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Abstract: Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can
impact human health and well-being as a consequence of, for example, the side effects of radiotherapy
(therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation:
UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells
and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins
has the potential to profoundly affect tissue structure, composition and function. This review focuses
on the current understanding of the biological effects of ionising and non-ionising radiation on the
ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence
for radiation-induced damage to ECM proteins, compared with the well-characterised impact of
radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of
ECM irradiation remain poorly defined.

Keywords: ionising radiation; X-rays; ultraviolet (UV) radiation; extracellular matrix (ECM); skin;
breast; radiotherapy

1. Introduction

Radiation exists in two main forms: Electromagnetic (EM) radiation in the form of
alternating electric and magnetic waves that propagate energy, and particle radiation con-
sisting of accelerated particles such as electrons and protons. EM radiation can be broadly
categorised as non-ionising and ionising. Both types may be encountered clinically or
environmentally, with exposure having potentially positive or negative effects on tissues
and organisms (Table 1). In the case of non-ionising radiation, exposure of skin to ultra-
violet radiation (UVR), for example, may be beneficial, as a consequence of vitamin D
production [1], or detrimental, due photoageing [2] and/or photocarcinogenesis [3]. UVR
is considered non-ionising as it is, in general, not sufficiently energetic to remove electrons
from biomolecules. In contrast, energetic, ionising electromagnetic radiation (X-rays and
gamma rays) can remove electrons. The undoubted importance of controlled exposure to
ionising EM radiation in medical diagnostic imaging [4] and radiotherapy [5,6] must be
balanced against side effects such as secondary cancers or tissue fibrosis [7,8]. Other forms
of radiation, which rely on charged particles (e.g., α, β, protons), can also interact with
biological systems and are clinically important (such as in proton therapy and in cosmic
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radiation exposure for space exploration), but being non-electromagnetic, they lie outside
the scope of this review. The reader is referred to an excellent review by Helm et al. [9].

Table 1. Human exposure to ionising and non-ionising electromagnetic radiation can come from the environment or from
clinical interventions. Exposure to both types of radiation can have clear clinical benefits but may also result in detrimental
biological effects.

Type Environmental
Exposure Clinical Exposure Biological Consequence

Ionising X-rays/Gamma rays Cosmic radiation [10],
Radon gas [11]

Diagnostic imaging [12],
Radiotherapy [13]

Fibrosis [14],
Carcinogenesis [15]

Non-ionising

UVR Sunlight [16] UVR Phototherapy [17] Skin photoageing [18],
Vitamin D synthesis [19]

Visible light Sunlight [20] Photodynamic therapy [21] Ocular phototoxicity [20]

Infrared Sunlight [22] Neural stimulation [22] Skin photoageing [23]

Radiowaves Lightning [24] Hyperthermia [25] Brain activity [26]

Most investigations into the detrimental side effects of radiation on biological tissues
have largely focused on cellular damage, and in particular, the sensitivity of DNA [27,28].
Whilst acute high radiation exposure may kill cells, it has become increasingly clear that
lower doses may have sub-lethal effects that are complex, difficult to eliminate and delayed
(persisting over long periods of time) [2,7,29,30]. Crucially, to understand the consequences
of radiation exposure and hence to potentially prevent or reverse the damage, it is necessary
to characterise the interactions of radiation with not only cells but also with their complex
and dynamic extracellular environment. This review considers the consequences and
causative mechanisms that drive electromagnetic radiation damage in biological tissues
and in the extracellular matrix (ECM) in particular. Two clinical models of interest are
discussed: skin exposed to UVR in sunlight and breast tissues exposed to diagnostic and
therapeutic X-rays.

Electromagnetic Radiation

UVR and X-rays/Gamma rays, both being part of the EM radiation spectrum (Figure 1),
differ only in wavelength, frequency and energy. When a molecule absorbs EM radiation,
it undergoes one of three possible transitions: electronic, vibrational, or rotational [31]. In
general, electronic transitions require the largest amount of energy, followed by vibrational
then rotational [32].

Ionising radiation is often more energetic than non-ionising radiation and, as a result, is
more likely to induce electronic transitions of atoms and molecules. In electronic excitation,
an electron absorbing the radiation transits into a higher electronic state, becoming less
bounded to the nucleus and therefore more reactive [33]. If the radiation has sufficient
energy, the electron can escape the coulomb attraction of the nucleus, and the molecule is
ionised. In contrast, molecules undergoing rotational or vibrational transitions (generally
caused by non-ionising UVR exposure) experience minimal changes in the stability of the
electron-nucleus attraction, resulting in negligible chemical effects. Therefore, exposure to
ionising and non-ionising radiation results in significantly distinct biological molecular
effects.
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Figure 1. UVR, X-rays and gamma rays all lie in the electromagnetic spectrum. UVR (UV-A and
UV-B) lie at a slightly higher energy range compared to visible light and are generally considered
non-ionising. In contrast, X-rays and gamma rays have much higher energy than UVR and are
considered ionising radiation.

2. Non-Ionising Radiation (UVR)

UVR is conventionally designated as three categories of increasing energy, UVA
(315 –400 nm), UVB (280–315 nm), and UVC (10–280 nm) [34]. UVA and UVB are of
particular biological interest as they comprise the UVR in sunlight at the Earth’s surface
(UV-A: 95%, UV-B: 5%) [35]. In contrast, UVC is absorbed efficiently in the atmosphere by
ozone and oxygen and thus plays no role in environmental UVR damage [36,37].

2.1. Absorption of Non-Ionising Radiation (UVR)

Molecules or regions of molecules that absorb UVR are referred to as UV chro-
mophores. Biological systems are rich in UV chromophores, including DNA and some
amino acid residues [38]. In DNA, the nucleotides thymine and cytosine absorb UVB to
become electronically excited [39,40]. In proteins, the amino acid residues tyrosine (Tyr),
tryptophan (Trp) and cystine (double-bonded cysteine) absorb UVR from sunlight [41,42],
with an absorbance peak at 280 nm for Tyr and Trp and lower for cystine [43,44]. For Tyr and
Trp, their benzene ring structure facilitates an electronic transition from the ground state to
the singlet excitation state that requires photons in the UVB region (180–270 nm) [45,46].
The excited chromophores can then transfer their energy or donate an electron to O2,
forming several reactive oxygen species (ROS) [16,47,48]. The excess energy can cleave
intermolecular bonds, such as disulphide bonds, or facilitate the formation of pyrimidine
dimers in DNA [49,50].

