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ABSTRACT Membrane transport within mammalian cells is mediated by small vesicular as well as large pleiomorphic
transport carriers (TCs). A major step in the formation of TCs is the creation and subsequent narrowing of a membrane neck
connecting the emerging carrier with the initial membrane. In the case of small vesicular TCs, neck formation may be directly
induced by the coat proteins that cover the emerging vesicle. However, the mechanism underlying the creation and narrowing of
a membrane neck in the generation of large TCs remains unknown. We present a theoretical model for neck formation based on
the elastic model of membranes. Our calculations suggest a lipid-driven mechanism with a central role for diacylglycerol (DAG).
The model is applied to a well-characterized in vitro system that reconstitutes TC formation from the Golgi complex, namely the
pearling and fission of Golgi tubules induced by CtBP/BARS, a protein that catalyzes the conversion of lysophosphatidic acid
into phosphatidic acid. In view of the importance of a PA-DAG cycle in the formation of Golgi TCs, we assume that the newly
formed phosphatidic acid undergoes rapid dephosphorylation into DAG. DAG possesses a unique molecular shape
characterized by an extremely large negative spontaneous curvature, and it redistributes rapidly between the membrane
monolayers and along the membrane surface. Coupling between local membrane curvature and local lipid composition results,
by mutual enhancement, in constrictions of the tubule into membrane necks, and a related inhomogeneous lateral partitioning of
DAG. Our theoretical model predicts the exact dimensions of the constrictions observed in the pearling Golgi tubules. Moreover,
the model is able to explain membrane neck formation by physiologically relevant mole fractions of DAG.

INTRODUCTION

Transport of proteins between intracellular organelles occurs

by means of membrane containers, also called transports car-

riers (TC) (Bonifacino and Lippincott-Schwartz, 2003; Roth-

man and Wieland, 1996). Schematically, one can distinguish

between two structural types of TCs. One is represented by

the small round vesicles of 50–100 nm in diameter initially

covered by protein coats. Carriers of the second type are the

large pleiomorphic, mostly tubular-saccular containers which

mediate a substantial part of ER-Golgi and Golgi-plasma

membrane transport in mammalian cells (Polishchuk et al.,

2000). These are of variable size but often very large (up to 10

mm in length), travel along microtubules, and change their

shape elastically during movement (Hirschberg et al., 1998;

Polishchuk et al., 2000). For convenience, we will refer to the

former type of transport carriers as vesicular TCs and to the

second type as large tubular TCs.

A crucial step in TC generation is shaping of the

membrane into a bud connected to the initial membrane by

a narrow neck. The subsequent fission of the neck results

in a separate membrane container. Neck formation is an

energy-consuming process because it requires strong

membrane bending which is opposed by the bilayer bend-

ing rigidity (Helfrich, 1990). What is the cell machinery

supplying the energy for neck formation and constriction?

Obviously, the molecular workers responsible for this mem-

brane remodeling events are specific proteins and/or lipids.

It is commonly agreed that the major driving force for the

formation of vesicular TCs comes from the coat-forming

protein complexes—such as the clathrin-adaptor complex

assisted by dynamin and its partners, and the coatomer

complexes COPI and COPII (Kirchhausen, 2000)—which

have been identified, characterized, and demonstrated to

bend the lipid bilayers and generate small vesicles in vitro

(Matsuoka et al., 1998; Spang et al., 1998; Takei et al.,

1998).

In contrast and despite the crucial role large TCs play

in intracellular membrane traffic, the mechanism of their

formation remains largely unknown. Lipids such as poly-

phosphoinositides, phosphatidic acid (PA), and diacylglyc-

erol (DAG) have long been recognized as crucial factors in

the regulation of Golgi-plasma membrane transport mediated

by large TCs (Baron and Malhotra, 2002; De Matteis et al.,

2002; Kearns et al., 1998, 1997). However, they are com-

monly believed to play, primarily, a signaling role, whereas

the origin of the force deforming the membranes and

generating the carriers remained to be identified.

The goal of the present study is to address theoretically the

mechanism by which membrane necks form in the Golgi

tubules involved in Golgi-plasma membrane transport. Our

analysis indicates that in this particular case the lipids can

serve as the molecular workers, performing the mechanical

work necessary for membrane remodeling.
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Useful experimental insight into this phenomenon came

recently from observations on Golgi membrane constriction

and fission made in isolated Golgi fractions incubated with

CtBP/BARS (Weigert et al., 1999). CtBP/BARS plays an

essential role in the formation of large TCs that carry proteins

and lipids from the Golgi to the plasma membrane (A. Luini,

unpublished data). In vitro, in the presence of long-chain

acyl-CoAs, CtBP/BARS induces local constrictions in Golgi

tubules resulting in narrow necks. Occasionally, the narrow

necks were separated by regular distances along the tubule

resulting in a shape similar to a pearl chain; in analogy to

Bar-Ziv et al. (1999), this will be referred to as membrane

pearling. In some cases pearling was followed by fission of

the necks and membrane separation into TCs. The pearling

phenomenon has been related to the lipid metabolic activity

of CtBP/BARS. CtBP/BARS is a lipid acyltransferase,

which, in the presence of acyl-CoAs, acylates lysophospha-

tidic acid (LPA) converting it into phosphatidic acid (PA) in

the cytoplasmic leaflet of the Golgi tubule. The generation of

membrane necks and the pearling of Golgi tubules observed

in vitro is likely to be driven by the same mechanism as

membrane neck formation and constriction in the course of

detachment of large transport carriers from the Golgi com-

plex.Therefore, elaborationof the pearlingmechanismshould

have important implications for TC formation in live cells.

We propose a novel model for membrane pearling based

on the assumption that the PA generated by CtBP/BARS

undergoes enzymatic conversion into DAG, a transformation

known to proceed rapidly in vivo (Nanjundan and Poss-

mayer, 2003). DAG molecules are characterized by a unique

molecular shape (Szule et al., 2002), which can strongly

influence the shape of the whole membrane. The essence of

our model lies in the coupling between local shape of the

tubule and local concentration of the newly synthesized

DAG.We account quantitatively for the documented features

of pearling of the Golgi tubules (Weigert et al., 1999) and

provide experimentally testable predictions on the partition-

ing of the newly formed DAG into the emerging membrane

necks. Our model strongly suggests that physiological levels

of DAG may drive the constriction of Golgi membrane

tubules, a key step in the formation of transport carriers

mediating Golgi-plasma membrane transport.

PHENOMENOLOGICAL BACKGROUND

A lipid membrane is commonly described as a surface,

whose shape is determined by the total, J, and Gaussian, K,
curvatures (Appendix A). For the sake of brevity, by

referring to J we will skip the word ‘‘total’’ and call it

simply the curvature. The membrane bilayer is represented

by its midplane with the curvature, Jmid, whereas the shapes

of the outer and inner membrane monolayers are attributed to

their neutral planes (Kozlov and Winterhalter, 1991) whose

curvatures are denoted as Jout and Jin, respectively. Because
of the opposite orientation of the two monolayers, their total

curvatures, Jout, and Jin, have opposite signs. The exact

definitions of the curvatures and the relationships between

them are presented in Appendix A.

