260 research outputs found

    Harmonic polynomials and Dirichlet-type problems

    Full text link

    Facilitating and Improving Environmental Research Data Repository Interoperability

    Get PDF
    Environmental research data repositories provide much needed services for data preservation and data dissemination to diverse communities with domain specific or programmatic data needs and standards. Due to independent development these repositories serve their communities well, but were developed with different technologies, data models and using different ontologies. Hence, the effectiveness and efficiency of these services can be vastly improved if repositories work together adhering to a shared community platform that focuses on the implementation of agreed upon standards and best practices for curation and dissemination of data. Such a community platform drives forward the convergence of technologies and practices that will advance cross-domain interoperability. It will also facilitate contributions from investigators through standardized and streamlined workflows and provide increased visibility for the role of data managers and the curation services provided by data repositories, beyond preservation infrastructure. Ten specific suggestions for such standardizations are outlined without any suggestions for priority or technical implementation. Although the recommendations are for repositories to implement, they have been chosen specifically with the data provider/data curator and synthesis scientist in mind

    Activities of Daily Living

    Get PDF
    Measurement of ability or inability to perform activities of daily living is important to in describing the functional status of a person and then implementing an intervention. Evaluations of ADLs are mainly used in nursing and in rehabilitation of people with disabilities and the elderly. Measuring ability to perform ADLs is crucial for the management of healthcare in aging societies. It is important to understand differences between categories of ADLs and challenges in their evaluation that are connected to the roles of family members

    The Diverse Bacterial Community in Intertidal, Anaerobic Sediments at Sapelo Island, Georgia

    Get PDF
    The phylogenetic diversity and composition of the bacterial community in anaerobic sediments from Sapelo Island, GA, USA were examined using 16S rRNA gene libraries. The diversity of this community was comparable to that of soil, and 1,186 clones formed 817 OTUs at 99% sequence similarity. Chao1 estimators for the total richness were also high, at 3,290 OTUs at 99% sequence similarity. The program RDPquery was developed to assign clones to taxonomic groups based upon comparisons to the RDP database. While most clones could be assigned to describe phyla, fewer than 30% of the clones could be assigned to a described order. Similarly, nearly 25% of the clones were only distantly related (<90% sequence similarity) to other environmental clones, illustrating the unique composition of this community. One quarter of the clones were related to one or more undescribed orders within the γ-Proteobacteria. Other abundant groups included the δ-Proteobacteria, Bacteroidetes, and Cyanobacteria. While these phyla were abundant in other estuarine sediments, the specific members at Sapelo Island appeared to be different from those previously described in other locations, suggesting that great diversity exists between as well as within estuarine intertidal sediments. In spite of the large differences in pore water chemistry with season and depth, differences in the bacterial community were modest over the temporal and spatial scales examined and generally restricted to only certain taxa

    Facilitating and Improving Environmental Research Data Repository Interoperability

    Get PDF
    Environmental research data repositories provide much needed services for data preservation and data dissemination to diverse communities with domain specific or programmatic data needs and standards. Due to independent development these repositories serve their communities well, but were developed with different technologies, data models and using different ontologies. Hence, the effectiveness and efficiency of these services can be vastly improved if repositories work together adhering to a shared community platform that focuses on the implementation of agreed upon standards and best practices for curation and dissemination of data. Such a community platform drives forward the convergence of technologies and practices that will advance cross-domain interoperability. It will also facilitate contributions from investigators through standardized and streamlined workflows and provide increased visibility for the role of data managers and the curation services provided by data repositories, beyond preservation infrastructure. Ten specific suggestions for such standardizations are outlined without any suggestions for priority or technical implementation. Although the recommendations are for repositories to implement, they have been chosen specifically with the data provider/data curator and synthesis scientist in mind

    The Lantern Vol. 44, No. 2, Spring 1978

    Get PDF
    • Ode To the Death of a Patient • The Bloody Brand of Honor • Deserted Trail • The Apple Revisited • Consciousness in Awares • Middle Class • Clock • Snow • The Case • Your Eyes Speak Falsely • Finding a Place • Legacy of Ellis Island • John • Work • A Gift • When She is Gone • Qual. Lamenthttps://digitalcommons.ursinus.edu/lantern/1112/thumbnail.jp

    Building Babies - Chapter 16

    Get PDF
    In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1) Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg

    Fostering self-endorsed motivation to change in patients with an eating disorder: The role of perceived autonomy support and psychological need satisfaction