UVR damage in biological organisms is largely mediated indirectly via the photody-
namic production of unstable ROS [51]. UVR exposure generates ROS via the reaction
between the excited UV chromophores and molecular oxygen (O2) [2] (Figure 2). In brief,
the excited UV chromophore reacts with O2 to produce, through electron transfer, either
a superoxide anion radical (O2

−) or singlet oxygen (1O2) through energy transfer. Super-
oxide dismutases, which are present in the cell [52] and the ECM [53], convert O2

− into
hydrogen peroxide (H2O2). In the presence of Fe(II), H2O2 undergoes the Fenton reaction
to generate hydroxyl radicals (HO·) [2,54]. The cellular effects of both 1O2 and HO· are
well studied [47,49,54]. Intracellular ROS have been shown to react with and cause damage
to both proteins and DNA [55,56].
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Figure 2. UVR and ionising radiation indirectly damage biological molecules by ROS production. (a) UVR produces
ROS through UV chromophores that absorb UVR and undergo excitation. The excited chromophores react with oxygen
molecules to form singlet oxygen and the superoxide anion. The superoxide anion is converted to hydrogen peroxide
by superoxide dismutase before undergoing the Fenton reaction in the presence of Fe (II) to form the hydroxyl radical.
(b) Ionising radiation produces a range of ROS and, more crucially, the hydroxyl radical through water radiolysis. This
results in a larger concentration of hydroxyl radicals produced during ionising radiation irradiation compared to UVR due
to the abundance of water molecules. Information from Figure (b) was sourced from Meesungnoen J. et al. [57].

2.2. Biological Conseqeunces of UVR Expsure

Intracellularly, UV-B photons can be absorbed directly by the DNA nucleotides
thymine and cytosine to form cyclobutane pyrimidine dimers (CPDs) [50] and 6-4 pho-
toproducts (6-4PP) [39]. These photoproducts can further absorb UV-A to form Dewar
valence isomers [58]. CPDs, 6-4PP, and Dewar valence isomers are known as photolesions
which disrupt the base pairing of DNA, preventing DNA transcription and replication [16].
Photo-dynamically produced ROS may cleave the DNA sugar backbone causing single-
stranded breaks (SSB) [59] or oxidise guanine nucleotides to produce another photolesion,
8-oxoguanine, which can cause mismatched pairing between the DNA bases [48].

The ROS, 1O2 and HO· produced by UVR are strong oxidising agents that also target
amino acids vulnerable to oxidation, including tryptophan [60], tyrosine [61], histidine [62],
cystine [63], cysteine [64], methionine [65], arginine [66] and glycine [67]. For a more
comprehensive summary of photo-oxidation of amino acids, the reader is directed to the
review by Pattisson et al. [42]. Oxidation-associated changes in protein structure may, in
turn, affect function [67–69]. UVR exposure can also break or form intermolecular bonds
in proteins. In particular, di-sulphide bonded cystine can be reduced to cysteine [56].
These amino acid level changes can affect protein function, with high and low UVR doses
decreasing and increasing the thermal stability of collagen, respectively [70–72]. UVR can
also disrupt the function and structure of lipids via lipid peroxidation [73], resulting in
compromised cell membranes. Extracellularly, ROS may cause damage to abundant ECM



Cells 2021, 10, 3041 5 of 25

proteins, such as collagen and elastin [74,75], and to UVR-chromophore-rich proteins, such
as fibrillin microfibrils and fibronectin [76]. The differential impacts of UVR exposure on
the matrisome (the extracellular proteome) are discussed in detail in Sections 4 and 5 of
this review.

2.3. Repair and Prevention of UVR Damage

In response to the damage caused by UVR and/or photodynamically produced ROS,
cells can initiate repair mechanisms, including nucleotide excision, to remove photolesions
in the DNA [77]. Enzymes in the cell can repair reversibly oxidised proteins, such as
cystine, which can be reduced back to cysteine by the thioredoxin reductase system [78],
or may break down irreversibly oxidised proteins, typically products of hydroxylation
and carbonylation processes [79,80]. In addition, ROS scavengers, such as superoxide
dismutases, help restore the ROS balance in the intracellular and extracellular spaces by
converting the superoxide anion to hydrogen peroxide [53,81], which is then converted
to water and oxygen by catalase and glutathione peroxidase 3 to prevent the formation
of hydroxyl radicals [54,82]. We have recently proposed that the biological location of
some UVR-chromophore-rich proteins (including β and γ lens crystallins, late cornified
envelope proteins in the stratum corneum and elastic fibre-associated proteins in the
papillary dermis) may mean that these components act as sacrificial, and hence protective,
endogenous antioxidants [76].

3. Ionising Radiation (X-rays/Gamma Rays)

In the EM spectrum, ionising radiation is comprised of X-rays (0.01 nm < λ (wave-
length) < 10 nm) and gamma rays (λ < 0.001 nm) (Figure 1). Naturally occurring radon
gases and cosmic radiation provide a background of ionising radiation of, on average,
2.4 mSv a year [83]. On the other hand, man-made sources of ionising radiation, such
as mammography, would commonly only expose the patient to a dose of 0.36 mSv per
screening [84,85]. Another key source of man-made ionising radiation that is of particular
interest is radiotherapy.

The efficacy of radiotherapy lies in the ability of ionising radiation to penetrate bi-
ological tissues, allowing non-invasive targeting and killing of aberrant cells by causing
irreparable DNA damage. Historically, radiotherapy utilised naturally occurring sources
such as Co-60, which emits 1.2 MeV gamma rays. Modern external beam radiotherapy
treatment regimens use linear accelerators (linacs) to accelerate electrons towards a metal
target to produce ionising radiation [86], with exposures up to doses of 50 Gy for breast
cancer radiotherapy patients [87]. Other forms of radiotherapy include Brachytherapy,
where a radioactive source is placed within the patient near the tumour (commonly prostate
cancer) site [88]. Inadvertent exposure of healthy tissues along the irradiation path can
lead to detrimental side effects, including radiation fibrosis [7] and secondary cancers [89].
While there are newer radiotherapy machines utilising proton or heavy ion beams to reduce
exposures to healthy tissue by exploiting the Bragg peak [90] see Appendix A, these treat-
ment options are less widely available and are often reserved for paediatric patients [91].
X-ray/gamma ray radiotherapy remains the foremost therapeutic option, and hence, the
impact of these radiation exposures on healthy tissues is a key biological and medical issue.