If a membrane monolayer is not subject to any external

forces, it adopts a spontaneous shape, which is determined

by the monolayer intrinsic structure and characterized by the

spontaneous curvature, Js (Helfrich, 1973). These concepts

can be extended to the description of lipid molecules, whose

influence on the membrane form is attributed to their

effective molecular shape (Israelachvili et al., 1976) and the

effective molecular spontaneous curvature, 1 (Kozlov and

Helfrich, 1992). A more detailed discussion of these notions

is presented in Appendix A. The lipid molecules tend to

reside in the membrane regions where the curvature, J, is as
close as possible to the molecular spontaneous curvature, 1.
This tendency is opposed by the effects of entropy of lipid

mixing in the monolayers (see below).

Geometry of a Golgi tubule

Initially, a typical tubule has a shape of a nearly smooth

cylinder connected at least at one end to a disklike cistern

which should allow for a free exchange of the inner aqueous

volume of the tubule with that of the much larger cistern

(Weigert et al., 1999).

Shape transformation of a tubule upon the action of CtBP/

BARS results in the emergence of local constriction sites

separated by bulges (see Weigert et al., 1999; and this article,

Fig. 1, b–d). The average tubular diameter in the con-

strictions is ;11 nm, whereas in the bulges it reaches ;48

nm. If present on the same tubule, the constriction sites are

separated by regular intervals of ;85 nm, which results in

a pearl-chain-like shape.

Lipids involved: their effective shapes and
spontaneous curvatures

As already mentioned, shape transformation of a tubule

is triggered by conversion of LPA into PA in the outer

monolayer of the tubular membrane, catalyzed by CtBP/

BARS. Membrane shape changes occur when the amount of

PA in the membrane exceeds;0.2% of the total lipid and the

maximal effect is produced at a PA level of;0.6% (Weigert

et al., 1999). It is generally accepted that PA present in

intracellular membranes is short-lived, and often dephos-

phorylated to yield DAG (Nanjundan and Possmayer, 2003).

Hence, in all likelihood, the lipid transformation sequence

LPA ! PA ! DAG is implicated in pearling of Golgi

tubules and the relevant membrane concentrations of DAG

constitutes only a few tenths of a mole percent of total lipid.

A DAG molecule has a very pronounced conelike shape

(Appendix A). Its spontaneous curvatures varies from

1DAG � �1=ð1:3 nmÞ to �1 nm�1 depending on the length

and the degree of unsaturation of the hydrocarbon chain

(Szule et al., 2002). In fact, DAG is the lipid with the most
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negative spontaneous curvature determined so far. The

spontaneous curvature of PA has not been measured

quantitatively but its effective shape has been determined

by nuclear magnetic resonance studies (Kooijman et al.,

2003). At physiological pH and in mixture with other lipids,

PA exhibits a cone shape with moderately negative spon-

taneous curvature, 1PA\0, which is close to that of dioleoyl-

phosphatidylethanolamine 1DOPE � �1=ð3 nmÞ (Fuller and

Rand, 2001). Under the same conditions LPA has an

effective shape of inverted cone as expected for a molecule

having one hydrophobic chain. The spontaneous curvature

of oleoyl-LPA is positive, 1LPA [ 0, and close to that of

oleoyl-lysophosphatidylcholine (LPC) (Kooijman et al.,

2003). According to preliminary data it constitutes

1LPA � 1=ð2 nmÞ (E. Kooijman and R. P. Rand, unpublished

data). Summarizing, the conversion of LPA into DAG via

PA results in transformation of the effective shape of the

molecule from inverted cone to conelike, and thus to a change

of the molecular spontaneous curvature from positive to

strongly negative values.

QUALITATIVE MODEL

We suggest the following mechanism for pearling of a Golgi

tubule. In the initial cylindrical tubule the outer and the inner

lipid monolayers have, respectively, a positive, Jout[0, and

a negative, Jin \ 0, curvature (Appendix A). The DAG

molecules generated in the outer monolayer as a result of

LPA ! PA ! DAG conversion have a strongly negative

spontaneous curvature, 1DAG\ 0, which conflicts with Jout.
As a result, the DAG molecules are ‘‘frustrated’’ and the

outer monolayer accumulates the elastic stresses, which the

system tends to relax. There are three routes the membrane

goes to relieve the stresses:

1. Repartitioning of DAG from the outer to the inner

membrane monolayer whose curvature, Jin\ 0, matches

in sign 1DAG.
2. Deviation of the tubular shape from the smooth cylinder.

3. Redistribution of DAG along the surfaces of the two

monolayers.

Flipping of DAG to the inner monolayer decreases the stress,

but does not relieve it entirely, for two reasons. First, a part of

DAG molecules is retained in the outer monolayer by the

entropic effects. Second, the curvature of the inner mono-

layer, �0.1 nm�1 \ Jin \ 0, is not negative enough to

completely accommodate the spontaneous curvature of

DAG, Js
DAG � �1 nm�1.

To relax the stress further, the membrane develops

periodic constrictions and bulges, thus adopting the pearl-

chain-like shape (Fig. 1, b–d). In the constriction sites the

bilayer has a necklike shape, where the monolayer curvatures

Jin and Jout are shifted toward more negative values as

compared to those in the bulges. Redistribution of DAG into

the constriction sites stabilizes the necks and the overall

energy decreases.

Thus, the morphological changes of the membrane tubules

result from a coupling between local membrane composition

and local shape (Leibler and Andelman, 1987; Markin,

1981).

In the following we present a detailed treatment of this

scenario based on the elastic model of lipid monolayers.

PHYSICAL MODEL

To analyze the pearling of the Golgi tubule, we have to

compute the energy of different tubular membrane shapes

and different distributions of the DAG molecules between

the two monolayers and along the monolayer surfaces. For

that we need to know the constraints imposed on the possible

membrane configurations and have a model for the mem-

brane free energy.

Constraints on the membrane shapes and
lipid distributions

The initial cylindrical shape of the tubular membrane is

characterized by a difference between the areas of the outer,

Aout, and inner, Ain, membrane monolayers, DA¼ Aout � Ain,

which results from a global relationship between the

monolayer areas of the whole complex including a Golgi

cistern and the connected tubules. In the course of the

FIGURE 1 Membrane shapes. (a) A family of Delaunay surfaces, ranging

from a flat cylinder to a deformed state, all having the same total curvature.

(b) Superposition of a Delaunay surface outline with an image of a deformed

state of the Golgi tubule. c and d represent, respectively, the intermediate and

the final states of pearling, where the sum of Rmin and Rmax have the same

value. (e) The red line represents the theoretically derived contour of the

constriction site. b–d have been published in Weigert et al. (1999); the scale

bar in c and d represents 40 nm.

Constriction of Golgi Tubules 3815

Biophysical Journal 85(6) 3813–3827



pearling transition, DA has to remain constant. This con-

dition can be expressed by (Safran, 1994)

2d

ð
Jmid dAmid ¼ DA; (1)

where the integration is performed over the bilayer midplane

and the monolayer thickness d (or, more accurately, the

distance from the monolayer neutral surface—see Appendix

A—to the bilayer midplane) is assumed to be equal for the

two monolayers and constant along the membrane plane.