    Get PDF
    Objective: Although several studies have established the beneficial effects of self-endorsed forms of motivation for lasting therapeutic change, the way patients with an eating disorder can be encouraged to volitionally pursue change has received less attention. On the basis of Self-Determination Theory, this longitudinal study addressed the role of an autonomy-supportive environment and psychological need satisfaction in fostering self-endorsed motivation for change and subsequent weight gain. Method: Female inpatients (n = 84) with mainly anorexia nervosa and bulimia nervosa filled out questionnaires at the onset of, during, and at the end of treatment regarding their perceived autonomy support from parents, staff members, and fellow patients, their psychological need satisfaction, and their reasons for undertaking change. Furthermore, the Body Mass Index (BMI) of the patients at the onset and end of treatment was assessed by the staff. Path analyses were used to investigate the relations between these constructs. Results: At the start of treatment, perceived parental autonomy support related positively to self-endorsed motivation through psychological need satisfaction. Perceived staff and fellow patients autonomy support related to changes in self-endorsed motivation over the course of treatment through fostering change in psychological need satisfaction. Finally, relative increases in self-endorsed motivation related to relative increases in BMI throughout treatment in a subgroup of patients with anorexia nervosa. Discussion: These results point to the importance of an autonomy-supportive context for facilitating self-endorsed motivation

    Ants impact the energy reserves of natural enemies through the shared honeydew exploitation

