1,111 research outputs found

    Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation

    Get PDF
    Glioblastoma are known to infiltrate the brain parenchyma instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In clinical practice, a uniform margin is applied to account for microscopic spread of disease. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth: Anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. A retrospective study involving 10 glioblastoma patients has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioblastoma, and may therefore provide a tool to make target delineation more objective and automated

    Defining Treatment‐Related Adverse Effects in Patients with Glioma: Distinctive Features of Pseudoprogression and Treatment‐Induced Necrosis

    Get PDF
    Background: Pseudoprogression (PP) and treatment‐induced brain tissue necrosis (TN) are challenging cancer treatment–related effects. Both phenomena remain insufficiently defined; differentiation from recurrent disease frequently necessitates tissue biopsy. We here characterize distinctive features of PP and TN to facilitate noninvasive diagnosis and clinical management. Materials and Methods: Patients with glioma and confirmed PP (defined as appearance 5 months after RT) were retrospectively compared using clinical, radiographic, and histopathological data. Each imaging event/lesion (region of interest [ROI]) diagnosed as PP or TN was longitudinally evaluated by serial imaging. Results: We identified 64 cases of mostly (80%) biopsy‐confirmed PP (n = 27) and TN (n = 37), comprising 137 ROIs in total. Median time of onset for PP and TN was 1 and 11 months after RT, respectively. Clinically, PP occurred more frequently during active antineoplastic treatment, necessitated more steroid‐based interventions, and was associated with glioblastoma (81 vs. 40%), fewer IDH1 mutations, and shorter median overall survival. Radiographically, TN lesions often initially manifested periventricularly (n = 22/37; 60%), were more numerous (median, 2 vs. 1 ROIs), and contained fewer malignant elements upon biopsy. By contrast, PP predominantly developed around the tumor resection cavity as a non‐nodular, ring‐like enhancing structure. Both PP and TN lesions almost exclusively developed in the main prior radiation field. Presence of either condition appeared to be associated with above‐average overall survival. Conclusion: PP and TN occur in clinically distinct patient populations and exhibit differences in spatial radiographic pattern. Increased familiarity with both conditions and their unique features will improve patient management and may avoid unnecessary surgical procedures. Implications for Practice: Pseudoprogression (PP) and treatment‐induced brain tissue necrosis (TN) are challenging treatment‐related effects mimicking tumor progression in patients with brain cancer. Affected patients frequently require surgery to guide management. PP and TN remain arbitrarily defined and insufficiently characterized. Lack of clear diagnostic criteria compromises treatment and may adversely affect outcome interpretation in clinical trials. The present findings in a cohort of patients with glioma with PP/TN suggest that both phenomena exhibit unique clinical and imaging characteristics, manifest in different patient populations, and should be classified as distinct clinical conditions. Increased familiarity with PP and TN key features may guide clinicians toward timely noninvasive diagnosis, circumvent potentially unnecessary surgical procedures, and improve response assessment in neuro‐oncology

    Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment

    Get PDF
    International audienceThis paper provides initial results from a multi-model ensemble analysis based on the volc-pinatubo-full experiment performed within the Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) as part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The volc-pinatubo-full experiment is based on ensemble of volcanic forcing-only climate simulations with the same volcanic aerosol dataset across the participating models (the 1991-1993 Pinatubo period from the CMIP6-GloSSAC dataset). The simulations are conducted within an idealized experimental design where initial states are sampled consistently across models from the CMIP6-piControl simulation providing unperturbed pre-industrial background conditions. The multi-model ensemble includes output from an initial set of six participating Earth system models (CanESM5, GISS-E2.1-G, IPSL-CM6A-LR, MIROC-E2SL, MPI-ESM1.2-LR and UKESM1).The results show overall good agreement between the different models on the global and hemispheric scale concerning the surface climate responses, thus demonstrating the overall effectiveness of VolMIP’s experimental design. However, small yet significant inter-model discrepancies are found in radiative fluxes especially in the tropics, that preliminary analyses link with minor differences in forcing implementation, model physics, notably aerosol-radiation interactions, the simulation and sampling of El Niño-Southern Oscillation (ENSO) and, possibly, the simulation of climate feedbacks operating in the tropics. We discuss the volc-pinatubo-full protocol and highlight the advantages of volcanic forcing experiments defined within a carefully designed protocol with respect to emerging modeling approaches based on large ensemble transient simulations. We identify how the VolMIP strategy could be improved in future phases of the initiative to ensure a cleaner sampling protocolwith greater focus on the evolving state of ENSO in the pre-eruption period

    Mechanisms controlling anaemia in Trypanosoma congolense infected mice.

    Get PDF
    Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection

    Complementary light scattering and synchrotron small-angle X-ray scattering studies of the micelle-to-unimer transition of polysulfobetaines

    Get PDF
    YesAB and ABA di- and triblock copolymers where A is the hydrophilic poly(oligoethylene glycol methacrylate) (POEGMA) block and B is a thermo-responsive sulfobetaine block [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (PDMAPS) were synthesised by aqueous RAFT polymerisation with narrow dispersity (ĐM ≤ 1.22), as judged by aqueous SEC analysis. The di- and triblock copolymers self-assembled in salt-free water to form micelles with a PDMAPS core and the self-assembly of these polymers was explored by SLS and TEM analysis. The micelles were shown, by DLS analysis, to undergo a micelle-to-unimer transition at a critical temperature, which was dependent upon the length of the POEGMA block. Increasing the length of the third, POEGMA, block decreased the temperature at which the micelle-to-unimer transition occurred as a result of the increased hydrophilicity of the polymer. The dissociation of the micelles was further studied by SLS and synchrotron SAXS. SAXS analysis revealed that the micelle dissociation began at temperatures below that indicated by DLS analysis and that both micelles and unimers coexist. This highlights the importance of using multiple complementary techniques in the analysis of self-assembled structures. In addition the micelle-to-unimer morphology transition was employed to encapsulate and release a hydrophobic dye, Nile Red, as shown by fluorescence spectroscopy.Engineering and Physical Sciences Research Council (EPSRC), University of Warwic
    corecore