1,812 research outputs found
Computer implemented empirical mode decomposition method apparatus, and article of manufacture utilizing curvature extrema
A computer implemented physical signal analysis method is includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals based on local extrema and curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum
Charge Induced Vortex Lattice Instability
It has been predicted that superconducting vortices should be electrically
charged and that this effect is particularly enhanced for, high temperature
superconductors.\cite{kho95,bla96} Hall effect\cite{hag91} and nuclear magnetic
resonance (NMR) experiments\cite{kum01} suggest the existence of vortex
charging, but the effects are small and the interpretation controversial. Here
we show that the Abrikosov vortex lattice, characteristic of the mixed state of
superconductors, will become unstable at sufficiently high magnetic field if
there is charge trapped on the vortex core. Our NMR measurements of the
magnetic fields generated by vortices in BiSrCaCuO
single crystals\cite{che07} provide evidence for an electrostatically driven
vortex lattice reconstruction with the magnitude of charge on each vortex
pancake of x, depending on doping, in line
with theoretical estimates.\cite{kho95,kna05}Comment: to appear in Nature Physics; 6 pages, 7 figure
Telomere Length Shows No Association with BRCA1 and BRCA2 Mutation Status
This study aimed to determine whether telomere length (TL) is a marker of cancer risk or genetic status amongst two cohorts of BRCA1 and BRCA2 mutation carriers and controls. The first group was a prospective set of 665 male BRCA1/2 mutation carriers and controls (mean age 53 years), all healthy at time of enrolment and blood donation, 21 of whom have developed prostate cancer whilst on study. The second group consisted of 283 female BRCA1/2 mutation carriers and controls (mean age 48 years), half of whom had been diagnosed with breast cancer prior to enrolment. TL was quantified by qPCR from DNA extracted from peripheral blood lymphocytes. Weighted and unweighted Cox regressions and linear regression analyses were used to assess whether TL was associated with BRCA1/2 mutation status or cancer risk. We found no evidence for association between developing cancer or being a BRCA1 or BRCA2 mutation carrier and telomere length. It is the first study investigating TL in a cohort of genetically predisposed males and although TL and BRCA status was previously studied in females our results don't support the previous finding of association between hereditary breast cancer and shorter TL
Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}
Experimental evidence on high-Tc cuprates reveals ubiquitous charge density
wave (CDW) modulations, which coexist with superconductivity. Although the CDW
had been predicted by theory, important questions remain about the extent to
which the CDW influences lattice and charge degrees of freedom and its
characteristics as functions of doping and temperature. These questions are
intimately connected to the origin of the CDW and its relation to the
mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant
inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped
Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive
excitations from an incommensurate CDW that induces anomalously enhanced phonon
intensity, unseen using other techniques. Near the pseudogap temperature T*,
the CDW persists, but the associated excitations significantly weaken and the
CDW wavevector shifts, becoming nearly commensurate with a periodicity of four
lattice constants. The dispersive CDW excitations, phonon anomaly, and
temperature dependent commensuration provide a comprehensive momentum space
picture of complex CDW behavior and point to a closer relationship with the
pseudogap state
The pharmacological regulation of cellular mitophagy
Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications
Integrated Terahertz Graphene Modulator with 100% Modulation Depth
Terahertz (THz) frequency technology has many potential applications in nondestructive imaging, spectroscopic sensing, and high-bit-rate free-space communications, with an optical modulator being a key component. However, it has proved challenging to achieve high-speed modulation with a high modulation depth across a broad bandwidth of THz frequencies. Here, we demonstrate that a monolithically integrated graphene modulator can efficiently modulate the light intensity of the THz radiation from a THz quantum cascade laser with a 100% modulation depth for certain region of the pumping current, as a result of the strongly enhanced interaction between the laser field and the graphene enabled by this integration scheme. Moreover, the small area of the resulting device in comparison to existing THz modulators enables a faster modulation speed, greater than 100 MHz, which can be further improved through optimized designs of the laser cavity and modulator architectures. Furthermore, as the graphene absorption spectrum is broadband in nature, our integration scheme can be readily scaled to other wavelength regions, such as the mid-infrared, and applied to a broad range of other optoelectronic devices
Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.
We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease
Untargeted LC-HRMS-based metabolomics to identify novel biomarkers of metastatic colorectal cancer
Colorectal cancer is one of the main causes of cancer death worldwide, and novel biomarkers are
urgently needed for its early diagnosis and treatment. The utilization of metabolomics to identify
and quantify metabolites in body fluids may allow the detection of changes in their concentrations
that could serve as diagnostic markers for colorectal cancer and may also represent new therapeutic
targets. Metabolomics generates a pathophysiological ‘fingerprint’ that is unique to each individual.
The purpose of our study was to identify a differential metabolomic signature for metastatic colorectal
cancer. Serum samples from 60 healthy controls and 65 patients with metastatic colorectal cancer were
studied by liquid chromatography coupled to high-resolution mass spectrometry in an untargeted
metabolomic approach. Multivariate analysis revealed a separation between patients with metastatic
colorectal cancer and healthy controls, who significantly differed in serum concentrations of one
endocannabinoid, two glycerophospholipids, and two sphingolipids. These findings demonstrate that
metabolomics using liquid-chromatography coupled to high-resolution mass spectrometry offers a
potent diagnostic tool for metastatic colorectal cancer.This study was supported by a grant (n° 15CC056/DTS17/00081- ISCIII-FEDER) from the Fundación para la
Investigación Biosanitaria de Andalucía Oriental (FIBAO) and Roche Pharma S.L. Authors from the Fundación
MEDINA acknowledge the receipt of financial support from this public-private partnership of Merck Sharp &
Dohme de España S.A. with the University of Granada and Andalusian Regional Government (PIN-0474-2016)
- …