11 research outputs found

    Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces

    Get PDF
    Double take: Double-barrel carbon nanoprobes with integrated distance control for simultaneous nanoscale electrochemical and ion conductance microscopy can be fabricated with a wide range of probe sizes in less than two minutes. The nanoprobes allow simultaneous noncontact topographical (left image) and electrochemical imaging (right) of living neurons, as well as localized K+ delivery and simultaneous neurotransmitter detection

    Scanning electrochemical cell microscopy : theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a high resolution electrochemical scanning probe technique that employs a dual-barrel theta pipet probe containing electrolyte solution and quasi-reference counter electrodes (QRCE) in each barrel. A thin layer of electrolyte protruding from the tip of the pipet ensures that a gentle meniscus contact is made with a substrate surface, which defines the active surface area of an electrochemical cell. The substrate can be an electrical conductor, semiconductor, or insulator. The main focus here is on the general case where the substrate is a working electrode, and both ion-conductance measurements between the QRCEs in the two barrels and voltammetric/amperometric measurements at the substrate can be made simultaneously. In usual practice, a small perpendicular oscillation of the probe with respect to the substrate is employed, so that an alternating conductance current (ac) develops, due to the change in the dimensions of the electrolyte contact (and hence resistance), as well as the direct conductance current (dc). It is shown that the dc current can be predicted for a fixed probe by solving the Nernst-Planck equation and that the ac response can also be derived from this response. Both responses are shown to agree well with experiment. It is found that the pipet geometry plays an important role in controlling the dc conductance current and that this is easily measured by microscopy. A key feature of SECCM is that mass transport to the substrate surface is by diffusion and, for charged analytes, ion migration which can be controlled and varied quantifiably via the bias between the two QRCEs. For a working electrode substrate this means that charged redox-active analytes can be transported to the electrode/solution interface in a well-defined and controllable manner and that relatively fast heterogeneous electron transfer kinetics can be studied. The factors controlling the voltammetric response are determined by both simulation and experiment. Experiments demonstrate the realization of simultaneous quantitative voltammetric and ion conductance measurements and also identify a general rule of thumb that the surface contacted by electrolyte is of the order of the pipet probe dimensions

    Nanopipette Delivery of Individual Molecules to Cellular Compartments for Single-Molecule Fluorescence Tracking

    No full text
    We have developed a new method, using a nanopipette, for controlled voltage-driven delivery of individual fluorescently labeled probe molecules to the plasma membrane which we used for single-molecule fluorescence tracking (SMT). The advantages of the method are 1), application of the probe to predefined regions on the membrane; 2), release of only one or a few molecules onto the cell surface; 3), when combined with total internal reflection fluorescence microscopy, very low background due to unbound molecules; and 4), the ability to first optimize the experiment and then repeat it on the same cell. We validated the method by performing an SMT study of the diffusion of individual membrane glycoproteins labeled with Atto 647-wheat germ agglutin in different surface domains of boar spermatozoa. We found little deviation from Brownian diffusion with a mean diffusion coefficient of 0.79 ± 0.04 μm2/s in the acrosomal region and 0.10 ± 0.02 μm2/s in the postacrosomal region; this difference probably reflects different membrane structures. We also showed that we can analyze diffusional properties of different subregions of the cell membrane and probe for the presence of diffusion barriers. It should be straightforward to extend this new method to other probes and cells, and it can be used as a new tool to investigate the cell membrane
    corecore