    Get PDF
    [EN] Ants, as well as many species of parasitoids and predators, rely on sugar-richfoodssuchashoneydewtofulfilltheirenergeticneeds.Thus,antsandnatural enemies may interact through the shared honeydew exploitation. 2.Ant-exclusionexperimentswereperformedinacitrusorchardtotestthehypothesis that ants may impact the energy reserves of predators and parasitoids through the competitionforhoneydew.Throughtheuseofhigh-performanceliquidchromatography (HPLC)thelevelofantactivitywiththeenergyreservesandfeedinghistoryofindividual specimens collected in the field during representative days of spring, summer, and autumn were related. 3. Out of 145 Aphytis chrysomphali Mercet parasitoids captured in the field, 65% were classified as sugar-fed and 24.7% as honeydew-fed. In summer, when ant activity peaked,therewasasignificant negativecorrelationbetweenthelevelofantactivityand the total sugar content and honeydew feeding incidence by A.chrysomphali. Out of 47 individuals of the predator Chrysoperla carnea sensu lato (Stephens), captured in the field, 55.3% were classified as sugar-fed. We found a significant negative effect of the level of ant activity on the sugar-feeding incidence by C.carneain spring. 4.Thepresentstudyprovidesevidencethatantscaninterferewiththeenergyreserves of natural enemies. This interaction may be widespread in various ecosystems with important consequences for the arthropod community composition and with practical implicationsforbiologicalcontrolgiventhatabsenceofsugarfeedingisdetrimentalfor thefitness of many species of predatorsand parasitoidsDr Jerome Casas is greatly acknowledged for valuable comments on earlier versions of the manuscript and Dr Petr Duelli for providing help with the Chrysoperla identifications. We also thank Dr Cristina Navarro Campos and Dr Aleixandre Beltra for their help in the field samplings and for stimulating discussions, Barbara Rodriguez for help in the laboratory analyses and the reviewers for their helpful comments. This work was supported by the project (RTA2010-00012-C02-02) assigned to F. G. M from the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Spain and the project (BIO2013-48779-C4-1-R) from Spanish Ministry of Science and Innovation and COST action CM1303 on Systems Biocatalysis.Calabuig Gomar, A.; Tena Barreda, A.; Wäkers, FL.; Lucia Fernandez-Arrojo; Plou, FJ.; García Mari, F.; Pekas, A. (2015). Ants impact the energy reserves of natural enemies through the shared honeydew exploitation. Ecological Entomology. 40:687-695. https://doi.org/10.1111/een.12237S68769540Avidov, Z., Balshin, M., & Gerson, U. (1970). Studies onAphytis coheni, a parasite of the California red scale,Aonidiella aurantii in Israel. Entomophaga, 15(2), 191-207. doi:10.1007/bf02371871Bartlett, B. R. (1961). The Influence of Ants Upon Parasites, Predators, and Scale Insects1. Annals of the Entomological Society of America, 54(4), 543-551. doi:10.1093/aesa/54.4.543Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance. Science, 312(5772), 431-433. doi:10.1126/science.1123412Blüthgen, N., E. Stork, N., & Fiedler, K. (2004). Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos, 106(2), 344-358. doi:10.1111/j.0030-1299.2004.12687.xCalabuig, A., Garcia-Marí, F., & Pekas, A. (2013). Ants affect the infestation levels but not the parasitism of honeydew and non-honeydew producing pests in citrus. Bulletin of Entomological Research, 104(4), 405-417. doi:10.1017/s0007485313000564Campbell, M. M. (1976). Colonisation of Aphytis melinus DeBach (Hymenoptera, Aphelinidae) in Aonidiella aurantii (Mask.) (Hemiptera, Coccidae) on citrus in South Australia. Bulletin of Entomological Research, 65(4), 659-668. doi:10.1017/s0007485300006350Carroll, C. R., & Janzen, D. H. (1973). Ecology of Foraging by Ants. Annual Review of Ecology and Systematics, 4(1), 231-257. doi:10.1146/annurev.es.04.110173.001311Cerdá, X., Palacios, R., & Retana, J. (2009). Ant Community Structure in Citrus Orchards in the Mediterranean Basin: Impoverishment as a Consequence of Habitat Homogeneity. Environmental Entomology, 38(2), 317-324. doi:10.1603/022.038.0203DUELLI, P. (1980). Adaptive dispersal and appetitive flight in the green lacewing, Chrysopa cornea. Ecological Entomology, 5(3), 213-220. doi:10.1111/j.1365-2311.1980.tb01144.xDuelli, P. (1980). Preovipository migration flights in the green lacewing, Chrysopa carnea (Planipennia, Chrysopidae). Behavioral Ecology and Sociobiology, 7(3), 239-246. doi:10.1007/bf00299370Eubanks, M. D., & Finke, D. L. (2014). Interaction webs in agroecosystems: beyond who eats whom. Current Opinion in Insect Science, 2, 1-6. doi:10.1016/j.cois.2014.06.005Faria, C. A., Wäckers, F. L., & Turlings, T. C. J. (2008). The nutritional value of aphid honeydew for non-aphid parasitoids. Basic and Applied Ecology, 9(3), 286-297. doi:10.1016/j.baae.2007.02.001Finney, G. L. (1948). Culturing Chrysopa californica and Obtaining Eggs for Field Distribution. Journal of Economic Entomology, 41(5), 719-721. doi:10.1093/jee/41.5.719HEIMPEL, G. E., & COLLIER, T. R. (1996). THE EVOLUTION OF HOST-FEEDING BEHAVIOUR IN INSECT PARASITOIDS. Biological Reviews, 71(3), 373-400. doi:10.1111/j.1469-185x.1996.tb01279.xHeimpel, G. E., Rosenheim, J. A., & Mangel, M. (1997). Predation on adult Aphytis parasitoids in the field. Oecologia, 110(3), 346-352. doi:10.1007/s004420050168Heimpel, G. E., Rosenheim, J. A., & Kattari, D. (1997). Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomologia Experimentalis et Applicata, 83(3), 305-315. doi:10.1046/j.1570-7458.1997.00185.xHOGERVORST, P. A. M., WÄCKERS, F. L., & ROMEIS, J. (2007). Detecting nutritional state and food source use in field-collected insects that synthesize honeydew oligosaccharides. Functional Ecology, 21(5), 936-946. doi:10.1111/j.1365-2435.2007.01297.xHölldobler, B., & Wilson, E. O. (1990). The Ants. doi:10.1007/978-3-662-10306-7Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. J. (2002). The Causes and Consequences of Ant Invasions. Annual Review of Ecology and Systematics, 33(1), 181-233. doi:10.1146/annurev.ecolsys.33.010802.150444James, D. G., Stevens, M. M., O’Malley, K. J., & Faulder, R. J. (1999). Ant Foraging Reduces the Abundance of Beneficial and Incidental Arthropods in Citrus Canopies. Biological Control, 14(2), 121-126. doi:10.1006/bcon.1998.0678JERVIS, M. A., & KIDD, N. A. C. (1986). HOST-FEEDING STRATEGIES IN HYMENOPTERAN PARASITOIDS. Biological Reviews, 61(4), 395-434. doi:10.1111/j.1469-185x.1986.tb00660.xJervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T., & Dawah, H. A. (1993). Flower-visiting by hymenopteran parasitoids. Journal of Natural History, 27(1), 67-105. doi:10.1080/00222939300770051Kaplan, I., & Eubanks, M. D. (2005). APHIDS ALTER THE COMMUNITY-WIDE IMPACT OF FIRE ANTS. Ecology, 86(6), 1640-1649. doi:10.1890/04-0016Lach, L. (2007). Argentine ants displace floral arthropods in a biodiversity hotspot. Diversity and Distributions, 14(2), 281-290. doi:10.1111/j.1472-4642.2007.00410.xLaverty, T. M., & Plowright, R. C. (1985). Competition between hummingbirds and bumble bees for nectar in flowers of Impatiens biflora. Oecologia, 66(1), 25-32. doi:10.1007/bf00378548LeVan, K. E., Hung, K.-L. J., McCann, K. R., Ludka, J. T., & Holway, D. A. (2013). Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens. Oecologia, 174(1), 163-171. doi:10.1007/s00442-013-2739-zTeresa Martinez-Ferrer, M., Grafton-Cardwell, E. E., & Shorey, H. H. (2003). Disruption of parasitism of the California red scale (Homoptera: Diaspididae) by three ant species (Hymenoptera: Formicidae). Biological Control, 26(3), 279-286. doi:10.1016/s1049-9644(02)00158-5McEwen, P. K., Clow, S., Jervis, M. A., & Kidd, N. A. C. (1993). Alteration in searching behaviour of adult female green lacewingsChrysoperla carnea (Neur.: Chrysopidae) following contact with honeydew of the black scaleSaissetia oleae (Hom.: Coccidae) and solutions containing acidhydrolysed L-tryptophan. Entomophaga, 38(3), 347-354. doi:10.1007/bf02374452Miller, T. E. (1994). Direct and Indirect Species Interactions in an Early Old-Field Plant Community. The American Naturalist, 143(6), 1007-1025. doi:10.1086/285646Moreno, D. S., Haney, P. B., & Luck, R. F. (1987). Chlorpyrifos and Diazinon as Barriers to Argentine Ant (Hymenoptera: Formicidae) Foraging on Citrus Trees1. Journal of Economic Entomology, 80(1), 208-214. doi:10.1093/jee/80.1.208Ohgushi, T. (2008). Herbivore‐induced indirect interaction webs on terrestrial plants: the importance of non‐trophic, indirect, and facilitative interactions. Entomologia Experimentalis et Applicata, 128(1), 217-229. doi:10.1111/j.1570-7458.2008.00705.xOLSON, D. M., & WÄCKERS, F. L. (2006). Management of field margins to maximize multiple ecological services. Journal of Applied Ecology, 44(1), 13-21. doi:10.1111/j.1365-2664.2006.01241.xPace, M. L., Cole, J. J., Carpenter, S. R., & Kitchell, J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology & Evolution, 14(12), 483-488. doi:10.1016/s0169-5347(99)01723-1Pekas, A., Aguilar, A., Tena, A., & Garcia-Marí, F. (2010). Influence of host size on parasitism by Aphytis chrysomphali and A. melinus (Hymenoptera: Aphelinidae) in Mediterranean populations of California red scale Aonidiella aurantii (Hemiptera: Diaspididae). Biological Control, 55(2), 132-140. doi:10.1016/j.biocontrol.2010.07.010Pekas, A., Tena, A., Aguilar, A., & Garcia-Marí, F. (2010). Effect of Mediterranean Ants (Hymenoptera: Formicidae) on California Red Scale (Hemiptera: Diaspididae) Populations in Citrus Orchards. Environmental Entomology, 39(3), 827-834. doi:10.1603/en09207Pekas, A., Tena, A., Aguilar, A., & Garcia-Marí, F. (2010). Spatio-temporal patterns and interactions with honeydew-producing Hemiptera of ants in a Mediterranean citrus orchard. Agricultural and Forest Entomology, 13(1), 89-97. doi:10.1111/j.1461-9563.2010.00501.xRosen, D., & DeBach, P. (1979). Species of Aphytis of the World. doi:10.1007/978-94-009-9603-8Rosumek, F. B., Silveira, F. A. O., de S. Neves, F., de U. Barbosa, N. P., Diniz, L., Oki, Y., … Cornelissen, T. (2009). Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160(3), 537-549. doi:10.1007/s00442-009-1309-xRudgers, J. A., & Gardener, M. C. (2004). EXTRAFLORAL NECTAR AS A RESOURCE MEDIATING MULTISPECIES INTERACTIONS. Ecology, 85(6), 1495-1502. doi:10.1890/03-0391Sheldon, J. K., & MacLeod, E. G. (1971). Studies on the Biology of the Chrysopidae II. The Feeding Behavior of the Adult of Chrysopa carnea (Neuroptera). Psyche: A Journal of Entomology, 78(2), 107-121. doi:10.1155/1971/505909Stelzl, M., & Devetak, D. (1999). Neuroptera in agricultural ecosystems. Agriculture, Ecosystems & Environment, 74(1-3), 305-321. doi:10.1016/s0167-8809(99)00040-7STEPPUHN, A., & WACKERS, F. L. (2004). HPLC sugar analysis reveals the nutritional state and the feeding history of parasitoids. Functional Ecology, 18(6), 812-819. doi:10.1111/j.0269-8463.2004.00920.xStyrsky, J. D., & Eubanks, M. D. (2006). Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B: Biological Sciences, 274(1607), 151-164. doi:10.1098/rspb.2006.3701Tena, A., Hoddle, C. D., & Hoddle, M. S. (2013). Competition between honeydew producers in an ant–hemipteran interaction may enhance biological control of an invasive pest. Bulletin of Entomological Research, 103(6), 714-723. doi:10.1017/s000748531300045xTena, A., Llácer, E., & Urbaneja, A. (2013). Biological control of a non-honeydew producer mediated by a distinct hierarchy of honeydew quality. Biological Control, 67(2), 117-122. doi:10.1016/j.biocontrol.2013.07.018TENA, A., PEKAS, A., WÄCKERS, F. L., & URBANEJA, A. (2013). Energy reserves of parasitoids depend on honeydew from non-hosts. Ecological Entomology, 38(3), 278-289. doi:10.1111/een.12018Tena, A., Pekas, A., Cano, D., Wäckers, F. L., & Urbaneja, A. (2015). Sugar provisioning maximizes the biocontrol service of parasitoids. Journal of Applied Ecology, 52(3), 795-804. doi:10.1111/1365-2664.12426Völkl, W., Woodring, J., Fischer, M., Lorenz, M. W., & Hoffmann, K. H. (1999). Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia, 118(4), 483-491. doi:10.1007/s004420050751Wackers, F. L. (2000). Do oligosaccharides reduce the suitability of honeydew for predators and parasitoids? A further facet to the function of insect-synthesized honeydew sugars. Oikos, 90(1), 197-201. doi:10.1034/j.1600-0706.2000.900124.xWäckers, F. L. (2001). A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. Journal of Insect Physiology, 47(9), 1077-1084. doi:10.1016/s0022-1910(01)00088-9Wäckers, F. L. (2005). Suitability of (extra-)floral nectar, pollen, and honeydew as insect food sources. Plant-Provided Food for Carnivorous Insects, 17-74. doi:10.1017/cbo9780511542220.003Wäckers, F. L., van Rijn, P. C. J., & Heimpel, G. E. (2008). Honeydew as a food source for natural enemies: Making the best of a bad meal? Biological Control, 45(2), 176-184. doi:10.1016/j.biocontrol.2008.01.007Wade, M. R., Zalucki, M. P., Wratten, S. D., & Robinson, K. A. (2008). Conservation biological control of arthropods using artificial food sprays: Current status and future challenges. Biological Control, 45(2), 185-199. doi:10.1016/j.biocontrol.2007.10.024Way, M. J. (1963). Mutualism Between Ants and Honeydew-Producing Homoptera. Annual Review of Entomology, 8(1), 307-344. doi:10.1146/annurev.en.08.010163.001515Wilder, S. M., Barnum, T. R., Holway, D. A., Suarez, A. V., & Eubanks, M. D. (2012). Introduced fire ants can exclude native ants from critical mutualist-provided resources. Oecologia, 172(1), 197-205. doi:10.1007/s00442-012-2477-7YOO, H. J. S., KIZNER, M. C., & HOLWAY, D. A. (2013). Ecological effects of multi-species, ant-hemipteran mutualisms in citrus. Ecological Entomology, 38(5), 505-514. doi:10.1111/een.12042ZAPPALA, L., CAMPOLO, O., GRANDE, S. B., SARACENO, F., BIONDI, A., SISCARO, G., & PALMERI, V. (2012). Dispersal of Aphytis melinus (Hymenoptera: Aphelinidae) after augmentative releases in citrus orchards. European Journal of Entomology, 109(4), 561-568. doi:10.14411/eje.2012.070Zoebelein, G. (2009). Der Honigtau als Nahrung der Insekten: Teil I. Zeitschrift für Angewandte Entomologie, 38(4), 369-416. doi:10.1111/j.1439-0418.1956.tb01612.
    corecore