The local mole fraction of the newly synthesized

molecules in a membrane monolayer will be denoted by f.
Although these molecules can repartition between the two

membrane monolayers and along the monolayer planes, their

average mole fraction in the membrane remains constant and

equal to the ftot produced by the metabolic reaction. This

condition leads to the second constraint expressed byð
findAin 1

ð
foutdAout ¼ ðAin 1AoutÞftot: (2)

Monolayer free energy

For simplicity, we assume that the monolayer consists of two

lipid components. The major one is characterized by the

spontaneous curvature 10 and represents the average of the

lipids constituting the membrane before the onset of the lipid

transformation. We will refer to 10 as the background

spontaneous curvature. The second minor component has

the spontaneous curvature 1 and corresponds to the newly

formed molecules.

The free energy of a monolayer consists of the elastic

energy of bending and the contribution of the entropy of lipid

mixing.

The bending energy per unit area of a monolayer, fB, is
given by the Helfrich model (Helfrich, 1973) extended in

Mitov (1978) as presented in Appendix B. For our study,

only two energy contributions will be relevant,

f
B ¼ 1

2
kðJ � JsÞ2 1 ��kk�kkK

2
; (3)

where J and K are, respectively, the total and the Gaussian

curvature of the monolayer, and Js is its spontaneous

curvature (Appendix A). The monolayer bending modulus,

k, has a value of ; 4 3 10�20 J (Niggemann et al., 1995).

The quadratic Gaussian modulus, ��kk�kk, has not been directly

measured. Its estimation, based on the model of trans-

membrane lateral stress profile, shows that ��kk�kk is negative and

has an order of magnitude of ��kk�kk � �g0 3 d4, where g0 � 50

mN/m (Goetz and Helfrich, 1996; and Appendix B).

Assuming d � 1.2 nm, the estimation gives ��kk�kk �
�10�37J3m2.

We will assume the elastic moduli k and ��kk�kk to be

independent of the membrane composition, as supported

for k by the experimental results (Leikin et al., 1996). In

contrast, the monolayer spontaneous curvature, Js, is often

linear with respect to the mole fractions of membrane

components (Kozlov and Helfrich, 1992; Leikin et al.,

1996), and is given by

Js ¼ 10 1D1f; (4)

where D1 ¼ 1 � 10.
The contribution to the monolayer free energy from the

entropy of lipid mixing can be presented in the mean field

approximation as in Kozlov and Helfrich (1992) and Andel-

man et al. (1994),

f
ent ¼ kBT

a
½flnf1 ð1� fÞlnð1� fÞ�; (5)

where a is the area per lipid molecule, assumed to be equal

for the different lipids constituting the monolayer. In the

following, the subscripts in and out indicate the values

describing the inner and the outer membrane monolayers,

respectively, whereas the subscript mid indicating the bilayer
midsurface is omitted.

The main equations and the outline of analysis

The total free energy of the membrane is the sum of the

elastic and entropic contributions of the two monolayers,

Ftot ¼
ð
ð f Bin 1 f entin ÞdAin 1

ð
ð f Bout 1 f entout ÞdAout: (6)

To proceed, we insert Eqs. 3–5 in Eq. 6, and express all

curvatures and the area elements through those of the

midsurface of the bilayer using the relationships presented in

Appendix A. The resulting final form of Eq. 6 is

Ftot ¼
ð
dA

k

2
3

8K
2

d
2 1

��kk�kk

2k

� �
1K d

2
z
2
f

2

out 1f
2

in

� �� 4dzðfout 1finÞ1 4
�kk

k

� �
1 2J

2

1 ðf2

outð11 JdÞ1f
2

inð1� JdÞÞz2 � 2ðfout � finÞzJ

2
64

3
751

1 kBT3
ðfout lnðfoutÞ1 ð1� foutÞlnð1� foutÞÞ

11 Jd1K
2
d
2

a

1 ðfin lnðfinÞ1 ð1� finÞlnð1� finÞÞ
1� Jd1K

2
d
2

a

2
6664

3
7775

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

; (7)
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where the integration is performed over the area of the

midsurface.

We will minimize the energy (Eq. 7) with respect to the

distributions of curvatures, J and K, and the DAG mole

fractions, fin and fout, along the membrane surface. The

minimization will take into account the constraints (Eqs.

1–2). The total DAGmole fraction, ftot, will serve as a major

parameter controlling the shape of the tubule.

RESULTS

Shapes of the tubules: Delaunay surfaces

The tubule shapes have to satisfy the constraint (Eq. 1),

which requires a constant difference between the monolayer

areas, DA. This condition restricts only the integral of the

total curvature, whereas the local values of J may vary along

the membrane surface. Despite this possibility, we further

restrict ourselves by considering the shapes of constant J
along the membrane surface.

The axial-symmetric shapes of constant total curvature,

J ¼ const, are called Delaunay surfaces (Delaunay, 1841). A
family of such shapes, all having the same J, is illustrated in

Fig. 1 a. The surfaces have a periodic shape and each of them
is characterized by two radii, Rmax and Rmin, in the widest

and the narrowest cross-section, respectively. The constant

total curvature of a Delaunay surface is

J ¼ 2

Rmax 1Rmin

: (8)

The length of periodicity of a Delaunay surface, which can be

measured as a distance between two closest constrictions, is

L ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2

min 1R
2

max 1 6RminRmax

2

s
: (9)

A cylinder is a Delaunay surface with Rmin ¼ Rmax ¼ Rcyl.

According to Eq. 9, all the Delaunay surfaces having the

same curvature J are characterized by the same sum of the

maximal and minimal cross-section radii,

Rmax 1Rmin ¼ const: (10)

The shapes of the Golgi tubules observed in Weigert et al.

(1999) are well described by the Delaunay surfaces. Indeed,

the average radii measured for the tubular constrictions, Rmin

� 6 nm, and bulges, Rmax � 24 nm, require, according to Eq.

10, the periodicity length of L � 85 nm. This is in excellent

agreement with the experimental value. We also directly

superimpose an outline of a Delaunay surface, determined by

the parameters above, with a representative experimental

image (Fig. 1 e). Bearing in mind that the image is a two-

dimensional projection of a three-dimensional shape, which

may not be oriented exactly in the imaging plane, the

theoretical prediction is in accord with the observed shape.

Finally, we verify whether the relationship (Eq. 10) is

satisfied for a typical intermediate pearled shape (Fig. 1 c)
and one that corresponds to the almost vanishing radii of

constrictions (Fig. 1 d). In both cases, Rmin 1 Rmax has the

same value of ;30 nm.

The agreement between the Delaunay surfaces and the

shapes of the Golgi tubules confirms the correctness of our

assumption of constancy of the total curvature J. To further

verify this assumption we have analyzed numerically

deviations of the tubular shape from the Delaunay surface

and the related variations of J along the membrane.

Minimization of the bending energy, which changes in this

case in the second order of J, confirmed that the shape of the

lowest bending energy is that of constant J.
Although the midplane of the bilayer described by

a Delaunay surface has a constant curvature, J, its Gaussian
curvature, K, changes from positive values, K [ 0, in the

bulges to negative values, K \ 0, in the constriction sites.

