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Parental environments and interactions with
conspecifics alter salinity tolerance of offspring in the
annual Medicago truncatula
Brenna M. Castro1, Ken S. Moriuchi1, Maren L. Friesen2, Mounawer Badri3, Sergey
V. Nuzhdin2, Sharon Y. Strauss4, Douglas R. Cook1 and Eric von Wettberg5,6*
1Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA; 2Molecular and
Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089,
USA; 3Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, Hammam Lif, 2050, Tunisia;
4Department of Evolution and Ecology, University of California at Davis, 2320 Storer Hall, One Shields Avenue, Davis,
CA 95615, USA; 5Department of Biological Sciences, Florida International University, Miami, FL 33199, USA; and
6Kushlan Institute for Tropical Science, Fairchild Tropical Botanic Garden, Coral Gables, FL 33156, USA

Summary

1. Based on expectations of the stress-gradient hypothesis for conspecific interactions, stress-sensitive
genotypes may be able to persist in stressful environments when positive interactions between individ-
uals occur under stressful environments. Additionally, we test how parental environmental effects alter
responses to stress and outcomes of conspecific interactions in stress. While the stress-gradient hypoth-
esis focuses on plant growth, earlier flowering may provide stress avoidance in short-lived organisms.
2. We studied responses to soil salinity and conspecific neighbour using genotypes of Medicago
truncatula (Fabaceae) originating from saline or non-saline environments, utilizing seeds from paren-
tal plants grown in saline or non-saline environments. During the early stages of reproduction, we
quantified leaf number, as a measure of vegetative growth, and number of flowers, as a measure of
early reproduction potential.
3. Based on leaf counts, non-saline genotypes were better competitors than saline-origin genotypes
and benefited from neighbouring plants in saline environments. This positive interaction was
detected only when seeds were matured on parental plants grown in non-saline environments. Sal-
ine-origin genotypes displayed greater salinity tolerance in early flowering than non-saline geno-
types. Plants with neighbours had greater early flowering, regardless of origin, consistent with
facilitative interactions in stressful environments.
4. Transgenerational plastic responses influenced neighbouring plant interactions on plant growth,
and results suggest that facilitative interactions may be transient only persisting for one generation.
However, earlier flowering of non-saline genotypes when grown with a neighbouring plant is consis-
tent with facilitative interactions resulting in reproductive benefits in saline environments, if earlier
flowering is favoured in saline environments.
5. Synthesis. Adaptation to stressful environments allows tolerant genotypes to persist in these envi-
ronments. Less appreciated is that stress-sensitive genotypes lacking such adaptations may persist in
stressful environments via positive interactions with other individuals. Thus, positive interactions
between individuals may explain the persistence of stress-sensitive genotypes within a population
adapted to stressful environments.

Key-words: competition, facilitation, flowering time, interactions, intraspecific, plant population
and community dynamics, salinity, stress tolerance

Introduction

Environmental stress and competition between individuals
are two major axes shaping species distribution and abun-
dance patterns (e.g. Grime 1977, 1979; Chapin, Autumn &*Correspondence author. E-mail: eric.vonwettberg@fiu.edu

© 2013 The Authors. Journal of Ecology © 2013 British Ecological Society

Journal of Ecology 2013, 101, 1281–1287 doi: 10.1111/1365-2745.12125



Pugmaire 1993; Tilman 1997; Stowe et al. 2000; Pennings,
Grant & Bertness 2005; Greenwood & MacFarlane 2008).
Environmental stress reduces productivity and performance
(e.g. Chapin, Autumn & Pugmaire 1993; Callaway 2007), but
has also been associated with facilitative interactions that
ameliorate stress among con- and interspecific individuals
(Bertness & Callaway 1994; Liancourt, Callaway & Michalet
2005; Maestre et al. 2009; He, Bertness & Altieri 2013). Sup-
port for the stress-gradient hypothesis, in which interactions
between individuals move from competitive to facilitative
across a benign to stressful environmental gradient, appears to
hold among species for a wide range of environmental stres-
sors from water, nutrients, salinity and temperature (reviewed
by Brooker et al. 2008; Maestre et al. 2009; Dohn et al.
2013).
Species in benign environments generally have greater