3.1. Absorption of Ionising Radiation (X-rays/Gamma Rays)

In contrast to UVR, photons of ionising radiation are energetic enough to ionise most
molecules and atoms [92], potentially leading to the disruption of intermolecular bonds [93].
An abundance of water molecules in biological systems results in a large percentage
of ionising radiation being absorbed by water in a process called water radiolysis [94],
producing multiple ROS species. Water radiolysis induces the formation of not only
hydrogen peroxide, superoxide anion and the hydroxyl radical [57] but also an abundance
of highly reactive hydroxyl radicals [95] (Figure 2).
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3.2. Biolgical Consequencves of Exposure to Ionising Radiation

The exposure of DNA to ionising radiation may directly induce oxidation via depro-
tonation or electron removal, again producing photolesions such as 8-oxoguanine [96].
Hydroxyl radicals produced from water radiolysis can also disrupt the bonds in the sugar
backbone of DNA, resulting in SSBs [49,97]. As ionising radiation is highly energetic,
electrons ejected from radical formation could potentially cause further radiolysis of nearby
water molecules, resulting in a high density of hydroxyl radicals [95,98], increasing the
probability of SSB occurring close enough to each other (within 10 base pairs) to promote
the formation of double-stranded breaks (DSBs) [28,99]. DSBs are potentially highly cy-
totoxic due to the risk of failed repair, such as in non-homologous end joining (NHEJ) or
homologous recombination, resulting in gene mutations [100,101], clastogenic effects [102],
teratogenesis [103] and carcinogenesis [99].

Ionising radiation-induced water radiolysis can cause significant ROS-mediated dam-
age to proteins through the disruption of peptide bonds, thereby altering their structure
and function [67,104,105]. This leads to similar outcomes to those already described in
Section 2 including both protein oxidation [106] and lipid peroxidation [107]. The direct
impact of ionising radiation on proteins can be observed during X-ray diffraction studies of
protein crystals, where cryogenic temperatures reduce the effects of radicals produced by
the solvent [108]. These studies demonstrate that di-sulphide bonds and carboxyl groups
are most susceptible to localised radiation damage [109,110]. However, this damage may
not be evenly distributed throughout the protein [111]. For example, Weik et al. (2000) have
shown that the specific disulphide bond between Cys-254 and Cys-265 residues for Torpedo
californica acetylcholinesterase, as well as the disulphide bond between Cys-6 and Cys-127
for hen egg white lysozyme, are most susceptible to radiation damage. Radiation damage
may also localise at active sites in proteins [110,112,113] such as for bacteriorhodopsin [114],
DNA photolyase [115], malate dehydrogenases [116], and carbonic anhydrase [117]. This
damage localisation has been hypothesised to be mediated either by the presence of metal
ions, which have high proton numbers and hence more electrons for photo-absorption to
propagate subsequent ionisation events [118], or by the relative accessibility of exposed ac-
tive sites to ROS [110]. Key extracellular protein targets of ionising radiation are discussed
in Sections 4 and 5.

3.3. Repair and Prevention of Ionising Radiaiton Damage

As both ionising and non-ionising radiation produce ROS, the prevention and repair
of damage are largely mediated by the same mechanisms (see Section 2). However, to
repair DNA damage specific to ionising radiation, cells utilise base excision repair (BER)
for oxidised nucleotides, such as 8-oxoguanine [119,120], while NHEJ and homologous
recombination repair (HRR) is activated to remove DSBs [121–123].

4. Model Tissue Systems for Radiation Studies

Whilst we have discussed the generic cellular responses and molecular damage that
both UVR and ionising radiation can cause, different biological tissues may have their own
specific responses to radiation exposure. In this review, we have chosen to focus on skin
and breast as these organs: (i) are composed of similar tissue types (epithelial, stromal
and adipose) (Figure 3) and (ii) have been extensively studied, leading to a comprehensive
literature on the molecular and clinical effects of radiation exposure (mainly non-ionising
UVR in skin [124] and diagnostic and therapeutic ionising X-rays in breast [125,126]).
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Figure 3. Tissue composition of skin and breast. (a) The skin is composed of an outer epidermis
(containing epithelial cells), the dermis (containing stromal cells) and the subcutaneous layer (hy-
podermis) containing adipocytes. (b) Breast tissue contains epithelial cells that make up the alveoli
structures, adipose tissue, as well as connective tissues or stroma. This structural composition is
akin to skin, albeit with different spatial distribution but serves comparable purposes and could be
similarly affected by radiation [127].

4.1. Cellular and Acellular Responses of Skin to UVR

Skin is formed of three tissues: the epidermis, dermis, and hypodermis (subcutaneous
fat) (Figure 3). The highly cellular epidermis, which is composed primarily of keratinocytes,
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functions as a key barrier. In contrast, the dermis is vascularised and composed primarily
of a complex, collagen and elastin-rich extracellular matrix. Chronic UVR exposure can
lead to oxidative stress and increased extracellular ROS in the skin. Cells respond to
these stressors with ECM remodelling through the expression of protease, structural ECM
components and increased production of protective melanin.

ECM remodelling in photo-exposed skin is complex. However, it is well-established
that UVR exposure stimulates keratinocytes to produce inflammatory cytokines [128,129],
such as IL-1α and IL-6, and that stimulated fibroblasts express collagen-degrading
MMP-1 [130] and MMP-12. This latter protease can degrade elastin [131], resulting in
fragmented elastic fibres. UVR exposure also alters the expression of ECM proteins,
upregulating the expression of tropoelastin, the soluble elastin precursor [132], but down-
regulating collagen expression via UVR-induced ROS or mechanical stimuli from the ECM,
both of which affect the TGF-β pathway, a well-known control mechanism of collagen
production [133,134] in fibroblasts. In the case of ROS, upregulation of CCN1 (cysteine-rich
protein 61) [135], which, in turn, inhibits TGF-β signalling by scavenging of TGF-β [136],
results in reduced collagen production. A mechanically weakened ECM (as a consequence
of protease activity) may also reduce the synthesis of collagen by fibroblasts [137,138],
possibly through the downregulation of TGF-β type II receptor [139] or through the up-
regulation of CCN1 [140]. UVR exposure also reduces the expression of lysyl oxidase
(LOX) or lysyl oxidase-like enzymes (LOXL) [141], which are crucial in the facilitation of
cross-linking between newly formed elastic fibres [142], contributing to solar elastosis [30].
Further damage may be mitigated by UVR-induced melanin production via the activa-
tion of the p53 pathway in keratinocytes [143], which, in turn, stimulates melanocytes
in the stratum basale of the epidermis to express the α-melanocyte-stimulating-hormone
(α-MSH). α-MSH then upregulates melanin production in melanocytes [144,145].