This results in variation along the membrane surface of the

total curvatures of the two monolayers, Jout and Jin, which
differ from the midplane curvature J (Appendix A). In the

constriction sites they become more negative than in the

bulge, which stimulates repartitioning of the DAG molecules

into the constriction sites.

It has to be emphasized that consideration of the shapes

of membrane tubules belonging to the Delaunay family of

surfaces requires accounting for the energy contributions up

to the fourth order in the principal curvatures. Indeed, it can

be readily seen that, due to constancy of J, all lower order
energy contributions either remain constant or their integrals

vanish according to Gauss-Bonnett theorem.

Partitioning of DAG

Finding the optimal distribution of DAG in the two

monolayers, subject to the constraint of Eq. 3, has to be

performed numerically. However, it is instructive to consider

first a simplified case where the DAG mole fractions in the

two monolayers are set equal, fin ¼ fout ¼ f. For

a cylindrical shape, DAG is distributed homogeneously over

the membrane monolayers, f ¼ ftot. Development of

constrictions is accompanied by the emergence of the

Gaussian curvature, K, of the tubular surface. The analytical
solution can be found for expansion of f in orders of K
assuming that the total DAGmole fraction is small, ftot� 1.

The details of the computation are presented in Appendix C.

The resulting distribution of DAG accounting for the

contributions up to the second order in K is

f¼ ftot� 2ftot

k

kBT
aD1d

� �2

hK2i12ftot

k

kBT
aDzK

12ftot

k

kBT
aDz

k

kBT
aDzd

2� d
3

� �
K

2
;

(11)

where hK2i is the surface average of the Gaussian curvature

squared. According to Eq. 11 the DAG molecules, whose

spontaneous curvature is more negative than that of the
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background, D1 \ 0, are concentrated in the constrictions

where K\ 0, as illustrated in Fig. 2.

Numerical computations have been performed to analyze

a general case where DAG redistribution between the two

monolayers is unrestricted. The results are illustrated in Fig.

2. It is seen from this figure that the mean mole fraction in the

inner monolayer is approximately twice that of the outer

one. This numerically obtained repartitioning of the DAG

molecules between monolayers is found to be practically the

same for all members of the Delaunay family of surfaces of

the same J, from the initial flat cylinder to the highly

constricted shapes.

As a result of the molecular rearrangement within each

monolayer, the DAG level in the constriction sites is ;30–

50% (depending on the monolayer) higher than the constant

absolute value of the mole fraction in the initial cylinder,

although throughout the remainder of the shape the mole

fraction is very close to the initial constant value (Fig. 2). The

latter is because the area of the constriction sites is small

compared to the overall surface area so that even when the

high DAG mole fraction at those parts is taken into account,

the number of DAG molecules there remains small and has

little effect on the mole fraction elsewhere in the membrane.

Criterion for pearling

The total energy of the tubule, Ftot, is obtained by integration

of Eq. 7 over the membrane area while accounting for Eq.

11. In general, for the self-consistency of the elastic model,

a term proportional to the Gaussian curvature and several

terms of higher order in the curvatures have to be added to

Eq. 3, as presented in the Appendix B. However, because of

the constancy of the total curvature J of the shapes we

consider, and due to the Gauss-Bonnet theorem (see Helf-

FIGURE 2 The optimal distribution of the

DAG mole fraction along the length of the

membrane tubule. (a) The numeric results for (1)

the inner monolayer, (2) the outer monolayer, (3)

initial even distribution in the inner monolayer,

and (4) initial even distribution in the outer

monolayer. (b) The outline of the Delaunay

surface and the schematic illustration of DAG

repartitioning. Note that this illustration describes

the excess DAG in the constricted region.
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rich, 1990), all these terms do not contribute to the energy of

the tubule constriction. For the case of symmetric trans-

monolayer distribution of DAG we obtain for the energy

Ftot ¼BhK2iAtot; (12)

where Atot is the total area of the tube, and

B¼ 4kd
2

1� k

kBT
ðDzÞ2aftot1

��kk�kk

2d
2
k

� �
: (13)

The parameter characterizing the membrane shape and

distinguishing between different members of the Delaunay

family of surfaces is the average of the Gaussian curvature

squared hK2i. For a cylinder the Gaussian curvature

vanishes, hK2i ¼ 0. The tighter the constrictions of

a Delaunay surface are, the larger is hK2i.
The energetically preferable shape of the tubule is

determined by the sign of the coefficient B (Eq. 13), which

depends on the total mole fraction of DAG, ftot. If B[0, the

growth of hK2i results in an increase of Ftot. In this case, to

have a minimal energy, the system keeps the cylindrical

shape with vanishing Gaussian curvature, K ¼ 0, and,

according to Eq. 11, the DAG molecules are distributed

homogeneously along the membrane surface.

In the opposite case where B\ 0, the emerging Gaussian

curvature, hK2i[0, results in decrease of the energy, Ftot\
0. This means that the tubule deviates from the cylindrical

shape and undergoes pearling. This is accompanied by

repartitioning of the DAG molecules into the constrictions of

the pearled tubule (Eq. 11 and Fig. 2).

Pearling starts when the DAG mole fraction ftot exceeds

a critical value,

ftot[f
�
tot: (14)

Based on Eq. 13, this critical value is

f
�
tot ¼

kBT

kaðD1Þ2 3 11
��kk�kk

2kd
2

� �
: (15)

Note that Eq. 15 is meaningful only for the parameter range

where ftot* adopts positive values. Based on Eqs. 12 and 13,

if the values of the parameters result, formally, according to

Eq. 15, in zero or negative values of ftot* , the cylindrical

shape is predicted to be unstable intrinsically, i.e., to undergo

pearling also in a case of homogeneous membrane.

All parameters determining the critical DAG mole fraction

(Eq. 15) are known from the experiments, except for the

quadratic Gaussian modulus ��kk�kk. For the latter we have only an
order-of-magnitude theoretical estimation (Goetz and Hel-

frich, 1996; and Appendix B). However, we can fit the value

of ��kk�kk to the experimental value of ftot* . According to the

assumption of our model, DAG results from dephosphory-

lation of PA. Therefore, the critical DAG mole fraction,

f*tot, must have a value similar to the experimentally found

PA mole fraction of ;0.25% needed to trigger constriction

and pearling of the Golgi tubules (Weigert et al., 1999).

Inserting 1 ¼ �ð1=1:1 nmÞ, a ¼ 0.6 nm2, d ¼ 1.2 nm, and k
¼ 43 10�20 J into Eq. 15, we find that ftot* ¼ 0.0025 if ��kk�kk ¼
�1.12 3 10�37 J 3 m2. This value is very close to the

previous estimation, ��kk�kk � �10�37 J 3 m2 (Goetz and

Helfrich 1996), meaning that the model is able to explain

triggering of the pearling of the Golgi tubules by the

experimentally predicted mole fractions of DAG.

