5 research outputs found

    Simplified method of linking raster image points of Earth remote sensing satellites to geographical coordinates

    Get PDF
    In article the simplified method of definition of a binding pixels raster picture to geographical coordinates in multichannel satellite imageries of the remote sensing (RS) of Earth is described. It is assumed that the picture is a rectangular raster with dimensions of the coating area on the surface of the Earth within the limits of the first hundred kilometers, obtained when the direction of shooting is deviated from nadir within the limits of the first degrees. At the same time the corner points of the screen have reference to geographical coordinates of sufficient accuracy. It is required to bind each raster pixel to a point on the Earth's surface, that is, to constrain the column and row of the raster pixel to the geographical latitude and longitude of the corresponding point. This paper proposes a simplified universal method, without some of the disadvantages inherent in standard methods of solving the problem. It is based on considering the geometric features raster and the area of the Earth surface covers it

    Decentralized control of a group of quadrocopters using the molecular dynamics method

    Get PDF
    The development of artificial intelligence systems based on various principles, including anthropomorphic and nature-like systems, as well as progress in the construction of quadrocopters for various purposes, made relevant the practical application of these tools for the effective monitoring of underlying surfaces by groups of such devices. The solution of this problem is associated with the effective control of them in conditions of passive and active interference that impedes the fulfillment of missions, as well as with the problem of reconfiguring their construction in case of fail. The model obtained in the work and the calculations made it possible to conclude that the use of the following approach in the future will allow the creation of a self-government system by an independent group of quadrocopters, capable of performing various missions without control from the Earth under conditions of active and passive interference, as well as with permanent failure of quadrocopters

    Measurement of the W boson polarisation in t(t)over-bar events from pp collisions at root s = 8 TeV in the lepton + jets channel with ATLAS (vol 77, pg 264, 2018)

    Get PDF
    This change does not have any impact on the measured helicity fractions, but it changes the obtained limits on the anomalous couplings

    Measurement of jet shapes in top-quark pair events at using the ATLAS detector

    No full text
    A measurement of jet shapes in top-quark pair events using 1.8 fb −1 of pp collision data recorded by the ATLAS detector at the LHC is presented. Samples of top-quark pair events are selected in both the single-lepton and dilepton final states. The differential and integrated shapes of the jets initiated by bottom-quarks from the top-quark decays are compared with those of the jets originated by light-quarks from the hadronic W -boson decays in the single-lepton channel. The light-quark jets are found to have a narrower distribution of the momentum flow inside the jet area than b -quark jets

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions
    corecore