108 research outputs found

    Mucolipidosis II presenting as severe neonatal hyperparathyroidism

    Get PDF
    Mucolipidosis II (ML II or I-cell disease ) (OMIM 252500) is an autosomal recessive lysosomal enzyme targeting disorder that usually presents between 6 and 12 months of age with a clinical phenotype resembling Hurler syndrome and a radiological picture of dysostosis multiplex. When ML II is severe enough to be detected in the newborn period, the radiological changes have been described as similar to hyperparathyroidism or rickets. The biological basis of these findings has not been explored and few biochemical measurements have been recorded. We describe three unrelated infants with ML II who had radiological features of intrauterine hyperparathyroidism and biochemical findings consistent with severe secondary neonatal hyperparathyroidism (marked elevation of serum parathyroid hormone and alkaline phosphatase levels). The vitamin D metabolites were not substantially different from normal and repeatedly normal calcium concentrations excluded vitamin D deficiency rickets and neonatal severe hyperparathyroidism secondary to calcium-sensing receptor gene mutations (OMIM 239200). The pathogenesis of severe hyperparathyroidism in the fetus and newborn with ML II is unexplained. We hypothesize that the enzyme targeting defect of ML II interferes with transplacental calcium transport leading to a calcium starved fetus and activation of the parathyroid response to maintain extracellular calcium concentrations within the normal range. Conclusion: Newborns with mucolipidosis II can present with radiological and biochemical signs of hyperparathyroidism. Awareness of this phenomenon may help in avoiding diagnostic pitfalls and establishing a proper diagnosis and therap

    Genetische Beratung: Konzepte, Missverständnisse, Perspektiven

    Full text link
    Genetische Beratung Die Medizinische Genetik hat sich von einem Randgebiet zu einer zentralen klinischen Disziplin in der Medizin entwickelt. Der enorme Wissenszuwachs der letzten Jahre zu Phänotypen und Genotypen, zu Ätiologie und Verlauf seltener und häufiger Krankheiten wirkt sich auf alle Fachbereiche der klinischen Medizin aus. Viele haben jedoch nur eine vage Vorstellung, was eine genetische Beratung beinhaltet. = Génétique Bien que marginale à ses débuts, la médecine génétique s’est développée en une discipline clinique essentielle. L’énorme croissance des connaissances de ces dernières années en ce qui concerne les phénotypes et génotypes ainsi que l’étiologie et l’évolution de maladies rares et fréquentes entraîne des répercussions sur toutes les spécialités de la médecine. Cependant, beaucoup n’ont qu’une vague idée de ce que devrait contenir un conseil génétique

    Evolutionary Comparison Provides Evidence for Pathogenicity of RMRP Mutations

    Get PDF
    Cartilage-hair hypoplasia (CHH) is a pleiotropic disease caused by recessive mutations in the RMRP gene that result in a wide spectrum of manifestations including short stature, sparse hair, metaphyseal dysplasia, anemia, immune deficiency, and increased incidence of cancer. Molecular diagnosis of CHH has implications for management, prognosis, follow-up, and genetic counseling of affected patients and their families. We report 20 novel mutations in 36 patients with CHH and describe the associated phenotypic spectrum. Given the high mutational heterogeneity (62 mutations reported to date), the high frequency of variations in the region (eight single nucleotide polymorphisms in and around RMRP), and the fact that RMRP is not translated into protein, prediction of mutation pathogenicity is difficult. We addressed this issue by a comparative genomic approach and aligned the genomic sequences of RMRP gene in the entire class of mammals. We found that putative pathogenic mutations are located in highly conserved nucleotides, whereas polymorphisms are located in non-conserved positions. We conclude that the abundance of variations in this small gene is remarkable and at odds with its high conservation through species; it is unclear whether these variations are caused by a high local mutation rate, a failure of repair mechanisms, or a relaxed selective pressure. The marked diversity of mutations in RMRP and the low homozygosity rate in our patient population indicate that CHH is more common than previously estimated, but may go unrecognized because of its variable clinical presentation. Thus, RMRP molecular testing may be indicated in individuals with isolated metaphyseal dysplasia, anemia, or immune dysregulation

    Constitutional mismatch repair deficiency–associated brain tumors: report from the European C4CMMRD consortium