To determine the critical DAG concentration, ftot* , for an

unrestricted DAG redistribution between the monolayers and

for arbitrary values of ftot, we have performed numeric

analysis, the results of which are illustrated in Fig. 3. The

numeric and analytical results for the dependence of the

coefficient B on the total DAG mole fraction, ftot, nearly

coincide in the range of ftot � 1. The obtained numeric

results for ftot* , which correspond to B(ftot)¼ 0, as indicated

in Fig. 3 b, are very close to those given by Eq. 15 for small

ftot.

Numerical calculations further show that even when the

newly formed DAG molecules are constrained to remain in

the outer monolayer, the system may still develop con-

strictions driven by the lateral partitioning of DAG. The

critical DAG concentration required for the onset of pearling

in this case is naturally higher than that in the case of the free

trans-monolayer distribution (Table 1).

According to Eqs. 12–13, once the DAG mole fraction is

larger than the critical value of Eq. 15, the pearling starts and

progresses without limit. Indeed, the larger the parameter

hK2i, the more negative is the energy Ftot. This means that

the constrictions tend to become as narrow as possible,

eventually leading to a shape similar to a row of spheres with

infinitesimal membrane connections between them. In

reality, this unlimited thinning of the constrictions may be

arrested at some stage by the contributions to the energy of

higher order than the Gaussian curvature squared, K2.

Analysis of these effects is out of scope of the present work.

DISCUSSION

We present a mechanism by which DAG molecules resulting

from LPA acylation to PA and subsequent dephosphoryla-

tion induce pearling of a Golgi tubule, which is a de-

velopment of periodic constrictions and bulges in the

initially cylindrical shape. Within a constriction site the

membrane has the shape of a narrow neck, identical to that

expected to form in vivo at an intermediate stage of transport

carrier formation. Fission of such a neck results in carrier

detachment. We suggest that this mechanism underlies the

generation of the large pleiomorphic carriers that mediate

transport from the Golgi complex to the plasma membrane.

The force driving neck formation is generated as a

consequence of local lipid metabolism. It is an elastic force,

which results from transformation of LPA molecules char-

acterized by a positive spontaneous curvature into DAG

molecules which have a strongly negative spontaneous cur-

vature. The newly formedDAG redistributes between the two
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membrane monolayers and tends to partition into the emerg-

ing membrane necks, thus enhancing formation of the latter.

We show that pearling has a phase-transition character.

It occurs abruptly when the total mole fraction of the LPA

molecules converted into DAG exceeds a critical value, ftot* ,

estimated to be a couple of tenths of mole percent of total

lipid.

Assumptions and limitations of the model

We want to emphasize that the major quantitative result of

the model, the critical mole fraction of the newly synthesized

phospholipid necessary to trigger pearling, ftot* , is very

sensitive to the value of the quadratic Gaussian modulus, ��kk�kk.
At the same time, this modulus has never been measured and

its value can be only roughly estimated based on the

intermembrane stress profile (see Goetz and Helfrich, 1996,

and Appendix B). Changes of ��kk�kk, which may be related to

variations of lipid compositions between membrane tubules

or even along the same tubule, can change considerably the

critical molar ratio ftot* resulting in pearling. Furthermore,

according to Eq. 15, the numerical results for ftot* also

depend explicitly on the background spontaneous curvature,

10, which can only be estimated. Furthermore, the back-

ground lipids do not all have the same spontaneous curvature

and can undergo repartitioning, which is, de facto, in-

sufficient to drive pearling, but can contribute to the effect of

the newly synthesized DAG. Based on all these limitations,

the results of our model have a qualitative rather than

quantitative character, and although providing a physical

mechanism of the pearling phenomenon, they cannot give an

FIGURE 3 A plot of the coefficient B (13) determining the

pearling onset as a function of DAG mole fraction. (a)
Numerically computed value for B for the case of free

redistribution of DAG between the monolayers (solid line)

and analytically derived B for assumed equal partitioning of

DAG between the monolayers (dashed line). (b) The same plot,

centered and magnified around the critical point where B

changes sign. The critical concentration beyond which the flat

cylinder loses stability and undergoes pearling (B \ 0) is

indicated by an asterisk.
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exact prediction of the critical mole fraction ftot* . Due to the

uncertainty in the values of ��kk�kk and z0, we expect that Golgi

tubule constriction in vivo may occur at higher or even lower

mole fractions of DAG than that estimated in the present

study.

Our model implies that the newly synthesized molecules

are evenly distributed over the tubular membrane, and that

the mechanical properties of the tubule, such as the elastic

moduli of its membrane and deformability of its lumen, are

homogeneous. However, a Golgi tubule in vivo is certainly

inhomogeneous in terms of both its lipid composition and

elastic properties. The metabolic reactions produce, most

probably, locally elevated concentrations of the correspond-

ing lipids; the tubular lumen may be partially filled by

proteins limiting the ability of the tubule to undergo

constriction; and finally, the membrane elastic moduli can

change along the membrane being influenced by proteins

bound to the membrane surface. In such a realistic case, the

results of the model can be applied locally to a limited region

of the tubule where DAG is synthesized and the lumen

properties allow for membrane deformation into a neck.

Accordingly, formation of just one or a few constrictions

rather than pearling of the whole tubule would be expected if

the local concentration of DAG reaches the critical DAG

mole fraction ftot* .

Is the LPA-DAG a unique metabolic reaction
resulting in pearling?

We have discussed a specific case of membrane pearling,

which results from LPA ! PA ! DAG transformation

catalyzed by CtBP/BARS and a PA-phosphatase. However,

the model and the resulting criteria, Eqs. 14 and 15, can be

generalized and account for membrane neck formation

driven by any metabolic lipid transformation. The major

parameter determining the ability of a specific lipid con-

version reaction to induce membrane neck formation is

the difference D1 between the spontaneous curvature of the

newly formed lipid, 1, and the background spontaneous

curvature, 10.
The value of 10 can be estimated based on the average

lipid composition of the Golgi complex (van Meer 1998) and

data available on the spontaneous curvatures of individual

lipids (Chen and Rand, 1997; Leikin et al., 1996; Szule et al.,

2002, and references therein). The major lipid components of

the Golgi complex are phosphatidylcholines (PC) and

phosphatidylethanolamines (PE). The spontaneous curvature

of unsaturated PC such as dioleoyl-phosphatidylcholine

(DOPC) is close to 1DOPC � �0.1 nm�1, whereas 1 of

saturated PCs is less negative (Sjolund et al., 1987). The

spontaneous curvature of unsaturated PE such as dioleoyl-

phosphatidylethanolamine (DOPE) is 1DOPE � �0.3 nm�1

(Kozlov et al., 1994; Rand and Fuller, 1994). The

spontaneous curvature of the saturated PEs has so far not

been measured, but is expected to have values more negative

than those of PCs due to a smaller size of the hydrated

headgroup (Rand and Parsegian, 1989). For estimations

we assume the background spontaneous curvature to be 10 ¼
�0.1 nm�1.

The molar fraction of the newly synthesized lipid, ftot* ,

necessary to induce pearling is inversely proportional to

(D1)2 (see Eq. 15). This means that the larger the deviation

of the spontaneous curvature 1 of the newly synthesized lipid
from the background value 10, the more effective this lipid is

in inducing pearling.