competitive ability than species from stressful environments,
while those in stressful environments are more stress tolerant
than species from benign environments (e.g. Grime 1977).
Tolerance is defined as the ability to maintain performance
when exposed to different levels of environmental stress
(Strauss & Agrawal 1999; Stowe et al. 2000) and is associ-
ated with traits that increase resource use efficiency (Lambers
& Poorter 1992). Traits that confer greater vegetative growth
rates have a positive association with competitive ability (e.g.
Grime & Hunt 1975; Wilson & Tilman 1993; Schwinning &
Weiner 1998; Strauss & Agrawal 1999; Keddy et al. 2002).
While most of the empirical tests of the stress-gradient
hypothesis and trait association along the stress gradient are
from interspecific comparisons, here we test these hypotheses
using the genotypes from a single species.
The differences in interactions and traits associated with

species along stress gradients (Maestre et al. 2009; Malkinson
& Tielb€orger 2010; Bornhofen, Barot & Lattaud 2011; Dmit-
riew 2011) may also apply to patterns of genotypic variation
within species. For species that can live across a variety of
environments, we predict that genotypes that are favoured in
benign habitats might be better competitors than those
favoured in stressful environments. We also expect that these
genotypes could be more or less facilitative across environ-
ments. More specifically, extending the stress-gradient hypothe-
sis to genotypic expectations predicts that non-tolerant
genotypes will benefit from interactions between individuals
more than tolerant genotypes in stressful environments (Maestre
et al. 2009). While direct tests of the stress-gradient hypothe-
sis at the intraspecific level exist, they are limiting; results
from studies suggest the importance of interactions between
density, environmental stress and genotype (e.g. Stanton,
Thiede & Roy 2004; McNutt et al. 2012). For example,
McNutt et al. (2012) demonstrated facilitative interactions of
Solanum carolinense when exposed to herbivory and genetic
variation for herbivory tolerance.
For short-lived annuals, earlier reproduction in the season

is a commonly observed strategy of temporal avoidance of
seasonally stressful environments (e.g. Stanton, Roy & Thiede
2000; Griffith & Watson 2005; Verhoeven et al. 2008; von
Wettberg, Remington & Schmitt 2008; Brachi et al. 2012). In

populations where the environmental stress builds up during
the growth phase (e.g. drought, soil salinity), earlier reproduc-
tion may allow plants to reproduce prior to reaching lethal
levels. Studies have demonstrated that earlier reproduction
response to stress that evolved in response to one type of
stress may also be favoured under a different type of stress
(Stanton, Roy & Thiede 2000; Stanton, Thiede & Roy 2004),
suggesting that phenological patterns are also consistent along
the stress gradient.
Transgenerational parental environmental (PE) effects can

also influence within-species variation in stress tolerance
(Mousseau & Fox 1998; S€anen, Laurila & Meril€a 2003;
Galloway 2005; Galloway & Etterson 2007; R€as€anen & Kruuk
2007). Transgenerational PE effects are broadly defined as
parental influences on offspring phenotype beyond the influ-
ence of Mendelian inheritance (Lynch & Walsh 1998). Adap-
tive transgenerational plastic responses have been documented
in a number of systems and environmental stressors (Gallo-
way 2005; Gustafsson, Rengefors & Hansson 2005; R€as€anen
& Kruuk 2007; Herman et al. 2012; but see Weiner et al.
1997), including soil salinity (Van Zandt & Mopper 2004).
For example, offspring size may increase when parental plants
are grown under stressful conditions (e.g. Hereford & Moriu-
chi 2005; R€as€anen, Laurila & Meril€a 2005; reviewed by
Roach & Wulff 1986) because larger individuals may increase
the ability to establish and give a competitive advantage. If
parental exposure to stressful environments increases off-
spring tolerance through changes in growth rates or effi-
ciency, we expect that this will also influence within-species
interactions of the offspring.
Soil salinity is a major environmental stress, currently esti-