    Get PDF
    Abstract Background Malignant brain tumors (BT) are among the cancers most frequently associated with constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer predisposition syndrome resulting from biallelic germline mutations in mismatch repair genes. This study analyzed data from the European "Care for CMMRD" (C4CMMRD) database to describe their clinical characteristics, treatments, and outcome with the aim of improving its diagnosis/treatment. Methods Retrospective analysis of data on patients with CMMRD and malignant BT from the C4CMMRD database up to July 2017. Results Among the 87 registered patients, 49 developed 56 malignant BTs: 50 high-grade gliomas (HGG) (with giant multinucleated cells in 16/21 histologically reviewed tumors) and 6 embryonal tumors. The median age at first BT was 9.2 years [1.1–40.6], with nine patients older than 18. Twenty-seven patients developed multiple malignancies (including16 before the BT). Most patients received standard treatment, and eight patients immunotherapy for relapsed HGG. The 3- and 5-year overall survival (OS) rates were 30% (95% CI: 19–45) and 22% (95% CI: 12–37) after the first BT, with worse prognosis for HGG (3-year OS = 20.5%). Six patients were alive (median follow-up 2.5 years) and 43 dead (38 deaths, 88%, were BT-related). Other CMMRD-specific features were café-au-lait macules (40/41), multiple BTs (5/15), developmental brain anomalies (11/15), and consanguinity (20/38 families). Conclusions Several characteristics could help suspecting CMMRD in pediatric malignant BTs: giant cells on histology, previous malignancies, parental consanguinity, café-au-lait macules, multiple BTs, and developmental brain anomalies. The prognosis of CMMRD-associated BT treated with standard therapies is poor requiring new therapeutic up-front approaches

    Pseudoachondroplasia and Multiple Epiphyseal Dysplasia: A 7-Year Comprehensive Analysis of the Known Disease Genes Identify Novel and Recurrent Mutations and Provides an Accurate Assessment of Their Relative Contribution

    Get PDF
    Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED. Hum Mutat 33:144–157, 2012. © 2011 Wiley Periodicals, Inc

    Cortical-Bone Fragility - Insights from sFRP4 Deficiency in Pyle's Disease

    Get PDF
    BACKGROUND Cortical-bone fragility is a common feature in osteoporosis that is linked to non - vertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS We evaluated four patients with Pyle’s disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger se - quencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS In all affected patients, we found biallelic truncating mutations in SFR P4 , the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4 , like persons with Pyle’s disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treat - ment of Sfrp4- deficient mice with a soluble Bmp2 receptor (RAP-661) or with anti - bodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS Our study showed that Pyle’s disease was caused by a deficiency of sFRP4, that cortical- bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss Na - tional Foundation and the National Institutes of Health.

    Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections.

    Get PDF
    Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386-395

    Stuve-Wiedemann syndrome with a novel mutation

    No full text
    We describe a female infant born at term to consanguineous parents, with a suspicion of skeletal dysplasia in utero. At birth, she had short limbs, camptodactyly, dysphagia leading to nasogastric tube feeds, and skeletal survey demonstrating dysplasia of long bones and spine. During infancy, she also developed episodes of respiratory failure necessitating admission to intensive care, and periods of hyperhidrosis managed at home. A basic genetic screen did not reveal any abnormalities. Contact was made with the European Skeletal Dysplasia Network, and a provisional diagnosis of Stuve-Wiedemann syndrome was suggested based on this review. Specific genetic tests showed a previously unreported homozygous mutation of leukaemia inhibitory factor receptor gene, confirming the diagnosis. This is the first case with a novel mutation, reported from the UK. For paediatricians and neonatologists, the European Skeletal Dysplasia Network is a valuable resource to reach a specific diagnosis

    Severe cleidocranial dysplasia can mimic hypophosphatasia

    No full text
    Cleidocranial dysplasia (OMIM 119600) is a skeletal dysplasia caused by mutations in the bone/cartilage specific osteoblast transcription factor RUNX2 gene. It is characterised by macrocephaly with persistently open sutures, absent or hypoplastic clavicles, dental anomalies, and delayed ossification of the pubic bones. A few patients have been reported with recurrent fractures or osteoporosis but these are not considered features of the disease. We report a patient with classical findings of cleidocranial dysplasia: markedly hypoplastic clavicles, delayed ossification of the pubic rami, multiple pseudoepiphyses of the metacarpals, and dental anomalies including delayed eruption of permanent dentition and multiple supernumerary teeth. The patient also had radiographic and biochemical features of hypophosphatasia (OMIM 241500, 146300) and was initially diagnosed with this condition. Serum alkaline phosphatase activity has been consistently reduced and specific enzyme substrates, phosphoethanolamine and pyridoxal-5'-phosphate, have been elevated. However, no mutations were found on direct sequencing of the tissue-nonspecific alkaline phosphatase (TNSALP) gene using a protocol that detects up to 94% of all mutations causing hypophosphatasia. Conclusion: We propose that a subset of patients with cleidocranial dysplasia have features of secondary hypophosphatasia due to decreased expression of the tissue-nonspecific alkaline phosphatase gene

    Nouvelles thérapies pour les maladies osseuses de l'enfant

    No full text
    Considerable progress has been achieved in recent years in treating children affected by bone diseases. Advances in the understanding of the molecular pathophysiology of genetic bone diseases have led to the development of enzyme replacement therapies for various lysosomal storage diseases, following the breakthrough initiated in treating Gaucher disease. Clinical studies are underway with tailored molecules correcting bone fragility and alleviating chronic bone pain and other manifestations of hypophosphatasia, or promoting growth of long bones in achondroplasia patients. We further report our very encouraging experience with intravenous bisphosphonate treatment in children suffering from secondary osteopenia and the high prevalence of calcium and vitamin D deficits in these severely disabled children
    corecore