UVR can also damage the ECM via acellular pathways. Whilst degradation and
breakdown of the triple helical structure of collagen can be mediated by photodynam-
ically produced ROS [93,105], high UVR doses and/or non-environmentally attainable
wavelengths are commonly required to induce measurable structural and functional ef-
fects on fibrillar collagens [124]. We have previously shown [74,76,146] that ECM proteins
that are particularly enriched in UV chromophore amino acid residues are susceptible
to UVR-induced degradation compared with UV chromophore-poor proteins such as
collagen I and elastin. UVR may also affect cross-links between proteins (such as the
desmosine-isodesmosine cross-links), which stabilises elastic fibres [147].

4.2. Outcomes of UVR Exposure on Skin

UVR penetrating the ECM-rich dermis is linked to collagen degradation, reduced
collagen synthesis and disorganisation of elastic fibres. Collectively, this ECM-remodelling
has a detrimental impact on the mechanical strength and elasticity of the skin. Specifically,
collagen degradation decreases the mechanical tension and stiffness of the ECM, which is
hypothesised to reduce the size of fibroblasts, which are less able to exert a traction force
on the ECM [93,139]. However, small doses of UVR have also been shown to increase the
thermal stability of collagen [71], possibly attributed to the cross-linking of collagen fibres.
Elastic fibres in photoaged dermis undergo solar elastosis, which may be mediated by both
the degradation and disorganisation of existing elastic fibres and the generation of new,
unorganised elastic fibres. Chronic UVR exposure is also associated with an increased risk
of skin cancer via, for example, mutations in the p53 tumour suppressor gene [3,143,148].

Whilst clinical outcomes of chronic UVR irradiation on skin are well established, and
it is also clear that some abundant dermal ECM proteins are susceptible to remodelling,
the functional and structural consequences for the complex skin proteome remain poorly
defined.
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4.3. Structure of Breast Tissue

The composition of breast tissue parallels the composition of skin, but the component
tissues are not organised into discrete layers. In the breast luminal epithelial cells line the
ducts which are surrounded by myoepithelial cells and encased with a basement membrane
made of fibrous proteins, such as collagen IV and laminin, which provide a mechanical
barrier [149]. The supporting stroma is comprised of a fibrous ECM made predominantly
of collagen I with a cellular population including fibroblasts and myofibroblasts. Finally
adipose tissue (which is radio-translucent) is composed primarily of adipocytes [150]
(Figure 3).

4.4. Cellular and Acellular Responses of Breast Tissue to Ionising Radiation

Human mammary fibroblasts exposed to physiological doses of ionising radiation
adopt a senescent-associated secretory phenotype (SASP), enhancing the secretion of ECM-
degrading proteases promoting epithelial cell invasiveness and growth in 3D
culture [14,151,152]. Key secreted proteases include MMP2 and MT1-MMP1, which drive
not only ECM degradation but also cell migration in the basement membrane by exposing
a cryptic site in laminin 5 for cell receptors to bind to [153,154]. Ionising radiation has
also been shown to activate latent TGF-β1 in the ECM [155], which binds to fibroblasts,
triggering their differentiation into myofibroblasts [156].

Ionising radiation can also mediate the release of the growth factors due to ROS-
mediated proteolytic cleavage of ECM components [157]. The basement membrane, a
key ECM structure that provides structural support to the mammary gland, can further
act as a source of matrikines and growth factors, such as the insulin-like growth factor
(IGF) [158], which are often sequestered in the ECM. Paquette et al. have shown that
reconstituted basement membrane containing these growth factors, when irradiated with
ionising radiation, enhanced the invasiveness of breast cancer cells (MDA-MD-231) [157].
The release of other growth factors such as TGF-β1, which is commonly localised in
the ECM [159], can also stimulate upregulation of MMPs (e.g., MMP-2, MT1-MMP) in
fibroblasts or cancer cells to remodel the ECM [133].

4.5. Clinical Outcomes of Ionising Radiation Exposure on Breast Tissue

The biological effects of ionising radiation can be crudely split into two categories: de-
terministic and stochastic [160]. Deterministic effects are often apparent only when tissues
receive high doses of ionising radiation beyond a threshold level [161]. For breast skin,
exposure to a dose of more than 6 Gy can induce radiation dermatitis with a severity which
is dose-dependent [162]. Such deterministic effects are associated with radiotherapy, where
a high dose of ionising radiation is required at the tumour site to trigger apoptosis [163] or
necrosis [164]. Consequently, breast cancer radiotherapy patients may experience acute
side effects, such as radiation erythema [160] and radiation fatigue [165]. For some patients,
late side effects may appear after several months, such as radiation fibrosis, in irradiated
regions [7]. Remarkably, there is a lack of evidence for the association between acute and
late side effects of radiotherapy in breast cancer [166], and there is little literature investi-
gating the mechanistic understanding that underscores the distinction between acute and
late side effects.

The stochastic effects of ionising radiation are probabilistic with a lack of threshold
dose [167]. The side effects of ionising radiation from diagnostic breast mammography are
therefore skewed towards stochastic effects due to the low doses involved. At low doses,
SSB formation is likely the primary trigger for cell repair mechanisms, especially when any
DSBs produced are still within endogenous levels. Due to the high fidelity of repair for
SSBs [122,168], the occurrence of side effects, which are usually genetic mutations [169],
is low. Still, DSBs induced by low doses of ionising radiation can be detrimental. A
single unrepaired DSB in a vital gene, such as p53, is sufficient to catalyse tumour growth
and mutagenesis [99,170,171], possibly leading to secondary cancers [27]. Similar to skin,
the clinical outcomes of exposure of breast tissue to ionising radiation have been well
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documented, but the underlying mechanisms that elicit such responses have yet to be fully
understood.