Another consequence of this relationship is that not only

lipids such as DAG, whose spontaneous curvature is more

negative, D1\ 0, but also lipids with 1 more positive than

the background value, D1[ 0, may induce neck formation.

An example of the latter reaction may be de-acylation of

lipids into lysolipids such as lysophosphatidylcholine (LPC)

characterized by a positive spontaneous curvature of 1LPC �
0.26 nm�1 (oleoyl-LPC); see Fuller and Rand (2001). The

difference is, however, that the newly formed molecules with

D1\ 0 concentrate in the neck region where the Gaussian

curvature is negative, K\ 0, whereas molecules with D1[
0 tend to repartition into the bulges with K[ 0.

The relationship between ftot* and D1 can be expressed in

the form of a phase diagram computed according to Eq. 15

and shown in Fig. 4 for k ¼ 4.14 3 10�20 J, a ¼ 0.6 nm2,

d ¼ 1.2 nm, and ��kk�kk ¼ �1.18 3 10�37 J3 m2. For reasons of

clarity, we present it in terms of Rc ¼ 1=jD1j, where jD1j is
the absolute value of the difference in the spontaneous

curvatures. The bell-shaped line in the (ftot* , Rc)-plane,

called the phase boundary, separates ranges of the param-

eters that result in a smooth cylindrical shape (outside the

‘‘bell’’ ), from those that result in the pearled (inside the

‘‘bell’’) shapes. The dotted line (a) in Fig. 4 clearly illustrates
that if the product of a metabolic reaction results in a lipid

whose spontaneous curvature is not sufficiently different

from the background level jD1j\ð1=10:4 nmÞ (jRcj$
10:4 nm), such a reaction cannot induce pearling, not even

at a very high mole fraction of the synthesized lipid.

The bell shape of the phase boundary defines two values

of ftot* corresponding to the large and small mole fraction of

the newly formed lipid at which pearling occurs. Physio-

TABLE 1 The minimal mole fraction required to produce

pearling for various lipids

Lipid

Mol % for free

trans-bilayer

distribution

Mol % for

distribution within

outer monolayer

DOG 1DOG ¼ �0.91 nm�1 0.25% 0.65%

DOPE (and DOPA assuming

the same spontaneous

curvature) 1DOPE ¼ �0.35 nm�1

2.9% 7.3%

LPC 1LPC ¼ 0.26 nm�1 1.5% 3.4%

LPA 1LPA ¼ 0.45 nm�1 0.65% 1.4%

DOPC and all lipids with

�0.18 nm�1\ 1\�0.01 nm�1

No pearling No pearling
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logically, the larger values are practically unreachable, and

therefore the following discussion is focused on the lower

values of ftot* .

The critical mole fractions, ftot* , for several lipids, based

on the assumption that the background spontaneous cur-

vature is 10 ¼ �0.1 nm�1, are presented in Table 1, which

also includes the predictions of the model for the case where

the synthesized lipid remains in the outer monolayer of the

Golgi tubule (i.e., does not undergo transbilayer move-

ment). It can be seen that only DAG, whose spontaneous

curvature deviates most from the background value, can in-

duce pearling at feasible mole fractions. The ftot* for other

lipids are larger than those expected in cell membranes under

physiological conditions. Specifically, assuming that the

spontaneous curvature of PA is close to that of DOPE

(Kooijman et al., 2003), its membrane mole fraction neces-

sary for pearling to occur has to reach f�PA
tot � 3%, which is

[103 higher than the average PA amount in isolated Golgi

membranes incubated with CtBP/BARS and acylCoA

(Weigert et al., 1999). In addition, although the transbilayer

movement of PA has not been studied in Golgi membranes,

it is likely to be slower than that of DAG. If the newly

synthesized PA remains in the outer monolayer its mole

fraction necessary for pearling is predicted to be as high as

f�PA
tot � 9%. This result confirms our assumption that lipid-

induced pearling requires conversion of PA into DAG.

Sources and roles for DAG in the Golgi complex:
a blue-collar worker?

The conclusion that DAG is the most probable lipid

candidate for driving neck formation in a Golgi tubule is

supported by the general phenomenology collected on this

lipid in studies of the Golgi complex.

DAG is constitutively synthesized in the Golgi complex.

Formation of PA from LPA through CtBP/BARS is only one

of the possible metabolic routes leading to DAG. Another

source of PA in the Golgi is the removal of the headgroup

from glycerolipids, especially PC, by PLD (Exton, 2002);

PA can then be converted very quickly to DAG by PA

phosphatases (Nanjundan and Possmayer, 2003). Further-

more, a potentially efficient DAG generating machinery

independent of PA is the enzyme sphingomyelin synthase,

which transfers the headgroup of PC to ceramide, producing

sphingomyelin and DAG in the lumenal leaflet of the Golgi

(Fang et al., 1998). This is probably the main DAG synthetic

route in yeast (Fang et al., 1998). Finally, DAG can be

generated by PLC acting on PIs, which can be synthesized,

and are abundant, in the Golgi (De Matteis et al., 2002).

DAG can also be consumed by metabolic activities present

in the Golgi. The important ones are the CDP choline

pathway which uses DAG to make PC in yeast (Fang et al.,

1998) and the PC-synthase pathway in mammalian cells

(Henneberry et al., 2002). In addition, DAG can be very

rapidly converted into PA by DAG kinases (Nanjundan and

Possmayer, 2003), of which there are numerous isoforms in

mammalian cells; or it can be deacylated by DAG lipases

(Brindley et al., 2002). Thus, although the Golgi DAG levels

resulting from this complex metabolic network are difficult

to predict, there is little doubt that local DAG synthesis may

result in DAG concentrations predicted to induce tubule

narrowing and pearling (this article).

Not only is DAG present in the Golgi, but it is also

required for protein transport from the trans-Golgi network

to the plasma membrane, both in yeast, as indicated by

extensive genetic analysis (Kearns et al., 1997), and in

mammalian cells, as shown more recently by biochemical

experiments (Baron and Malhotra, 2002). The possible

FIGURE 4 Phase diagram of the tubules. The y axis

represents the mole fraction of the nonbilayer lipid and the

x axis represents Rc ¼ 1=jD1j, where Dz is the difference

between the spontaneous curvature of this lipid and that of

the background. Region I corresponds to the smooth

cylindrical shape. Region II corresponds to the pearled

shape. The numerically computed phase boundary is

indicated by the solid line. The vertical lines represent (a)
a lipid unable to induce pearling, and (b) a lipid capable of

pearling the tubule.
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models of DAG action have been recently reviewed

(Huijbregts et al., 2000; Kearns et al., 1998). There are two

main non-exclusive possibilities. One, so far favored in the

literature, is based on the signaling function of DAG. Indeed,

DAG has been shown to bind and recruit to the trans-Golgi

network protein kinase D (Baron andMalhotra, 2002), which

regulates the fission of the transport carriers destined to the

plasma membrane (Liljedahl et al., 2001; Van Lint et al.,

2002), and the recruitment and activation of ARF-GAP1, an

important regulator of vesicle formation and fission (Yang

et al., 2002). These experiments also indicate that the likely

execution point of DAG in the formation of carriers is tubule

fission. Finally, a signaling role of DAG is suggested by

genetic evidence in yeast (Yanagisawa et al., 2002).