mated to decrease crop yield in 800 million hectares of agri-
cultural land throughout the world (FAO 2008). Populations
have evolved different mechanisms to deal with salinity
including sequestration of ions, avoidance of salinity and toler-
ance (reviewed by Cheeseman 1988; Munns & Tester 2008).
Traits that confer salinity tolerance are often associated with
respiration, ion transport and storage costs (Cheeseman 1988;
Munns & Tester 2008), resulting in slower growth. Because of
these costs, saline-tolerant genotypes are expected to have
lower performance and be worse competitors when grown in
non-saline soils relative to saline-non-tolerant genotypes, but
have greater survival to reproduction in saline environments.
Using genotypes of Medicago truncatula from populations

located in saline and non-saline habitats, we predict that in
non-saline environments, non-saline-origin genotypes will
have faster individual growth rates and will be better competi-
tors compared to saline-origin genotypes. In saline environ-
ments, saline-origin genotypes are predicted to have greater
salinity tolerance and greater earlier reproduction compared to
non-saline-origin genotypes. Competition in saline environ-
ments is expected to have less influence on growth and
reproduction than differences due to stress-tolerant and stress-
non-tolerant genotypes. When grown with another individual,
we predict that plants – particularly non-saline-origin geno-
types – may experience facilitation in saline environments if
these interactions ameliorate abiotic stress.

© 2013 The Authors. Journal of Ecology © 2013 British Ecological Society, Journal of Ecology, 101, 1281–1287
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Materials and methods

Medicago truncatula Gaertn (Fabaceae) is a self-compatible annual
plant from the Mediterranean region found in a range of environments
including saline and non-saline soils in Tunisia (Lazrek et al. 2009;
Friesen et al. 2010). The genotypes used in this study are part of a
larger collection of 39 genotypes from two populations of saline ori-
gin [i.e. Enfidha (TN1) and Soliman (TN8)] and from two populations
of non-saline origin [i.e. El Kef (TN7) and Bulla Regia (TN9); (Laz-
rek et al. 2009)]. Previous research has demonstrated that three of the
four populations (i.e. TN 1, 8 and 9) used in this study are genetically
differentiated and linked by moderate levels of gene flow, but are
locally adapted to soil salinity levels (Friesen et al. 2010). Saline pop-
ulations’ environments have 14 times greater soil sodium and 4.6
times greater magnesium levels than non-saline populations’ environ-
ments (Table S1 in Supporting Information). Non-saline populations’
environments have 3.6 times greater soil nitrogen levels and greater
intraspecific density (von Wettberg, Friesen & Strauss, pers. obs.)
compared to saline populations’ environments (Table S1).

Seeds of four genotypes from non-saline soil origins and eight
genotypes from saline soil origins were used in this study (Table S2).
Genotypes used were part of a larger study on PE effects on salinity
adaptation and were chosen based on available seeds at the time of
the study. Seeds were from a glasshouse experiment where plants
were grown under 0 mM NaCl or 100 mM NaCl treatments through-
out their life span in 2009, hereafter referred to as PE. Salinity treat-
ments during the parental generation were applied biweekly
throughout the plants’ life span by mixing NaCl with 19 Fahraeus
solution. In addition to twice-weekly application of the salinity treat-
ments, plants were watered twice a day throughout the extent of the
experiment with deionized water until soil was saturated but not drip-
ping out of the pot. A subset of viable seeds from each genotype
were counted and weighed to quantify PE effects on seed size (see
Data S1).