5. The Extracellular Matrix as a Target of Radiation Damage

Whilst the impact of radiation exposure on cells and cellular components is well char-
acterised, ECM–radiation interactions and the downstream biological consequences are not
well understood. Crucially, damage to ECM may mediate long-term radiation effects as a
consequence of the long half-life and limited repair of key ECM components [172]. The
synthesis of many ECM proteins is usually highest during development and diminishes
over time [173,174]. Elastin, for example, may persist over the human lifetime [175], whilst
dermal and cartilage collagens have half-lives of 15 and 95 years, respectively, [176–178].
The slow replacement of damaged ECM proteins would allow changes in the mechanistic
signals from ECM to persist, which can lead to long-term complications. Although we have
chosen, in this review, skin and breast as model systems to highlight the importance of the
extracellular environment and matrix in contributing to the side effects of radiation expo-
sure, there are other organs with important clinical consequences from radiation exposure,
of which ECM may also play a role. For example, in breast radiotherapy, excessive ECM
accretion may occur in the lung leading to fibrosis [179]. In prostate radiotherapy, ECM
degradation often precedes radiation proctitis [180]. For lung radiotherapy, pneumonitis
often develops with aberrant ECM deposition [181]. In glioblastoma radiotherapy, the ECM
is found to increase the invasiveness of glioblastoma cells, possibly contributing towards
the high relapse of glioma patients after radiation therapy [182]. This emphasises the
significance and necessity for greater exploration of the ECM following radiation exposure.

To improve our understanding of the repercussions of ionising and non-ionising
radiation damage to the ECM, we suggest that future investigations should encompass the
impact of radiation on three key mechanisms through which ECM influences cells, namely
molecular structural changes, mechanical changes and biochemical changes.

5.1. Radiation and ECM Mechanical Properties

UVR and ionising radiation are capable of inducing molecular changes in large ECM
proteins, altering their tertiary and quaternary structures, which are essential in maintaining
the mechanical properties of the ECM [72,183]. In addition, structural damage to cell-
adhesive proteins such as fibronectin could also diminish cell–ECM interactions [184]. This
implies that radiation exposure may compromise mechanosensing pathways. Altered
tissue stiffness and elasticity may trigger different cellular responses including: initiating
epithelial to mesenchymal transition in cancer cells [185,186], triggering senescence in
fibroblasts [139,187], determining the fate of differentiating mesenchymal stem cells [188]
and even enhancing replication of glioma cells [189]. Determining the mechanical effects
of radiation exposure on complex extracellular matrices may provide a better picture of
biological radiation response by helping to differentiate between the direct and indirect
responses of cells to radiation.

5.2. Radiation and ECM Biochemistry

Radiation can also alter the biochemistry of the cellular environment by triggering
the release of growth factors that are sequestered in the ECM. Paquette et al. [157] had
shown that ionising radiation exposure (20 Gy, Co-60) of Matrigels, which are made from
reconstituted basement membranes, released pro-invasive growth factors that enhanced
invasion of MDA-MB-231 cells. A plausible mechanism for the release of these factors
could be attributed to radiation-induced structural changes to key ECM proteins, such as
fibronectin [76,146,190], which binds to a variety of sequestered growth factors, including
insulin-like growth factors (IGFs), fibroblast growth factors (FGFs), TGF-β1 and vascular
endothelial growth factors (VEGFs) [158,191]. These factors serve as important signals to
alter cell behaviour typically via integrins binding [192], MMP-mediated ECM degrada-
tion [193] or in wound healing [194]. Radiation damage to fibronectin and other similar
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ECM proteins may diminish their ability to bind to growth factors, thus increasing the
availability of these factors [158] in the extracellular space. Abnormal levels of such growth
factors would be taken up by cells, potentially triggering unwanted proliferation and
migration due to FGFs [195] or ECM deposition due to TGF-β1 [196].

In addition to growth factors, radiation is also hypothesised to be able to introduce
biologically active peptides in the extracellular environment through the fragmentation
of ECM proteins. These peptides, often referred to as ‘matrikines’, may be derived from
abundant ECM proteins, such as collagen I and IV [197] or elastin [198], and are able
to influence cellular behaviour just like growth factors. Whilst there is experimental
evidence for the generation of matrikines by MMPs [199] there is a lack of evidence
for the direct induction of matrikines by radiation. However, the ability of both non-
ionising and ionising radiation to produce ROS that can fragment ECM proteins makes the
possibility of radiation-produced matrikines (albeit with less specificity than MMPs), an
interesting phenomenon to explore. In all, undertaking these biochemical studies may help
explain certain non-local radiation effects, such as bystander effects, where local mechanical
influences are not applicable.

5.3. Challenges of Studying the ECM and the Current State of Knowledge

Studying the ECM is critical for furthering our understanding of radiation damage,
but ECM proteins can be challenging to characterise due to their insolubility necessitating
the use of strong dissociative reagents, which may affect protein structure. Secondly,
studying the ECM from tissues often requires decellularisation to prevent cellular influence,
during which the ECM may be damaged and altered by chemicals used to remove the cells.
Various models and experimental systems have been used in recent papers to study the
ECM under UV and ionising radiation, but due to their limitations, these systems produce
results which can be hard to interpret in relation to other literature. We summarise below
the current literature into four general categories of approach, namely: (1) purified proteins;
(2) decellularised cultures; (3) ex vivo; and (4) in vivo.