The alternative model suggests that DAG molecules,

having a small and electrically neutral polar head, can

redistribute into the internal membrane monolayer and

modify the physical properties of membrane, stimulating in

this way membrane budding (Kearns et al., 1998). In this

case, the DAG molecules do not serve as messengers but

rather as ‘‘blue-collar workers,’’ directly carrying out the

mechanical work. The model we present belongs to the latter

kind of mechanisms and suggests a specific mode of DAG-

mediated membrane shaping.

Alternative models for pearling

Besides the suggested model, two more conventional

mechanisms of pearling need to be discussed briefly.

An external pulling force applied to the tubule and

producing tension in its membrane may result in pearling

(Bar-Ziv and Moses, 1994; Markin et al., 1999). However,

there is no source for such a pulling force in the Golgi in

vitro. Indeed, the tubules, as seen in the images of Weigert

et al. (1999), are not stretched and, consequently, cannot be

under tension. Moreover, in contrast to the Golgi tubules

(Fig. 1), the experimentally observed shapes resulting from

the tension-induced pearling differ considerably from the

Delaunay surfaces (Goldstein et al., 1996) providing

additional evidence that pearling of the Golgi tubules is

not driven by membrane tension.

Another possible mechanism is based on the bilayer-

couple effects or increase of the overall bilayer spontaneous

curvature at a constant volume-to-area ratio of the tubule

(Tsafrir et al., 2001). Pearling may be driven by an increase

in the monolayer area difference, DA, resulting from

acylation of the LPA molecules in the outer monolayer of

the tubule and the related increase of their molecular area.

This mechanism requires that the internal volume of the

tubule does not change. This condition, most probably, does

not hold because the tubules are connected to the Golgi

cisternae. Nevertheless, let us estimate the change in DA
necessary to produce the degree of pearling observed ex-

perimentally. To do so we consider a flat cylinder as the

initial state and a row of connected spheres as the final state

of the membrane. Assuming that both the membrane area

and the enclosed volume are conserved we relate the cylinder

radius, Rcyl, and the sphere radius, Rsphere, by

Rsphere ¼ 3=2Rcyl; (18)

which is equivalent to the relationship between the

curvatures

Jsphere ¼ 4

3
Jcyl: (19)

Inserting Eq. 19 in Eq. 2, and accounting for our more

stringent requirement that the curvature remains locally

constant, Jmid ¼ const, we obtain that the difference of

the monolayer areas in the spheres is related to that in the

cylinder by DAsphere � 1.3 3 DAcyl. Hence, pearling of

the tubule driven by the bilayer-couple effect requires an

increase of the monolayer area difference of ;30%. How

large should the mole fraction of LPA converted to PA be, to

provide such increase in DA? The molecular area of PA

should be ;45% larger than that of LPA (Demel et al.,

1992). We then obtain that LPA has to constitute 90% of

the lipids of the initial membrane. This is much larger than

the mole fraction of LPA in the Golgi membranes, which

typically does not exceed 0.6% (Weigert et al., 1999). Hence,

the bilayer-couple mechanism cannot explain pearling of

Golgi tubules induced by CtBP/BARS.

PHYSIOLOGICAL SIGNIFICANCE
AND CONCLUSIONS

Formation of transport carriers involves membrane budding

and subsequent fission of the membrane neck connecting the

forming carrier with the initial membrane. A necessary step

in this process is narrowing of the neck connecting the bud

with the initial membrane. Our model describes a lipid-

driven mechanism for this process taking, as a paradigm, the

pearling of Golgi tubules induced by the combined action of

CtBP/BARS generating PA, and a PA-phosphatase, con-

verting the PA into DAG.

Is the DAG-based mechanism of tubule pearling described

here a valid model for in vivo transformations of Golgi

tubules? Tubule constrictions are technically difficult to

observe in thin sections of cells prepared for EM but, when

suitable techniques (e.g., electron tomography and scanning

EM) have been employed, they have been seen (Lindsey and

Ellisman, 1985). DAG, as noted, is both present in the Golgi

and needed for carrier fission in vivo (Baron and Malhotra,

2002). Thus, together, these observations indicate that the

formation of constrictions regularly distributed along Golgi

tubules as observed in cells may well be mediated by a local

rise in DAG level.

Finally, what is the relationship between the membrane

neck formation we describe and the next step, fission of

the membrane neck (Kozlovsky and Kozlov, 2003)? Do the

DAG molecules also promote, in addition to pearling,
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severing of the membrane necks, or, alternatively, are further

lipid transformations or an involvement of proteins such

as PKD (Baron and Malhotra, 2002) necessary to complete

fission and carrier formation? These questions cannot be

answered by the present model and motivate future studies.

APPENDIX A

Geometrical description of membranes

Membrane curvature and spontaneous curvature

Generally, surface geometry is determined at each point by two principal

curvatures, c1 and c2 (Fig. A1). For description of membranes (Helfrich,

1973), one uses the combinations, J¼ c11 c2, called the total curvature, and

K¼ c13 c2, referred to as the Gaussian curvature, the two having a profound

geometrical meaning (Spivak, 1970).

It is convenient to depict the geometry of a lipid membrane by the shape of

a special plane lying inside themonolayer parallel to the lipid-water interface.

The bilayer shape is attributed to its midplane (Fig. A2 a). A lipid monolayer

is commonly described by a special plane referred to as the neutral surface,

which greatly simplifies the description of the membrane elasticity (Kozlov

and Winterhalter, 1991). It has been shown for a number of lipids that the

neutral surface of the lipid monolayers lies parallel to the lipid water interface

underneath the polar heads, approximately at the level of the glycerol

backbones (Fig. A2 a; see also Fuller and Rand, 2001). There are convincing

reasons to assume that the same position of the neutral surface characterizes

all phospholipids and, hence, those constituting the Golgi tubules.

Conventionally, the curvature of a monolayer is defined as positive, J[0,

if the monolayer bulges in the direction of the polar heads, and negative, J\
0, for the opposite direction of bending. Positive curvature of a closed bilayer

of a cell or vesicle corresponds to its bending toward the outer medium.

According to this definition, the sign of the outer monolayer curvature is the

same as that of the bilayer, whereas the inner monolayer has a curvature of

opposite sign because of the opposite orientation of the lipid molecules.

If the monolayer is formed by spontaneously self-assembling lipid

molecules and is not subject to external forces, it adopts a shape described by

the spontaneous curvature, Js. The spontaneous curvature of a monolayer

consisting of an individual lipid is attributed to this lipid.

The lipids which self-assemble into the monolayers with negative

spontaneous curvature, Js \ 0, have an effective conical molecular shape

(Fig. A2 d); the lipids forming flat monolayers, Js ¼ 0, are nearly cylindrical

(Fig. A2 b) and, finally, the lipids forming monolayers of positive

spontaneous curvature, Js[ 0, have an effective shape of an inverted cone

(Fig. A2 c).

