30 research outputs found

    A “Push and Slide” Mechanism Allows Sequence-Insensitive Translocation of Secretory Proteins by the SecA ATPase

    Get PDF
    SummaryIn bacteria, most secretory proteins are translocated across the plasma membrane by the interplay of the SecA ATPase and the SecY channel. How SecA moves a broad range of polypeptide substrates is only poorly understood. Here we show that SecA moves polypeptides through the SecY channel by a “push and slide” mechanism. In its ATP-bound state, SecA interacts through a two-helix finger with a subset of amino acids in a substrate, pushing them into the channel. A polypeptide can also passively slide back and forth when SecA is in the predominant ADP-bound state or when SecA encounters a poorly interacting amino acid in its ATP-bound state. SecA performs multiple rounds of ATP hydrolysis before dissociating from SecY. The proposed push and slide mechanism is supported by a mathematical model and explains how SecA allows translocation of a wide range of polypeptides. This mechanism may also apply to hexameric polypeptide-translocating ATPases

    A novel mechanism of actin filament processive capping by formin: solution of the rotation paradox

    Get PDF
    The FH2 domains of formin family proteins act as processive cappers of actin filaments. Previously suggested stair-stepping mechanisms of processive capping imply that a formin cap rotates persistently in one direction with respect to the filament. This challenges the formin-mediated mechanism of intracellular cable formation. We suggest a novel scenario of processive capping that is driven by developing and relaxing torsion elastic stresses. Based on the recently discovered crystal structure of an FH2–actin complex, we propose a second mode of processive capping—the screw mode. Within the screw mode, the formin dimer rotates with respect to the actin filament in the direction opposite to that generated by the stair-stepping mode so that a combination of the two modes prevents persistent torsion strain accumulation. We determine an optimal regime of processive capping, whose essence is a periodic switch between the stair-stepping and screw modes. In this regime, elastic energy does not exceed feasible values, and supercoiling of actin filaments is prevented

    A review of nitrogen isotopic alteration in marine sediments

    Get PDF
    Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A >100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    The tilted helix model of dynamin oligomers

    No full text
    Dynamin proteins assemble into characteristic helical structures around necks of clathrin-coated membrane buds. Hydrolysis of dynamin-bound GTP results in both fission of the membrane neck and partial disruption of the dynamin oligomer. Imaging by atomic force microscopy reveals that, on GTP hydrolysis, dynamin oligomers undergo a dynamic remodeling and lose their distinctive helical shape. While breakup of the dynamin helix is a critical stage in clathrin-mediated endocytosis, the mechanism for this remodeling of the oligomer has not been resolved. In this paper, we formulate an analytical, elasticity-based model for the reshaping and disassembly of the dynamin scaffold. We predict that the shape of the oligomer is modulated by the orientation of dynamin’s pleckstrin homology (PH) domain relative to the underlying membrane. Our results indicate that tilt of the PH domain drives deformation and fragmentation of the oligomer, in agreement with experimental observations. This model motivated the introduction of the tilted helix: a curve that maintains a fixed angle between its normal and the normal of the embedding surface. Our findings highlight the importance of tilt as a key regulator of size and morphology of membrane-bound oligomers

    Prefission Constriction of Golgi Tubular Carriers Driven by Local Lipid Metabolism: A Theoretical Model

    Get PDF
    Membrane transport within mammalian cells is mediated by small vesicular as well as large pleiomorphic transport carriers (TCs). A major step in the formation of TCs is the creation and subsequent narrowing of a membrane neck connecting the emerging carrier with the initial membrane. In the case of small vesicular TCs, neck formation may be directly induced by the coat proteins that cover the emerging vesicle. However, the mechanism underlying the creation and narrowing of a membrane neck in the generation of large TCs remains unknown. We present a theoretical model for neck formation based on the elastic model of membranes. Our calculations suggest a lipid-driven mechanism with a central role for diacylglycerol (DAG). The model is applied to a well-characterized in vitro system that reconstitutes TC formation from the Golgi complex, namely the pearling and fission of Golgi tubules induced by CtBP/BARS, a protein that catalyzes the conversion of lysophosphatidic acid into phosphatidic acid. In view of the importance of a PA-DAG cycle in the formation of Golgi TCs, we assume that the newly formed phosphatidic acid undergoes rapid dephosphorylation into DAG. DAG possesses a unique molecular shape characterized by an extremely large negative spontaneous curvature, and it redistributes rapidly between the membrane monolayers and along the membrane surface. Coupling between local membrane curvature and local lipid composition results, by mutual enhancement, in constrictions of the tubule into membrane necks, and a related inhomogeneous lateral partitioning of DAG. Our theoretical model predicts the exact dimensions of the constrictions observed in the pearling Golgi tubules. Moreover, the model is able to explain membrane neck formation by physiologically relevant mole fractions of DAG
    corecore