267 research outputs found

    Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    Get PDF
    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th) century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth

    Symbioses with nitrogen-fixing bacteria:nodulation and phylogenetic data across legume genera

    Get PDF
    How species interactions shape global biodiversity and influence diversification is a central - but also data-hungry - question in evolutionary ecology. Microbially-based mutualisms are widespread and could cause diversification by ameliorating stress and thus allowing organisms to colonize and adapt to otherwise unsuitable habitats. Yet the role of these interactions in generating species diversity has received limited attention, especially across large taxonomic groups. In the massive angiosperm family Leguminosae, plants often associate with root-nodulating bacteria that ameliorate nutrient stress by fixing atmospheric nitrogen. These symbioses are ecologically-important interactions, influencing community assembly, diversity, and succession, contributing ~100-290 million tons of N annually to natural ecosystems, and enhancing growth of agronomically-important forage and crop plants worldwide. In recent work attempting to determine whether mutualism with N-fixing bacteria led to increased diversification across legumes, we were unable to definitively resolve the relationship between diversification and nodulation. We did, however, succeed in compiling a very large searchable, analysis-ready database of nodulation data for 749 legume genera (98% of Leguminosae genera; LPWG 2017), which, along with associated phylogenetic information, will provide a valuable resource for future work addressing this question and others. For each legume genus, we provide information about the species richness, frequency of nodulation, subfamily association, and topological correspondence with an additional data set of 100 phylogenetic trees curated for database compatibility. We found 386 legume genera were confirmed nodulators (i.e., all species examined for nodulation nodulated), 116 were non-nodulating, 4 were variable (i.e., containing both confirmed nodulators and confirmed non-nodulators), and 243 had not been examined for nodulation in published studies. Interestingly, data exploration revealed that nodulating legume genera are ~3Γ— more species-rich than non-nodulating genera, but we did not find evidence that this difference in diversity was due to differences in net diversification rate. Our metadata file describes in more detail the structure of these data that provide a foundational resource for future work as more nodulation data become available, and as greater phylogenetic resolution of this ca. 19,500-species family comes into focus. This article is protected by copyright. All rights reserved.</p

    Parental environments and interactions with conspecifics alter salinity tolerance of offspring in the annual medicago truncatula

    Get PDF
    Summary: Based on expectations of the stress-gradient hypothesis for conspecific interactions, stress-sensitive genotypes may be able to persist in stressful environments when positive interactions between individuals occur under stressful environments. Additionally, we test how parental environmental effects alter responses to stress and outcomes of conspecific interactions in stress. While the stress-gradient hypothesis focuses on plant growth, earlier flowering may provide stress avoidance in short-lived organisms. We studied responses to soil salinity and conspecific neighbour using genotypes of Medicago truncatula (Fabaceae) originating from saline or non-saline environments, utilizing seeds from parental plants grown in saline or non-saline environments. During the early stages of reproduction, we quantified leaf number, as a measure of vegetative growth, and number of flowers, as a measure of early reproduction potential. Based on leaf counts, non-saline genotypes were better competitors than saline-origin genotypes and benefited from neighbouring plants in saline environments. This positive interaction was detected only when seeds were matured on parental plants grown in non-saline environments. Saline-origin genotypes displayed greater salinity tolerance in early flowering than non-saline genotypes. Plants with neighbours had greater early flowering, regardless of origin, consistent with facilitative interactions in stressful environments. Transgenerational plastic responses influenced neighbouring plant interactions on plant growth, and results suggest that facilitative interactions may be transient only persisting for one generation. However, earlier flowering of non-saline genotypes when grown with a neighbouring plant is consistent with facilitative interactions resulting in reproductive benefits in saline environments, if earlier flowering is favoured in saline environments. Synthesis. Adaptation to stressful environments allows tolerant genotypes to persist in these environments. Less appreciated is that stress-sensitive genotypes lacking such adaptations may persist in stressful environments via positive interactions with other individuals. Thus, positive interactions between individuals may explain the persistence of stress-sensitive genotypes within a population adapted to stressful environments. Β© 2013 British Ecological Society

    A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-06-09, pub-electronic 2021-06-17Publication status: PublishedFunder: Vitaflo International Ltd; Grant(s): 001In patients with phenylketonuria (PKU), treated by diet therapy only, evidence suggests that areal bone mineral density (BMDa) is within the normal clinical reference range but is below the population norm. Aims: To study longitudinal bone density, mass, and geometry over 36 months in children with PKU taking either amino acid (L-AA) or casein glycomacropeptide substitutes (CGMP-AA) as their main protein source. Methodology: A total of 48 subjects completed the study, 19 subjects in the L-AA group (median age 11.1, range 5–16 years) and 29 subjects in the CGMP-AA group (median age 8.3, range 5–16years). The CGMP-AA was further divided into two groups, CGMP100 (median age 9.2, range 5–16years) (n = 13), children taking CGMP-AA only and CGMP50 (median age 7.3, range 5–15years) (n = 16), children taking a combination of CGMP-AA and L-AA. Dual X-ray absorptiometry (DXA) was measured at enrolment and 36 months, peripheral quantitative computer tomography (pQCT) at 36 months only, and serum blood and urine bone turnover markers (BTM) and blood bone biochemistry at enrolment, 6, 12, and 36 months. Results: No statistically significant differences were found between the three groups for DXA outcome parameters, i.e., BMDa (L2–L4 BMDa g/cm2), bone mineral apparent density (L2–L4 BMAD g/cm3) and total body less head BMDa (TBLH g/cm2). All blood biochemistry markers were within the reference ranges, and BTM showed active bone turnover with a trend for BTM to decrease with increasing age. Conclusions: Bone density was clinically normal, although the median z scores were below the population mean. BTM showed active bone turnover and blood biochemistry was within the reference ranges. There appeared to be no advantage to bone density, mass, or geometry from taking a macropeptide-based protein substitute as compared with L-AAs