Seeds were scarified and subsequently germinated under non-saline
conditions in petri dishes filled with moistened sand and dark condi-
tions during the first week of February 2010. As seeds germinated,
roots were allowed to develop for an additional day, measured (mm)
and transplanted into 164-mL cone pots filled with 2 : 1 University
of California, Davis soil/sand mixture. Five replicates per soil origin,
PE and offspring salinity treatment [i.e. offspring environment (OE)]
were transplanted with a competitor. Plants were transplanted with a
seedling that germinated at the same time and having the same initial
root length, while the genotype and soil origin of the neighbour were
assigned haphazardly. Plants that died within 1 week from the time
of transplant were excluded from the analyses, and neighbour classifi-
cation for the surviving plant was reassigned to no neighbour. The
resulting pairs of plants in the neighbour treatment resulted in 22 sal-
ine-origin, saline-origin pairs; 12 saline-origin, non-saline-origin pairs;
and two non-saline, non-saline genotype pairs. To be able to compare
how plants respond to growing alone vs. growing with a competitor,
we incorporated data from an additional 129 seedlings of the same
genotypes, parental and OE and growing conditions, and of the same
germination age, but had seedlings transplanted individually in pots.
The final sample size was 175 plants. Once seedlings were sown,
plants were moved to an open field on campus and salinity treatments
and additional water were applied as in the parental generation except
NaCl was mixed in with 0.19 Fahraeus solution. After 6 weeks from
the time of transplant and at the start of reproduction, we quantified
leaf number and early reproduction (number of flowers) of plants
grown alone and with a neighbouring plant.

DATA ANALYSIS

All analyses were performed in SAS v. 9.2 (SAS Institute 2010). To
test the effects of PE, OE, soil origin, neighbour treatment and all
interactions on two traits measured during the experiment (i.e. number
of leaves and early flowering numbers), we performed fixed-effects
ANOVA (PROC GLM). Identity of the neighbouring plant (i.e. saline or
non-saline origin) did not approach significance for any of the traits
(F < 0.70; P > 0.40); thus, neighbour identity was excluded from all
analyses. Due to low survival of transplants of non-saline-origin
plants from the 0 mM NaCl parental generation into the 100 mM
NaCl OE with neighbour treatment, the four-way interaction of PE by
OE by tolerance by neighbour treatment was excluded from the
model. Because of unequal sample sizes, ANOVAs on each of the four
traits were performed using type IV sums of squares. To meet ANOVA

assumptions of normality and homoscedasticity of the ANOVA, number
of leaves was square-root-transformed.

Because of the large number of zeros for number of flowers on the
plant measured after 6 weeks from transplant, these data were analy-
sed using a generalized linear model (PROC GENMOD LINK=LOG
DIST=NEGBIN) fitting number of flowers as a negative binomial distribu-
tion using the same factors as the ANOVA described above. Because
very few non-saline-origin plants flowered in the 100 mM NaCl OE
and there was no neighbour treatment, the three-way interaction of
OE by neighbour treatment by origin was excluded in the model. Post
hoc comparisons of means were tested using least-square means com-
parisons (LSMEANS).

Results

LEAF NUMBER

Parental exposure to saline environment compared to non-
saline environment resulted in 34.8% fewer leaves on
offspring (Table 1). Soil origin and neighbour treatment

Table 1. F-values and significance from ANOVA for leaf number
counts and v2-values and significance from generalized linear model
for number of flowers measured on 6-week-old seedlings of Medicago
truncatula originating (Origin) from saline and non-saline
environments

Trait

Leaf number
SQRT
F

Flower number
v2

Parental environment (PE) 8.52** 0.25
Offspring environment (OE) 1.76 11.78***
Neighbour treatment 0.06 9.84**
Origin 0.73 4.33*
PE 9 OE 4.72* 0.07
PE 9 neighbour treatment 3.48t 0.33
OE 9 neighbour treatment 2.67 3.75t

PE 9 origin 3.17t 0.54
OE 9 origin 2.33 7.01**
Neighbour treatment 9 origin 9.42** 2.00
PE 9 OE 9 neighbour treatment 4.50* 0.12
PE 9 OE 9 origin 4.03* 0.00
PE 9 neighbour treatment 9 origin 0.95 0.80
OE 9 neighbour treatment 9 origin 0.82 NA

t0.05 < P < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.

