We binarized the fMRI
signals to implement the pairwise MEM. However, fMRI signals
originally represent continuous blood flows to brain regions, and
the validity of the binarization is unclear. Therefore, we calculated
the accuracy of fit of pairwise MEMs in which the signals were
classified to three discrete levels, which we call the trinary MEM,
by using a standard procedure described in Methods46. When the
signals recorded at the different brain regions and time points
were evenly divided into three groups (Supplementary Fig. S1),
the accuracy of fit was the highest. However, the accuracy of fit in
this case was approximately equal to 0.55 (Supplementary Fig. S2)
and significantly lower than those obtained for the binary
pairwise MEM for both the DMN and FPN (Po10� 3 in two-
sample t-tests).

Despite the lower accuracy of the trinary MEM, the trinary
MEM might be better at accurately predicting anatomical
connectivity than the binary MEM. Therefore, we examined the
relationship between the functional interactions estimated by the
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trinary MEM and the anatomical connectivity. For the trinary
MEM, the functional interactions between anatomically
connected pairs were larger than those between anatomically
unconnected pairs (Po0.05 in two-sample t-tests, Supplementary
Fig. S3). However, ROC analysis revealed that the AUC for the
trinary MEM was significantly smaller than that for the binary
MEM (Po10� 3 in two-sample t-tests, Supplementary Fig. S4).

These results suggest that the binary pairwise MEM provides
more information about anatomical connectivity than the trinary
pairwise MEM. Such a difference usually arises because the
trinary MEM requires a larger amount of data than the binary
MEM (that is, 3N versus 2N data points). However, even the
trinary MEM with N¼ 4 and N¼ 5, for which there are relatively
few activity patterns (that is, 34¼ 81 and 35¼ 243 patterns),
yields the accuracy of fit values o0.6. These accuracy of fit values
are much smaller than those for the binary MEM with
comparable numbers of activity patterns: the accuracy of fit was
40.9 for the binary MEM with N¼ 8, with which there are
28¼ 256 activity patterns (Fig. 3d). Therefore, we conclude that
the binary MEM better captures fMRI signals than the trinary
MEM and presumably MEMs that allow more discrete levels.

Discussion
We have demonstrated that the pairwise MEM accurately
describes activity in the human RSNs. The model was fitted to
both the DMN and the FPN with high accuracy and robustness.
Furthermore, functional interaction matrices derived from the
pairwise MEM were similar to the anatomical connexion maps.
The agreement between the estimated matrices of functional
interactions and the anatomical maps is better with the pairwise
MEM than with the four other methods: the FC based on
Pearson’s correlation coefficients, inverse Gaussian model, partial
correlation method and MI method. These findings suggest that
the large-scale human brain networks during rest can be captured
by a relatively simple second-order model.

Our results extend the previous findings that the pairwise
MEM accurately describes activity patterns observed in a slice or
small parts of the brain16–19,22–24. In particular, Tang and
colleagues22 showed that the pairwise MEM approximates the
statistics of multiunit LFPs recorded from cultured slices of the
human brain cortex. As LFPs are considered to be predictive of
blood-oxygenation-level-dependent signals (that is, fMRI
signals)47, it is reasonable that the present study has
successfully fitted the pairwise MEM to fMRI signals. Although
fine-scale neural networks (o300 mm) seem to require more
complex models, such as higher-order MEMs19,24, in terms of the
spatial scale, we have extended the applicability of the pairwise
MEM method from microscopic neural populations (B500 mm)
to macroscopic populations at the level of the entire brain
(B10 cm).

In previous studies, large FC values have been suggested to
imply the presence of direct anatomical connexion between
regions2,34,45. In particular, a study using high-resolution fMRI
conducted an ROC analysis similar to ours, and reported that the
FC classifies the anatomical connexions with high accuracy
(AUC¼ 0.79)34. Our present study produced similar accuracy
values for the FC (AUCs in the DMN and FPN of 0.73 and 0.67,
respectively; Fig. 6c) but also showed that the pairwise MEM gives
higher accuracy (AUC in the DMN and FPN of 0.89 and 0.85,
respectively; Fig. 6c). These results suggest that the pairwise MEM
captures the anatomical properties of large-scale brain networks
to a better extent than the FC-based method does, although the
pairwise MEM is a statistical model and not based on the
physiology of the brain.