    A three-year longitudinal study comparing bone mass, density, and geometry measured by DXA, pQCT, and bone turnover markers in children with PKU taking L-amino acid or glycomacropeptide protein substitutes

    Get PDF
    In patients with phenylketonuria (PKU), treated by diet therapy only, evidence suggests that areal bone mineral density (BMDa) is within the normal clinical reference range but is below the population norm. Aims: To study longitudinal bone density, mass, and geometry over 36 months in children with PKU taking either amino acid (L-AA) or casein glycomacropeptide substitutes (CGMP-AA) as their main protein source. Methodology: A total of 48 subjects completed the study, 19 subjects in the L-AA group (median age 11.1, range 5–6 years) and 29 subjects in the CGMP-AA group (median age 8.3, range 5–16years). The CGMP-AA was further divided into two groups, CGMP100 (median age 9.2, range 5–16years) (n = 13), children taking CGMP-AA only and CGMP50 (median age 7.3, range 5–15years) (n = 16), children taking a combination of CGMP-AA and L-AA. Dual X-ray absorptiometry (DXA) was measured at enrolment and 36 months, peripheral quantitative computer tomography (pQCT) at 36 months only, and serum blood and urine bone turnover markers (BTM) and blood bone biochemistry at enrolment, 6, 12, and 36 months. Results: No statistically significant differences were found between the three groups for DXA outcome parameters, i.e., BMDa (L2–L4 BMDa g/cm 2 ), bone mineral apparent density (L2–L4 BMAD g/cm 3 ) and total body less head BMDa (TBLH g/cm 2 ). All blood biochemistry markers were within the reference ranges, and BTM showed active bone turnover with a trend for BTM to decrease with increasing age. Conclusions: Bone density was clinically normal, although the median z scores were below the population mean. BTM showed active bone turnover and blood biochemistry was within the reference ranges. There appeared to be no advantage to bone density, mass, or geometry from taking a macropeptide-based protein substitute as compared with L-AAs

    "'Asianness Under Construction:' The Contours and Negotiation of Panethnic Identity/Culture among Interethnically Married Asian Americans."

    Get PDF
    Based on life-history interviews of interethnically married U.S.-raised Asians, this article examines the meaning and dynamics of Asian American interethnic marriages, and what they reveal about the complex incorporative process of this β€œin-between” racial minority group into the U.S.. In particular, this article explores the connection between Asian American interethnic marriage and pan-Asian consciousness/identity, both in terms of how panethnicity shapes romantic/ marital desires of individuals and how pan-Asian culture and identity is invented and negotiated in the process of family-making. My findings indicate that while strong pan-Asian consciousness/ identity underlies the connection among intermarried couples, these unions are not simply a defensive effort to β€œpreserve” Asian-ethnic identity and cultur against a society that still racializes Asian Americans, but a tentative and often unpremeditated effort to navigate a path toward integration into the society through an ethnically based, albeit hybrid and reconstructed identity and culture, that helps the respondents retain the integrity of β€œAsianness.

    Phylogenetic Patterns of Colonization and Extinction in Experimentally Assembled Plant Communities

    Get PDF
    Evolutionary history has provided insights into the assembly and functioning of plant communities, yet patterns of phylogenetic community structure have largely been based on non-dynamic observations of natural communities. We examined phylogenetic patterns of natural colonization, extinction and biomass production in experimentally assembled communities.We used plant community phylogenetic patterns two years after experimental diversity treatments (1, 2, 4, 8 or 32 species) were discontinued. We constructed a 5-gene molecular phylogeny and statistically compared relatedness of species that colonized or went extinct to remaining community members and patterns of aboveground productivity. Phylogenetic relatedness converged as species-poor plots were colonized and speciose plots experienced extinctions, but plots maintained more differences in composition than in phylogenetic diversity. Successful colonists tended to either be closely or distantly related to community residents. Extinctions did not exhibit any strong relatedness patterns. Finally, plots that increased in phylogenetic diversity also increased in community productivity, though this effect was inseparable from legume colonization, since these colonists tended to be phylogenetically distantly related.We found that successful non-legume colonists were typically found where close relatives already existed in the sown community; in contrast, successful legume colonists (on their own long branch in the phylogeny) resulted in plots that were colonized by distant relatives. While extinctions exhibited no pattern with respect to relatedness to sown plotmates, extinction plus colonization resulted in communities that converged to similar phylogenetic diversity values, while maintaining differences in species composition

    FrzS Regulates Social Motility in Myxococcus xanthus by Controlling Exopolysaccharide Production

    Get PDF
    Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core
    • …
    corecore