© 2013 The Authors. Journal of Ecology © 2013 British Ecological Society, Journal of Ecology, 101, 1281–1287
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interaction had the largest effect on the number of leaves
(Table 1), with the pattern supporting the hypothesis that
non-saline-origin genotypes are better competitors than saline-
origin genotypes (Fig. S1a). In the no-neighbour treatment,
saline-origin plants had 49% more leaves than non-saline-ori-
gin plants (P = 0.002), while in the neighbour treatment, non-
saline-origin plants had 46% greater number of leaves than
saline-origin plants (P = 0.038, Fig. S1a). For offspring
whose mothers grew in non-saline environments, plants grow-
ing in the saline environment with a neighbour had 54% more
leaves than when grown alone (Fig. 1a), while plants growing
in the non-saline environment did not differ in the number of
leaves with or without a neighbour (Fig. 1a). However, when
offspring were from mothers that grew in saline environ-
ments, no difference in number of leaves was detected for
neighbour treatment or offspring salinity environment
(Fig. 1b). When mothers were from non-saline environments
and offspring were grown in saline environments, non-saline-
origin plants had 57% more leaves compared to saline-origin

plants, but did not differ when offspring were grown in
non-saline environments (Fig. S1b). When mothers were
grown in saline environments, offspring did not differ in
number of leaves for either OE or between saline- and non-
saline-origin plants (Fig. S1b). This evidence for facilitative
interactions was supported by three-way interactions that
included parental and OE with either neighbour treatment or
origin (Table 1 and Fig. 1a,b). Unfortunately because of death
of transplants in certain treatment combinations, we are
unable to tease apart which of these interactions has a greater
influence on leaf number (see Materials and methods).

NUMBER OF FLOWERS EARLY IN REPRODUCTION

As expected, saline-origin genotypes produced 49% more
flowers than non-saline-origin genotypes (Table 1). Non-
saline OE supported 2.5 times greater flower production than
saline environments. Plants with neighbours had produced
59% more flowers than plants without neighbours (Table 1).
Flower production of saline-origin genotypes was less sen-

sitive to saline OE relative to non-saline-origin genotypes
(Table 1 and Fig. 2a). Saline-origin plants maintained flower(a)

(b)

Fig. 1. Means and � one standard error bars for neighbour treatment
by offspring salinity environment for (a) offspring from parental
plants grown in non-saline environment and (b) offspring from paren-
tal plants grown in saline environments, along with significant differ-
ences between means for total number of leaves measured after
6 weeks; significant differences (P ≤ 0.05) in means are indicated by
different letters.

(a)

(b)

Fig. 2. Mean and � one standard error bars for significant effects on
number of flowers on plant during the start of flowering; (a) soil ori-
gin by offspring environment (OE) interaction, (b) neighbour treat-
ment by OE interaction; significant differences (P ≤ 0.05) in means
are indicated by different letters.

© 2013 The Authors. Journal of Ecology © 2013 British Ecological Society, Journal of Ecology, 101, 1281–1287
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numbers between OEs (P = 0.283), while non-saline-origin
genotypes showed a fivefold decrease in flower number in
saline compared to non-saline OE (P = 0.002, Fig. 2a).
Although the interaction between OE and neighbour treatment
was marginally significant (Table 1), post hoc comparisons of
the means indicated that plants in the neighbour treatment had
equal numbers of flowers in both OEs (P = 0.178), but plants
in the no-neighbour treatment showed a decline in flower
number in the saline OE relative to the non-saline OE
(P < 0.0001, Fig. 2b). Thus, flowering data are consistent
with the hypotheses that salinity stress results in greater early
reproduction and saline-origin genotypes have evolved earlier
reproduction (Fig. 2a), consistent with ‘escaping’ unfavour-
able environmental conditions. Furthermore, there is some
support that producing greater flower production earlier in the
presence of a neighbour in saline compared to non-saline OEs
may be a mechanism that can result in facilitative interactions
under stressful environments (Fig. 2b).