Assuming that the distances between the membrane midsurface and the

neutral surfaces of the two monolayers are equal and constant, din¼ dout¼ d,

the total and Gaussian curvatures of the two monolayers are related to those

of the midsurface by

Jout ¼ Jmid12Kmidd

11Jmidd1Kmidd
2 ; (A1)

Jin ¼� Jmid�2Kmidd

1� Jmidd1Kmidd
2 ; (A2)

Kout ¼ Kmid

11Jmidd1Kmidd
2 ; (A3)

Kin ¼ Kmid

1� Jmidd1Kmidd
2 : (A5)

The area element, dA, of the outer and inner monolayers are given by

dAout ¼ ð11Jmidd1Kmidd
2ÞdAmid; (A6)

dAin ¼ ð1� Jmidd1Kmidd
2ÞdAmid: (A7)

APPENDIX B

Elastic energy

The elastic energy of bending per unit area of the monolayer surface, fB, is

commonly presented as an expansion in the principal curvatures, which are

small compared to the inverse monolayer thickness, jc1 3 dj � 1,

jc2 3 dj � 1. For the purpose of the current analysis, we need the

contributions up to the fourth order

fB ¼ fB11 fB21 fB31 fB4: (B1)
FIGURE A1 An illustration of an area element with the principal

curvatures c1 and c2 indicated.

FIGURE A2 An illustration of a lipid bilayer structure and individual

lipid shapes. (a) A representation of a bilayer midsurface and the neutral

surfaces of its constituting monolayers. (b–d) The effective shapes of lipids
with zero, positive, and negative spontaneous curvature, respectively.
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The sum of the first and the second order energies represents the Helfrich

model (Helfrich, 1973) as

fB11 fB2 ¼ 1

2
kðJ� JsÞ21�kkK; (B2)

where k is the bending modulus and �kk is the Gaussian modulus of the

monolayer. The third and the fourth order energies for the case of constant

curvatures are given by Mitov (1978) as

fB3 ¼ h1J
31h2JK; (B3)

fB4 ¼h3J
41h4J

2
K1��kk�kkK

2
: (B4)

The coefficients in Eqs. B3 and B4 have no special names and only one of

them, ��kk�kk, which is important for the present study, will be referred to as the

quadratic Gaussian modulus. The value of this coefficient can be estimated

based on the model of lateral stress distribution across the monolayer

thickness as proposed in Goetz and Helfrich (1996).

We subdivide the monolayer into infinitesimally thin elementary layers,

whose positions are determined by the coordinate z across the monolayer

thickness. In the course of the monolayer bending each elementary layer

changes its area A(z), and accumulates the stretching energy:

FðzÞ ¼DAðzÞsðzÞdz; (B5)

where DA(z) is the increase in area of the elementary layer, dz its thickness

and s(z) the lateral stress acting on it. To find the total energy of the

monolayer this expression must be integrated over the monolayer thickness.

The result of this integration greatly depends on the value of the lateral stress

s(z) at each point z along the thickness and the curvature of the midsurface.

This results in ��kk�kk ¼ �mg0d
4 where g0 � 50 mN/m is the surface tension of

the oil-water interface, d � 1.2 nm is the thickness of the hydrocarbon chain

layer, and m is a positive coefficient, which is close to 0.5, and whose exact

value depends on the specific assumptions about the stress profile.

APPENDIX C

DAG distribution: details of derivations

The derivation of the optimal DAG distribution was done both analytically

and numerically. We have considered the membrane shapes exhibiting small

deviations from the flat cylinder, while still remaining in the Delaunay

family of the same total curvature J. The related deviation of the DAG mole

faction f from the constant value f0 was presented as an expansion in the

Gaussian curvature, K, for the outer and inner monolayers, respectively, by

fin ¼f
in

0 1ainK1binK
2
;

fout ¼f
out

0 1aoutK1boutK
2
: (C1)

where f0, a, and b, have to be found from the energy minimization.

The starting point of the calculation is the energy density of the two

monolayers as expressed in the geometrical terms of the bilayer midsurface

(Eq. 7), subject to the constraint of keeping the total number of DAG lipids

constant (Eq. 2).

As a first step we find the optimal DAG distributions for a flat cylinder,

which are obviously constant, fin ¼ f0
in ¼ const, fout ¼ f0

out ¼ const. The
constraint on the total number of DAGs in this case assumes the form

ð11JdÞfout

0 1ð1� JdÞfin

0 ¼ 2ftot: (C2)

Minimization of the free energy with respect to f0
in and f0

out results in the

Euler-Lagrange equations

1

2
k½2z2fout

0 ð11JdÞ�2zJ�

1
kBT

a
½lnðfout

0 Þ� lnð1�f
out

0 Þ�ð11JdÞ1l0ð11JdÞ ¼ 0;

1

2
k½2z2fin

0 ð1� JdÞ12zJ�

1
kBT

a
½lnðfin

0 Þ� lnð1�f
in

0 Þ�ð1� JdÞ1l0ð1� JdÞ ¼ 0; (C3)

where g0 is the Lagrange multiplier that arises from the zero-order

constraint.

To make the expressions in Eq. C3 solvable for f0
in andf0

out, we assume

that the mole fraction of DAG lipids is small, as is suggested by

experimental evidence, ftot � 1, and that the difference between the mean

distribution in the inner and outer monolayers is small, Df¼ f0
in� f0

out�
1. Under this simplification the zero order distributions are

f
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Although the assumption of small DAG mole fraction remains valid

throughout the rest of the derivation, numerical solutions of Eq. C3 indicate

that the difference between the mean levels of DAG mole fractions need not

be a small value.

In the same manner as before, the first-order constraint isð
½ð11JdÞaout1ð1� JdÞain�K3dA¼ 0; (C5)

and the first-order equations are

where l1 is the Lagrange multiplier that results from the constraint of the first

order.

Solving the expressions in Eq. C6, we obtain the first-order corrections to

even distributions of the DAGs:
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aout ¼ d

ðkBTÞ2
akzð2kBT�3kBTJd12JakzÞftot: (C7)

with l1 ¼ 0. Continuing, as above, to the next order of perturbation which is

quadratic in K, we get the constraintð
½ð11JdÞbout1d

2
aout1ð1� JdÞbin

1d
2
ain�K2

dA¼ 0; (C8)

and the Euler-Lagrange equations of the energy densities,

The solution of this final set gives
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The second terms in both parts of Eq. C10 are proportional to the average over

area of the square of the Gaussian curvature, divided by the Gaussian

curvature squared. Since the parameters b are multiplied by K2, these terms

correspond to the second order additions to the constant density distributions.

The coefficients given by Eqs. C4, C7, and C10 are inserted into Eq. C1,

then the resulting mole fraction distributions of DAG are inserted into the

energy expression, Eq. 8, to obtain the minimal energy of the system. Due to

the algebraic complexity of these equations, this step has been done only for

the simplified case, where the densities in the inner and outer monolayers are

assumed equal. In the resulting expression for the energy density, all the

terms except those multiplied by the Gaussian curvature squared, K2, are

independent of the shape assumed by the bilayer midplane. The shape-

dependent part of the minimal free energy for the symmetrical case is given

by Eqs. 12 and 13.
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