As second-order interaction implies networks consisting of
nodes and links, the pairwise MEM may serve as a tool for
investigating large-scale human brain networks. As previous
studies did for networks generated by the resting-state FC (see a
review14), we can in principle calculate various graph-theoretical
quantities for the RSNs defined by the pairwise MEM. This
approach calls for a sufficient amount of resting-state fMRI data

DMN

DMN

⏐Jij⏐ ⏐Zij⏐ ⏐rij⏐ MIijZij

1

1
0

0

0.2

0.2

0.4

0.4
T

ru
e 

po
si

tiv
e

Inverse gaussian model

Mutual information

Partial correlation

Pairwise MEM

FC

False positive

0.6

0.6

0.8

0.8

FPN

FPN

0

1

0.2

0.4

False positive

0.6

0.8

10 0.2 0.4 0.6 0.8

Absolute value of FC

Inverse gaussian model

Pairwise MEM

FC

Absolute value of FC

1

0.6

0.7

0.8

0.9

A
U

C

0.5

******

Parital correlation

Mutual information

⏐Γ –
ij
1⏐ ⏐Jij⏐ ⏐Zij⏐ ⏐rij⏐ MIijZij ⏐Γ –

ij
1⏐

⏐Jij⏐

⏐Zij⏐

⏐rij⏐
MIij

Zij

⏐Γ–
ij
1⏐

Figure 6 | ROC analysis. The colour code is as follows: red, pairwise MEM; green, raw values of FC; light green, absolute values of FC; blue, inverse

Gaussian model; yellow, partial correlation method; purple, MI method. (a,b) ROC curves for the classification into anatomically connected and

unconnected region pairs based on the interaction weights. (c) AUCs of the ROC curves shown in panels (a,b). Error bars: s.d., ***Po0.005, in two-sample

t-tests with the Bonferroni correction.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2388 ARTICLE

NATURE COMMUNICATIONS | 4:1370 | DOI: 10.1038/ncomms2388 | www.nature.com/naturecommunications 7

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


to estimate an interaction matrix among a relatively large number
of brain regions and efficient algorithms to estimate the MEM for
large N, such as those developed in previous studies19,48,49. We
can also apply the pairwise MEM to fMRI data measured during
psychological tasks, though several modifications of the method
may be in order. In previous fMRI studies, such task-specific
functional interactions were estimated by psychophysiological
interaction analysis50, Granger causality analysis51 and dynamic
causal modelling52. Among these methods, psychophysiological
interaction analysis, like FC-based methods, is a seed-based
analysis and does not allow us to collectively estimate
functional interactions among the entire set of recorded sites.
The use of dynamic causal modelling and Granger causality
modelling still seems to be limited8,53. Therefore, the pairwise
MEM may serve as an alternative method for inferring task-
specific brain networks. In particular, recent theoretical
developments of the MEM incorporate causality (signal flow
from one region to another)54,55, which will be an indispensable
component for modelling task-related data.

Methods
Participants and fMRI data acquisition. Six healthy right-handed subjects (aged
20–23 years; three males) participated in the experiments after written informed
consent was obtained. The MRI scanning was conducted using a 3T MRI scanner
(Philips Achieva X 3T Rel. 2.6, Best, The Netherland). T1-weighted structural
images were obtained for anatomical reference (resolution¼ 0.81� 0.81� 1.20
mm3). Functional imaging used gradient-echo echo-planar sequences
(TR¼ 9.045 s, TE¼ 35 ms, flip angle¼ 901, resolution¼ 2� 2� 2 mm3, 75 slices).
The entire procedure for the MRI scanning was approved by the institutional
review board of The University of Tokyo School of Medicine.

