319 research outputs found

    Promoting the "Work-Life-Balance" and Career Support Programs for Female Specialists

    Get PDF
    修士論文要

    ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis

    Get PDF
    Publicly available database of co-expressed gene sets would be a valuable tool for a wide variety of experimental designs, including targeting of genes for functional identification or for regulatory investigation. Here, we report the construction of an Arabidopsis thaliana trans-factor and cis-element prediction database (ATTED-II) that provides co-regulated gene relationships based on co-expressed genes deduced from microarray data and the predicted cis elements. ATTED-II () includes the following features: (i) lists and networks of co-expressed genes calculated from 58 publicly available experimental series, which are composed of 1388 GeneChip data in A.thaliana; (ii) prediction of cis-regulatory elements in the 200 bp region upstream of the transcription start site to predict co-regulated genes amongst the co-expressed genes; and (iii) visual representation of expression patterns for individual genes. ATTED-II can thus help researchers to clarify the function and regulation of particular genes and gene networks

    COXPRESdb: a database of coexpressed gene networks in mammals

    Get PDF
    A database of coexpressed gene sets can provide valuable information for a wide variety of experimental designs, such as targeting of genes for functional identification, gene regulation and/or protein–protein interactions. Coexpressed gene databases derived from publicly available GeneChip data are widely used in Arabidopsis research, but platforms that examine coexpression for higher mammals are rather limited. Therefore, we have constructed a new database, COXPRESdb (coexpressed gene database) (http://coxpresdb.hgc.jp), for coexpressed gene lists and networks in human and mouse. Coexpression data could be calculated for 19 777 and 21 036 genes in human and mouse, respectively, by using the GeneChip data in NCBI GEO. COXPRESdb enables analysis of the four types of coexpression networks: (i) highly coexpressed genes for every gene, (ii) genes with the same GO annotation, (iii) genes expressed in the same tissue and (iv) user-defined gene sets. When the networks became too big for the static picture on the web in GO networks or in tissue networks, we used Google Maps API to visualize them interactively. COXPRESdb also provides a view to compare the human and mouse coexpression patterns to estimate the conservation between the two species

    Targeted Gene Knockouts Reveal Overlapping Functions of the Five Physcomitrella patens FtsZ Isoforms in Chloroplast Division, Chloroplast Shaping, Cell Patterning, Plant Development, and Gravity Sensing

    Get PDF
    Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in P. patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss P. patens

    Gibberellin A1 Metabolism Contributes to the Control of Photoperiod-Mediated Tuberization in Potato

    Get PDF
    Some potato species require a short-day (SD) photoperiod for tuberization, a process that is negatively affected by gibberellins (GAs). Here we report the isolation of StGA3ox2, a gene encoding a GA 3-oxidase, whose expression is increased in the aerial parts and is repressed in the stolons after transfer of photoperiod-dependent potato plants to SD conditions. Over-expression of StGA3ox2 under control of constitutive or leaf-specific promoters results in taller plants which, in contrast to StGA20ox1 over-expressers previously reported, tuberize earlier under SD conditions than the controls. By contrast, StGA3ox2 tuber-specific over-expression results in non-elongated plants with slightly delayed tuber induction. Together, our experiments support that StGA3ox2 expression and gibberellin metabolism significantly contribute to the tuberization time in strictly photoperiod-dependent potato plants

    Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation

    Full text link
    corecore