Purified protein experiments (Table 2) represent a bottom-up approach, exploring the
effects of radiation on specific ECM proteins that are the building blocks for a complex
ECM. Collagen mimetic peptides commonly contain multiple repeats of the tri-peptide
sequence (Gly-X-X’) which is a key motif in collagen fibrils [93]. Experiments using these
peptides show that molecules rich in the repeating collagen motif are relatively resistant
to environmental doses of UVR and require much higher doses (9000 J/cm2) [147] or
shorter wavelengths (254 nm) [70,200] to elicit changes in their ultrastructure. Higher order
proteins structures are however important as purified collagen gels, exhibited increased
stiffness and reduced elasticity after exposure to physiological doses of UVB [201]. Other
ECM proteins, such as fibronectin and fibrillin, are also found to be structurally susceptible
at physiological doses. In contrast with UVR exposure, X-ray studies on purified collagen
show more prominent structural changes and some specificity in peptide bond cleavages,
but these studies often utilise non-physiologically relevant doses in the range of 100 kGy.
Interestingly, the study by Miller et al. (2018) [183] showing that both acute and fractionated
doses of ionising radiation on collagen gels did not differ in their results, indicating that
dose rates might not affect the outcome of radiation exposure, at least in purified protein
systems. However, dose rates can significantly affect acute/immediate physiological
responses in more complex systems involving cells (in vivo or in vitro) [202], such as
FLASH radiotherapy [203], implying that dose rates could be a key variable when looking
at how a complex tissue may remodel the ECM. The advantages of using purified proteins
are to isolate radiation effects on peptides, allowing a greater look at the chemical and
structural changes that might occur during irradiation through mass-spectrometry or X-ray
scattering. However, the results are difficult to interpret with regards to tissues and the
potential downstream effects in vivo as the experimental system is not representative of
the protein’s natural environment or state in the ECM. Nonetheless, such reductionist
experiments provide a fundamental picture of the molecular mechanisms that occur for
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the proteins in question during radiation exposure and possibly allow us to piece together
evidence from individual ECM proteins to predict or explain complex phenomena.

Table 2. Selected studies utilising purified ECM proteins for radiation damage experiments are useful to elucidate molecular
mechanisms of radiation responses for individual ECM proteins. Most studies show that purified collagens in solution are
relatively resistant to UVR at physiological doses which can affect other ECM proteins. Ionising radiation, however, induces
significant structural change and peptide bond cleavages albeit at at non-physiological doses.

Radiation Dose Method Ref. Results

UV

UV (254 nm), 24.0 J/cm2,
102.0 J/cm2, 396.0 J/cm2

Collagen model peptides
and rat tail tendon

collagen I
[200]

Rat tail collagen exhibited stable
intermediate after irradiation. Gly-Pro-Hyp

mimetic collagen was more stable than
Gly-Pro-Pro, while Gly-Ala-Hyp was more

stable than Gly-Pro-Hyp.

UV (254 nm),
5–187 J/cm2 Sterile rat tail collagen I [70]

Collagen denatures with loss of hydrogen
bonds with water molecules, followed by
the loss of triple helix and peptide bond

cleavage.

Broadband UVB
(270–380 nm) 0.1 J/cm2,

Solar radiation (SSR),
30 J/cm2

Fibrillin/Collagen VI
microfibrils derived and

purified from human
dermal fibroblasts.

Peptide mass
fingerprinting

[74]
No changes for collagen IV. UVB/SSR

increased protease susceptibility for fibrillin,
possibly from ultrastructural changes.

Broadband UVB
(290–320 nm)

3.2–9.6 J/cm2, BL/DMR
lamps (320–400 nm)

49–147 J/cm2

Bovine dermis native
collagen, made into
collagen gels using
sodium bicarbonate

[201]

UVR at 300–340 nm caused hardening and
reduced elasticity of collagen gels, and

330 nm gave the greatest effect. Increase in
tyrosine cross-linking was found.

UVB (280–315 nm),
20 mJ/cm2–500 mJ/cm2

Purified collagen-1,
fibrillin microfibrils from

biopsy/COS-1 cells,
fibronectin from bovine

plasma

[146]

UVB dose required to damage
ultrastructure decreases with greater

chromophore composition. Collagen I was
the most UVB-resistant, followed by

fibronectin and then fibrillin.

UVA (365 nm).
9330 J/cm2

Isolated
bovine nuchal ligament

elastic fibres
[147] No 13C NMR shifts detected, 11% reduction

of desmosine from cross-link cleavage.

Ionising
radiation

Co-60 γ-ray at
1.289 kGy/hr,
5 kGy–50 kGy

Lyophilised collagen
from rat tail tendon

irradiated and tested for
solubility and melting

temperature

[204]

Irradiated samples were, in general, more
than twice as soluble as non-irradiated in

0.02 M acetic acid, 6 M lithium chloride and
6 M urea. Melting temperature reduces with

increasing dose.

γ-ray (1 MeV),
50 kGy–500 kGy

Grounded collagen
irradiated in dry/wet

(5%/80% moisture) state
in the presence and

absence of
oxygen/nitrogen

[205]

Solubility unchanged when irradiated wet
due to cross-linking, and solubility

increased when irradiated dry. Significant
molecular changes likely due to the

breakage of peptide bonds. Degradation of
Tyr; Hyp/Pro; Asp sensitive to

oxygen/nitrogen.

Near X-ray (13.8–22.1 eV)

Isolated collagen mimetic
peptides, photon

absorption in gas phase +
mass spectrometry

[105]
Gly-Pro peptide bonds are more susceptible
to cleavage, collagen triple helix stabilised

by hydroxyproline.

Decellularised cultures (Table 3) involve taking tissue samples from living organisms
and removing the cells from the tissue, leaving behind the ECM scaffold and proteins
for cell culture applications [206,207]. There is still little evidence of UVR affecting large
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scale mechanical properties of such ECM scaffolds, although localised changes in molec-
ular structure may be occurring [208]. There is, however, evidence of X-rays, again in
the 100 kGy range, reducing or increasing stiffness of these ECM scaffolds. Behaviour of
cells seeded onto X-ray irradiated ECM scaffold was also altered with increased prolifera-
tion [206] or poor adhesion [209]. Overall, these studies show that X-rays have a higher
propensity than UVR to induce changes in mechanical properties of ECM scaffolds and
that cellular behaviour can be affected.

Table 3. Decellularised tissues exemplify a highly representative ECMs that can mimic key asepcts of in vivo responses to
radiation damage. Studies using these systems show that X-rays have a higher propensity than UVR to induce changes in
mechanical properties of ECM scaffolds, and that X-ray exposure can affect subsequent cell responses to the ECM.

Radiation Dose Method Ref. Results

UV UV (254 nm) using UV
cross-linker, 2 cycles (90s each)

Decellularised Lewis
rat intestines [208] No significant change in collagen/GAG

content. Loss of villous ECM projections.