During the functional imaging, the participants were instructed to passively view
a fixation point on the screen. One passive fixation session took B5 min, and each
participant underwent 90 sessions (B7.5 h) on 6–8 separate days. In each session,
we discarded the first five images (9.045 s/volume� 5 volumes¼ 45.225 s) to
exclude the influence of transient processes before the equilibrium of longitudinal
magnetization. In total, 17,820 volumes (2,970 volumes per participant) of resting-
state functional images were obtained.

Preprocessing of fMRI data. In line with previous studies of resting-state
fMRI25,26,30, we preprocessed the fMRI data as follows. First, for each session and
each participant, the functional images were realigned, their slice-timing was
corrected and they were normalized to the standard template image (ICBM 152) by
SPM8 (www.fil.ion.ucl.ac.uk/spm/). Second, for each session, after temporal band-
pass filtering (0.01–0.1 Hz) with Matlab scripts written in-house, the data
underwent spatial smoothing (FWHM¼ 8 mm) in SPM8. Third, the smoothed
data originating from all the sessions were combined for each participant. Finally,
for each participant, the combined data were corrected for their head motion,
whole-brain signals, ventricular signals, white matter signals and run effect.
Therefore, the fMRI signals used in our analysis have the same unit as that of the
so-called ‘beta-value’56–58 except for a normalization factor.

We determined the coordinates of the brain regions belonging to the DMN and
FPN based on a previous meta-analysis of resting-state fMRI studies30,42 (the
DMN: 12 regions, the FPN: 11 regions, Table 1). We subjected the preprocessed
data corresponding to these brain regions to the following analysis.

Pairwise MEM. We fit the pairwise MEM to the resting-state fMRI data in
essentially the same manner as did the previous studies of microscopic neural
activities16,17,22–24. We added a constant to the preprocessed signal at each region
such that the average of the preprocessed signals over T¼ 17,820 snapshots (that is,
functional images) is equal to zero at each region. Then the signals were binarized,
because the pairwise MEM deals with snapshots of binarized signals recorded
simultaneously at multiple sites.

We set the bin width to 9.045 s, that is, one whole-brain image was taken in one
repetition time (TR) of 9.045 s, because a long bin width is effective at decorrelating
data that were recorded in adjacent time points. With a small bin width, the fMRI
signals (that is, network states) in close time points would be highly correlated with
each other. Therefore, the use of such a small bin width would not increase the
effective number of samples.

We experimented with various threshold values for binarization, and chose a
value of 0.1, because it maximized the accuracy of fit (Fig. 3b,c). The binarized
activity of brain region i at discrete time t, denoted by si

t, is either on (þ 1) or off
(0). The network state (that is, pattern) at time t is given in vector form by
Vt ¼ ½st

1; s
t
2; . . . ; st

N �; where N is the number of the brain regions of interest (that
is, N¼ 12 in the DMN and N¼ 11 in the FPN). It should be noted that there are 2N

possible network states. The empirical activation rate of region i, denoted by /siS,

is given by hsii¼ ð1/TÞ
PT

t¼ 1 s
t
i . The empirical pairwise joint activation rate of

regions i and j, denoted by /sisjS, is given by hsisji¼ ð1/TÞ
PT

t¼ 1 s
t
is

t
j .

The pairwise MEM maximizes the entropy of the distribution of activity patterns
under the restriction that /siS and /sisjS (1rirjrN) are preserved. It is known

that such a distribution has the form PðViÞ¼ e� EðViÞ/
P2N

i¼ 1 e� EðViÞ , where P(Vi) is
the probability of network state Vi, and

EðViÞ¼ �
XN

i¼ 1

hisi�ð1/2Þ
XN

i¼ 1

X
j¼ 1; j 6¼i

N

Jijsisj ð1Þ

hi represents the tendency of activation at region i, and Jij, called the interaction
weight, represents functional interaction between regions i and j. Positive and
negative values of Jij are interpreted as excitatory and inhibitory interactions,
respectively. For an estimated probability distribution, the expected activation rate,
/siSm, and the expected pairwise joint activation rate, /si sjSm, are given by

hsiim ¼
P2N

j¼ 1 siðVjÞPðVjÞ and hsisjim ¼
P2N

k¼ 1 siðVkÞsjðVkÞPðVkÞ, respectively,
where si(Vj) indicates the activity (either þ 1 or 0) of si under network state Vj.

