125 research outputs found

    The tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils

    Get PDF
    Mice carrying the Tight skin (Tsk) mutation harbor a genomic duplication within the fibrillin-1 (Fbn 1) gene that results in a larger than normal in-frame Fbn 1 transcript. In this study, the consequences of the Tsk mutation for fibrillin-containing microfibrils have been examined. Dermal fibroblasts from Tsk/+ mice synthesized and secreted both normal fibrillin (approximately 330 kD) and the mutant oversized Tsk fibrillin-1 (approximately 450 kD) in comparable amounts, and Tsk fibrillin-1 was stably incorporated into cell layers. Immunohistochemical and ultrastructural analyses of normal and Tsk/+ mouse skin highlighted differences in the gross organization and distribution of microfibrillar arrays. Rotary shadowing of high Mr preparations from Tsk/+ skin demonstrated the presence of abundant beaded microfibrils. Some of these had normal morphology and periodicity, but others were distinguished by diffuse interbeads, longer periodicity, and tendency to aggregate. The presence of a structurally abnormal population of microfibrils in Tsk/+ skin was unequivocally demonstrated after calcium chelation and in denaturating conditions. Scanning transmission electron microscopy highlighted the presence of more mass in Tsk/+ skin microfibrils than in normal mice skin microfibrils. These data indicate that Tsk fibrillin-1 polymerizes and becomes incorporated into a discrete population of beaded microfibrils with altered molecular organization

    The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-10-30, pub-electronic 2021-11-05Publication status: PublishedFunder: Singapore Nuclear research and Safety Inititative; Grant(s): N/AExposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined

    Peptide Location Fingerprinting Reveals Tissue Region-Specific Differences in Protein Structures in an Ageing Human Organ

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-09-14, pub-electronic 2021-09-27Publication status: PublishedFunder: Manchester Institute for Collaborative Research on Ageing; Grant(s): n/aFunder: Walgreens Boots Alliance; Grant(s): n/aIn ageing tissues, long-lived extracellular matrix (ECM) proteins are susceptible to the accumulation of structural damage due to diverse mechanisms including glycation, oxidation and protease cleavage. Peptide location fingerprinting (PLF) is a new mass spectrometry (MS) analysis technique capable of identifying proteins exhibiting structural differences in complex proteomes. PLF applied to published young and aged intervertebral disc (IVD) MS datasets (posterior, lateral and anterior regions of the annulus fibrosus) identified 268 proteins with age-associated structural differences. For several ECM assemblies (collagens I, II and V and aggrecan), these differences were markedly conserved between degeneration-prone (posterior and lateral) and -resistant (anterior) regions. Significant differences in peptide yields, observed within collagen I α2, collagen II α1 and collagen V α1, were located within their triple-helical regions and/or cleaved C-terminal propeptides, indicating potential accumulation of damage and impaired maintenance. Several proteins (collagen V α1, collagen II α1 and aggrecan) also exhibited tissue region (lateral)-specific differences in structure between aged and young samples, suggesting that some ageing mechanisms may act locally within tissues. This study not only reveals possible age-associated differences in ECM protein structures which are tissue-region specific, but also highlights the ability of PLF as a proteomic tool to aid in biomarker discovery

    CONservative TReatment of Appendicitis in Children – a randomised controlled feasibility Trial (CONTRACT)

    Get PDF
    Objective To establish the feasibility of a multicentre randomised controlled trial to assess the effectiveness and cost-effectiveness of a non-operative treatment pathway compared with appendicectomy in children with uncomplicated acute appendicitis.Design Feasibility randomised controlled trial with embedded qualitative study to inform recruiter training to optimise recruitment and the design of a future definitive trial.Setting Three specialist paediatric surgery centres in the UK.Patients Children (aged 4–15 years) with a clinical diagnosis of uncomplicated acute appendicitis.Interventions Appendicectomy or a non-operative treatment pathway (comprising broad-spectrum antibiotics and active observation).Main outcome measures Primary outcome measure was the proportion of eligible patients recruited. Secondary outcomes evaluated adherence to interventions, data collection during follow-up, safety of treatment pathways and clinical course.Results Fifty per cent of eligible participants (95% CI 40 to 59) approached about the trial agreed to participate and were randomised. Repeated bespoke recruiter training was associated with an increase in recruitment rate over the course of the trial from 38% to 72%. There was high acceptance of randomisation, good patient and surgeon adherence to trial procedures and satisfactory completion of follow-up. Although more participants had perforated appendicitis than had been anticipated, treatment pathways were found to be safe and adverse event profiles acceptable.Conclusion Recruitment to a randomised controlled trial examining the effectiveness and cost-effectiveness of a non-operative treatment pathway compared with appendicectomy for the treatment of uncomplicated acute appendicitis in children is feasible.Trial registration number ISRCTN15830435

    Matrix-Bound Growth Factors are Released upon Cartilage Compression by an Aggrecan-Dependent Sodium Flux that is Lost in Osteoarthritis

    Get PDF
    Articular cartilage is a dense extracellular matrix-rich tissue that degrades following chronic mechanical stress, resulting in osteoarthritis (OA). The tissue has low intrinsic repair especially in aged and osteoarthritic joints. Here, we describe three pro-regenerative factors; fibroblast growth factor 2 (FGF2), connective tissue growth factor, bound to transforming growth factor-beta (CTGF-TGFβ), and hepatoma-derived growth factor (HDGF), that are rapidly released from the pericellular matrix (PCM) of articular cartilage upon mechanical injury. All three growth factors bound heparan sulfate, and were displaced by exogenous NaCl. We hypothesised that sodium, sequestered within the aggrecan-rich matrix, was freed by injurious compression, thereby enhancing the bioavailability of pericellular growth factors. Indeed, growth factor release was abrogated when cartilage aggrecan was depleted by IL-1 treatment, and in severely damaged human osteoarthritic cartilage. A flux in free matrix sodium upon mechanical compression of cartilage was visualised by 23Na -MRI just below the articular surface. This corresponded to a region of reduced tissue stiffness, measured by scanning acoustic microscopy and second harmonic generation microscopy, and where Smad2/3 was phosphorylated upon cyclic compression. Our results describe a novel intrinsic repair mechanism, controlled by matrix stiffness and mediated by the free sodium concentration, in which heparan sulfate-bound growth factors are released from cartilage upon injurious load. They identify aggrecan as a depot for sequestered sodium, explaining why osteoarthritic tissue loses its ability to repair. Treatments that restore matrix sodium to allow appropriate release of growth factors upon load are predicted to enable intrinsic cartilage repair in OA
    • …
    corecore