γ-ray (wavelength unspecified,
5000 Gy)

Rabbit kidney
decellularised [210] Reduced tensile strength and young’s

modulus with gamma ray.

Ionising
Radiation

Co-60 γ-ray, 25k Gy Gamma irradiation of
decellularised cornea [211]

Increased stiffness/tensile strength,
reduced elongation at break after

irradiation, due to fragmented collagen
cross-linking.

Cs-137 γ-ray, 1k–10k Gy Decellularised whole
porcine kidney [209]

3k Gy resulted in more than 50% loss in
collagen content. Human renal cortical

tubular epithelium (RCTE) cells reseeded
and resulted in poor adhesion/growth.

Cs-137 γ-ray, 20 Gy
Murine mammary fat

pads decellularised and
made into hydrogels.

[206] Increased proliferation for murine TNBC
reseeded on irradiated hydrogel.

Utilising ECM from tissue provides the advantage of good in vivo representation, with
ECM structures, growth factors and binding ligands largely intact for radiation studies. De-
cellularised cultures allow us to look at the interplay between different components of the
ECM, as well as post-irradiation cellular remodelling of the ECM. However, the abundance
of ECM components in the culture can also cause problems when attempting to identify
the cause of downstream effects. The variability of ECM proteins in different organisms, or
even in different regions of the same organism, can also make the experiments difficult to
replicate. Lastly, the decellularisation process can also alter ECM protein’s ultrastructure
during the chemical removal of cells or during the sterilisation process [210,211].

Ex vivo systems (Table 4) refer to tissues that are extracted from organisms and are cul-
tured with minimum alteration. Experiments with ex vivo samples are typically conducted
less than 24 h after biopsy to prevent influence from external sources. Such experiments
have mostly shown a reduction in mechanical strength, even at radiotherapeutic doses of
X-rays.

A key advantage of ex vivo experiments is their ability to provide insights into complex
tissues, making them useful for determining end point consequences of radiation effects.
However, these systems are often complicated to analyse as they contain both ECM and
cells that can influence the remodelling of the ECM after irradiation. Further, the results
are hard to generalise as the tissues used are made of specific cells and ECM environments,
which may only be applicable to that organism.
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Table 4. Ex vivo experiments utilise complex model systems that give biologically relevant consequences of radiation effects.
Studies show that radiotherapeutic doses of X-rays (around 50 Gy) can alter the mechanical properties of ex-vivo samples.

Radiation Dose Method Ref. Results

UV

UVA (365 nm,
1.5 mw/cm2), UV-B

(302 nm, 1.6 mw/cm2),
UV-C (265 nm,

1.8 mw/cm2), dosage:
10–4000 J/cm2

Stratum corneum from
breast skin tissue

extracted
[18]

Reduced stiffness, fracture stress/strain,
at >4000 J/cm2 UVA and >400 J/cm2 UVB.
The energy required to fracture decreases

in a dose-dependent manner.

Cs-137 γ-ray, 10–63 Gy

Mammary tumours
(MMTV-PyMT transgenic

mice) immediately
irradiated and frozen

before tested for
compression

[183]
Significantly reduced tensile and
compression modulus after 60 Gy

irradiation (fractionated and single dose).

Ionising
Radiation 6–10 MeV X-rays, 30–56 Gy

Biopsy from radiation
therapy treated breast

cancer patients.
Irradiated/non

irradiated samples from
the same patient 10-96
months after treatment

[212]
No observable change in elastic

fibres/collagen, but stiffness is higher for
irradiated regions.

21 KeV X-rays,
50–35,000 Gy

Lumbar vertebrae
excised and removed of
soft tissue. Wrapped in

saline-soaked gauze

[213]

Monotonic strength (one direction)
decreased at 17,000 Gy and above.

Increase in non-enzymatic cross-links at a
lower dose (50–1000 Gy) by analysing

AGEs. Crosslinks do not have a
significant impact on vertebral strength.

6 MeV X-rays, 10–100 Gy

Bovine pericardial tissue
(collagen), Bovine

ligamentum nuchae
(elastin)

[214]

For pericardial tissue, elastic modulus
increased for small strain and decreased
at larger strain after irradiation. Elastin

has significantly reduced elastic modulus
after irradiation.

For in vivo systems (Table 5), mouse models are often used to observe longer-term
tissue responses to radiation. In addition, such models can elucidate if irradiated regions
may exert a local or systemic influence on, for example, the immune responses [215].
In vivo studies show that irradiated animals experience ECM remodelling, which is likely
to be mediated by MMPs. Such experiments are useful to account for the various effectors of
radiation response by allowing full interaction between different mediators and are helpful
for observing long-term effects such as secondary malignancies, fibrosis and metastasis.
However, therein lies the challenge of relating animal models back to humans, as genetic
differences could invalidate the radiation response elucidated in these models [215]. In
addition, it is difficult to determine if the radiation outcomes are associated with the acute
effects of radiation on ECM proteins or with long-term remodelling from cellular expression
of MMPs.

The various types of experiments summarised above show evidence that ECM com-
ponents are differentially affected. At the molecular scale, purified ECM proteins show
alteration of individual protein functions and structure, while ECM mechanical properties
are altered at a larger scale in decellularised cultures and ex vivo. In addition, in vivo
experiments demonstrate remodelling of ECM and abnormal cellular behaviour following
irradiation. Still, although effects of ionising and non-ionising radiation are observed on
different scales, they are not yet integrated into a coherent understanding of the underlying
mechanism of radiation damage. Furthermore, most studies using purified ECM proteins
and decellularised cultures focused on high doses that are valid for sterilisation processes
but are not clinically relevant.
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Table 5. In vivo models allow for observations of long-term radiation responses not only in the targeted area but also
surrounding tissues or organs for bystander studies. In vivo studies showed that both UVR and ionising radiation-exposed
animals experience ECM remodelling as a consequence of protease action.

Radiation Dose Method Ref Results

UV

UVB (285–350 nm, peak:
310 nm). 0.12 J/cm2, (MED)

x3/x6/x9 per week for
13 weeks

Skh1/Hr female mice
irradiated with UVR over
13 weeks with increasing

dose

[216]
KPA inhibited cathepsin G, which mediates

MMP-1 upregulation through Fn
fragmentation/activating pro-MMP-1.