We calculated hi and Jij by iteratively adjusting /siSm and /sisjSm toward /siS
and /sisjS, respectively, by using a gradient ascent algorithm. The iteration scheme
is given by hnew

i ¼ hold
i þ a � logðhsii/hsiimÞ and Jnew

ij ¼ Jold
ij þ a � logðhsisji/hsisjimÞ,

where a is the learning rate. We set a¼ 0.75 to reduce computation time. We
confirmed that the results were robust with respect to the choice of a ranging from
0.1 to 1.0.

As in previous studies16,17,22–24, we evaluated the effectiveness of the pairwise
MEM by using two information theoretic quantities. To define them, we also
obtained the MEM without pairwise interaction between regions (that is,
independent MEM) by determining hi (1rirN) under the condition that Jij¼ 0
(1ri, jrN). For the independent MEM, /sisjSm is equal to /siSm/sjSm.

Using the resultant goodness of fit obtained for the two types of the MEMs, we
define the accuracy index for the pairwise MEM by

rD ¼ðD1 �D2Þ/D1 ð2Þ

where Dk ¼
P2N

i¼ 1 PN ðViÞ � log2ðPNðViÞ/PkðViÞÞ is the Kullback–Leibler divergence
between the probability distribution of the network state in the k th order model
(k¼ 1 and 2 for the independent and pairwise MEMs, respectively) and the empirical
distribution of the network state, denoted by PN. To evaluate reliability of the fitting,

we calculate rS¼ (S1� S2)/(S1� SN), where Sk ¼ �
P2N

i¼ 1 PkðViÞ � logðPkðViÞÞ is the
entropy of the distribution of the network state in the k th order model. Note that SN

is the entropy of the empirical data. Using rS, we define the estimation reliability by

rS/rD ð3Þ

The estimation reliability is equal to 1 if the values of hi and Jij are estimated without
error59.

Cross validation. As a large sample size is desirable for statistical fitting, we trained
the pairwise MEM using the entire data and tested it against the same data. To
exclude the possibility of over fitting, we carried out cross validation as follows: (i)
We divided the T observed snapshots (that is, network states) into the two subsets
of equal size, that is, T/2, such that each snapshot independently belongs to either
subset with probability 1/2. It should be noted that we are not concerned with the
temporal structure of the data. (ii) We calculated the accuracy of fit by training the
MEM using one subset and testing the estimated model against the other subset.
(iii) We calculated the accuracy of fit by using one of the two subsets for both
training and testing. (iv) We repeated procedures (i), (ii) and (iii) ten times and
compared the accuracy of fit between the cross validation case (that is, (ii)) and the
dependent training-testing case (that is, (iii)). We did not find significant differ-
ences between the two cases (cross validation versus dependent training-test cases:
0.67±0.0068 versus 0.68±0.0058 for the DMN, P40.41; 0.76±0.0071 versus
0.76±0.0051 for the FPN, P40.35, mean±s.d. in paired t-tests). Therefore, we
concluded that the use of the same data in both training and testing did not give
rise to serious problems in the present study.

Trinary pairwise MEM. To examine the validity of binarizing fMRI signals, we
estimated the accuracy of fit of the trinary pairwise MEM as follows: First, we
discretized the fMRI signal at each brain region i and each time t into one of the
three different levels by thresholding. The discretized activity si

t is set to 1, 0 and
� 1 if the fMRI signal was larger than e, between � e and e and smaller than � e,
respectively. Then, we fitted the trinary pairwise MEM in the almost same manner
as that for fitting the binary pairwise MEM46.

Conventional FC. As a control of the functional interaction, we calculated the FC
based on the Pearson’s correlation coefficient between the activity of every pair of
regions included in the DMN or FPN. The calculation procedures were the same as
those used in previous studies of the resting-state FC25,26. After calculating the FC
for each scanning session and each participant, we carried out Fisher’s
transformation28 and averaged the Z-value-based FC across sessions and
participants. As is consistent with a previous study60, the FC matrices for the DMN
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and FPN were similar across participants as well as sessions for our data: Pearson’s
correlation coefficient between an arbitrary pair of the FC matrices of possibly
different participants and sections was 40.81. The large correlation values suggest
that the averaged FC is a good representation of the FC for a single participant and
session.

Inverse Gaussian model. As another control, we estimated functional interaction
using the inverse Gaussian model. In this model, the probability density function of
the brain activity is assumed to obey the multivariate Gaussian distribution given
by PIGMðXtÞ / eð� 1/2ÞðXt � �XÞG� 1ðXt � �XÞT , where Xt¼ [X1(t), X2(t),yXN(t)] is the
N-dimensional row vector representing the continuous-valued activity at the N
regions at time t, �X is the row vector of the activity at the N regions averaged over
sessions and participants, and G¼ð1/TÞ

PT
t¼ 1ðXt � �XÞðXt � �XÞT is the N�N

covariance matrix. In this model, we define the interaction weight between regions
i and j as the (i, j) element of matrix G� 1.

Partial correlation method. As another control, we estimated functional inter-
actions using the partial correlation method36,37. Using the inverse of the
covariance matrix, we defined the partial correlation between brain regions i and j,

denoted by rij, by rij ¼ �G� 1
ij /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G� 1

ii G� 1
jj

q
.

MI method. As another control, we estimated functional interactions using the MI
method. In accordance with the previous studies37–39, we first estimated the MI
between regions i and j at frequency ok by MIijðokÞ¼ � 1/2 lnð1�mCohijðokÞÞ,
where mCohij (ok) represents the multiple coherence between fMRI signals at
regions i and j at frequency ok

37. We then obtained the MI between i and j, MIij, by
averaging MIij(ok) over ok (0.01 Hzrokr0.1 Hz).

Comparison with anatomical connexions. We used the anatomical connexions
among the regions in the DMN and FPN that are determined by a previous DTI
study employing 80 healthy young adults42. In the study44, the authors obtained
the DTI data in a Siemens Sonata 1.5T MRI scanner (Siemens Medical Systems,
Germany) by using a twice-refocused single-shot Echo-Planar Imaging-based
sequence (3 mm slice thickness with no inter-slice gap, 40 axial slices,
TR¼ 6,400 ms, TE¼ 88 ms, 6 diffusion directions). The DTI data were
preprocessed in SPM5 and mapped to a template of ICBM 152 in the Montreal
Neurological Institution space. The anatomical connexions were determined with
the use of DTI deterministic tractography.

We classified the estimated values of the interaction weights between region
pairs into a group of anatomically connected pairs and a group of anatomically
unconnected pairs. We compared the two groups by using the two-sample t-test.
As the anatomical connexions observed in DTI do not distinguish excitatory and
inhibitory interactions, we submitted absolute values of the estimated interaction
weights to the t-test. However, for the FC, we also submitted the raw FC values to
the t-test, as was done in previous reports34.

By conducting the ROC analysis, we obtained the accuracy with which the
magnitude of the interaction weight predicts the presence and absence of the
anatomical connexions. We drew ROC curves by plotting the true positive (that is,
anatomically connected pairs whose interaction weights exceed a threshold) against
the false positive (that is, anatomically unconnected pairs whose interaction
weights exceed the same threshold) for various values of the classification
threshold. For an ROC curve, the AUC is equal to the area below the ROC curve
and represents the classification accuracy of the estimation method34. The
deviation of the AUC was estimated based on a bootstrap method.
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