UVA/B (240–320 nm),
1 MED

Albino guinea pigs
(400–500 g) irradiated on

shaved skin and
decapitated

2/4/72/192 hrs after
irradiation

[217]
Disorganisation of collagen I/II fibres

worsen over time. Increase in collagen III
detected.

UVB (280–320 nm, peak:
313 nm). 0.08 J/cm2 (1 MED),

3 times per week for
20 weeks

Skh1/Hr female mice
8 weeks old irradiated

with UVR over 20 weeks
and allowed to recover

for 10 weeks. Dorsal skin
biopsies were taken at

week 28 and 38

[218]

After 20 weeks of irradiation, there was a
35% reduction in collagen content. Collagen
further declined during recovery by ~70%.

mRNA levels of MMP-3 and 9 were not
regulated, while mRNA of MMP-13

decreased. Possible degradation of collagen
by the activation of latent MMP rather than

increased expression.

Co-60 γ-ray, 2–22 Gy in
fractions of 2 Gy/day

White, outbred rats,
irradiated in bladder and

rectum. For 2 Gy, rats
were harvested

1 day/1 week/1 month
after irradiation. Higher

doses harvested after
1 day.

[219]

One-month post-2 Gy irradiation showed
thickening of collagen fibres and tight,

parallel packing for the bladder and rectum.
One day post-irradiation for higher dose

observed the same effects with the severity
dependent on dose. Skin most sensitive

showing similar damage at 8 Gy.

Ionising
Radiation

300 kVp X-rays (30–60 Gy)
for local, Cs-137 γ-ray

(6–10 Gy) for whole body

C57BL/6 mice with
smad3 gene knockout [220]

Smad3 knockout mice have less TGF-β1
expression, less inflammation, less

myofibroblasts after radiation

Co-60 γ-ray, 2–40 Gy,
1.7 Gy/min

2-month-old, white wild
type outbred rats, ~ 200 g,

harvested
1 day/1 week/1,2,3 months
after irradiation for rat’s

tail tendon

[221]

Differential scanning calorimetry showed a
dose-dependant increase in denaturing
temperature 24 h after irradiation, but

dose-independent after 1 week. Negligible
change was observed for

tertiary/secondary structures using second
harmonic generation/cross-polarisation

optical coherence tomography

To address this gap, it is necessary to have a consistent methodology that allows
investigation on all scales (from molecular to in vivo tissues) to provide a link between
localised molecular changes in ECM proteins and the transformation of global properties
such as mechanical strength. One approach that our group is undertaking is peptide
location fingerprinting [74], which takes advantage of the sensitivity of modern mass
spectrometers, allowing us to probe the ECM proteins of interest both in purified samples
and in complex tissue. We have previously shown that this fingerprinting approach was
able to distinguish between fibrillin derived from the eye and from skin despite having
similar peptide compositions [222] and that physiologically relevant doses of UVR can
induce statistically significant differences in the yield of ECM peptides (as detected by
mass spectrometry) in multiple proteins [74]. We have recently shown that the same
technique can detect multiple putative biomarkers of skin photoageing [223]. Structural
changes identified by this technique could be key to studying the effects of ionising
radiation on ECM proteins and scaffolds at physiological doses where the outputs are often
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less apparent. Another approach could be in vitro models that better mimic the in vivo
environment. Culturing cells in 3D, for example, has been shown to more closely replicate
not only tissue composition [224] but also structure [225]. Utilising such approaches may
help to model not only radiation-induced damage but also in the development of strategies
to protect and repair tissues.

6. Conclusions

Many studies in the past exposing the detrimental effects of UVR and ionising radia-
tion were focused on modifications of cellular behaviour as a consequence of intracellular
molecular damage to DNA, proteins and lipids [99,226,227]. Additional study of ECM
proteins would be beneficial, increasing our understanding of sub-lethal radiation re-
sponses that are often long-term and detrimental to the quality of life. Both skin and
breast tissue provide clinically relevant models to study the biological effects of UVR and
ionising radiation, respectively. There remain gaps within the current literature on the
understanding of the molecular mechanisms that trigger these unwanted radiation side
effects. Damage to the ECM, an important yet overlooked mechanical and biochemical
regulator of cellular processes, could be key to understanding these clinical consequences.
The ECM is vulnerable to accumulating radiation damage due to a lack of a robust repair
mechanism, compounded with a long turnover rate for most ECM molecules [175,178].
This may trigger mechanosensitive pathways [137,139,228] or release innate growth factors
that were bound to the ECM, triggering downstream effects. Current published studies
(which involve studying purified ECM proteins, decellularised cultures, ex vivo and in vivo
systems) lack a coherent link to capture the underlying mechanism from radiation damage
to clinical outcomes. Future studies to address such a gap should aim to exploit systematic
approaches that can be applied at the different scales of ECM experimentation, whilst
using comparable physiological doses of radiation, to draw possible connections between
radiation damage and clinical outcomes of radiation exposure. This has the potential to
enhance our insight into the origin of radiation damage and thereby allow us to make
better predictions for outcomes to radiation exposure.
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Appendix A

Glossary
1. Bragg Peak
A unique feature of radiation dose imparted by heavily charged particle radiation,

such as protons. The peak occurs near the end of the particle’s trajectory before it comes to a
stop and is where the majority of the energy of the particle is released onto its surroundings.
The Bragg peak is the key feature that allows proton radiotherapy to minimise radiation
dose to healthy tissues along the path of radiation without compromising on tumour dose.

2. Mega electron volt (MeV)
A unit of energy, where 1 MeV refers to the amount of kinetic energy imparted to an

electron when it is accelerated across a potential difference of 106 V from rest. In SI units:

1 MeV = 1.602 × 10−13 J (A1)
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3. Gray (Gy)
The unit for radiation dose (D). It is defined as the amount of energy absorbed per

unit mass of the object of interest [229].

1 Gy = 1 J/kg (A2)

4. Sieverts (Sv)
The unit of equivalent (H) and effective (E) doses of radiation. The equivalent dose is

defined as the radiation dose (D) multiplied by a quality factor of the radiation of interest
(Q). For example, X-rays have a quality factor of 1, while high-energy protons have a factor
of 10. The effective dose is defined as the equivalent dose multiplied by a tissue weighting
factor (wT) specific to the tissue of interest where the radiation dose is absorbed [229].

H = D × Q (A3)

E = H × wT (A4)
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