Discussion

In this study, we report results from a soil salinity and neigh-
bouring plant experiment that used seedlings of M. truncatula
genotypes originating from populations occurring in saline
and non-saline environments. Consistent with expectations on
neighbouring plant outcomes on vegetative growth, non-
saline-origin genotypes were better competitors than saline-
origin genotypes, as measured by number of leaves (Fig.
S1a). Furthermore, facilitative interactions for leaf number
were dependent upon parental and offspring salinity levels
(Fig. 1a,b) and suggest that positive interactions between indi-
viduals may be transient. Estimates of early flower numbers
are consistent with the hypothesis that saline-origin genotypes
evolved avoidance strategies to stressful environments by
increasing their investment in early reproduction (Fig. 2a).
Additionally, flowering number data suggest that facilitative
interactions may result in fitness increases via greater earlier
reproduction when growing with a neighbouring plant in
stressful than in benign environments (Fig 2b). Overall,
responses to soil salinity were dependent upon previous expo-
sure to salinity, both short and long term, as well as interac-
tions with neighbouring plants.
We find support for the stress-gradient hypothesis that posi-

tive interactions between individuals should be more common
between non-tolerant than between tolerant genotypes, and as
the environment becomes more stressful when we use leaf
number as an estimate of vegetative growth (Brooker et al.
2008; Maestre et al. 2009; He, Bertness & Altieri 2013).
While the general applicability of the stress-gradient hypothe-
sis at the within-species level will require more studies, the
predictions can provide insights into the different mechanisms
and constraints on patterns of adaptations across populations.
First, there is growing evidence for selection favouring traits
associated with greater plant growth in benign environments
and greater tolerance in stressful environments (e.g. McGraw
& Chapin 1989; La Peyre et al. 2001; Stanton, Thiede &
Roy 2004). Thus, our data are consistent with general patterns

detected at the species level that benign environments tend to
favour greater competitive ability, while tolerance is favour-
able in more stressful environments.
The vegetative growth patterns we observed are consistent

with other studies comparing species interactions along a
salinity gradient (e.g. Callaway & Pennings 2000; Liancourt,
Callaway & Michalet 2005; but see Pennings et al. 2003), as
well as other abiotic stress gradients (reviewed by Brooker
et al. 2008; Maestre et al. 2009; He, Bertness & Altieri
2013). Overall, there is well-documented support for the
stress-gradient hypothesis from among-species data sets. Our
study shows that the stress-gradient hypothesis also holds
within a single species. Thus, non-tolerant genotypes within a
population occupying a stressful habitat may perform well if
densities are high, which could be important in the early
stages of establishment with high dispersal. However, our
data suggest that the benefits of facilitation may only persist
for one generation (Fig. 1a,b), suggesting that these beneficial
interactions may be transient and influenced by PE effects.
Interestingly, in this study, PE effects do not appear to be
mediated via differential allocation to seed weight (Data S1).
Following initial colonization, genetic changes providing
adaptations to salinity could occur or maladaptive PE effects
may build up over generations (Miao, Bazzaz & Primack
1991; R€as€anen, Laurila & Meril€a 2005). The facilitation we
observe could be a component by which salinity adaptations
evolve, and a potentially important factor maintaining genetic
variation within populations.
Earlier reproduction within a season as a means of avoiding

stressful environments has been observed across a range of
stressful environments (e.g. Stanton, Roy & Thiede 2000;
Griffith & Watson 2005; Verhoeven et al. 2008; von Wett-
berg, Remington & Schmitt 2008; Brachi et al. 2012) includ-
ing soil salinity (Munns & Tester 2008). Soil salinity levels
in saline populations of M. truncatula increase during the
vegetative reproductive season before it peaks during the Sah-
aran summer (Noy-Meir 1973). Earlier flowering allows
short-lived self-compatible annuals, such as M. truncatula, to
escape environmental conditions that would otherwise
increase mortality prior to reproduction. For example, Stanton,
Roy & Thiede (2000) and Stanton, Thiede & Roy (2004)
demonstrated that for the annual Sinapsis arvensis, selection
favoured earlier reproduction when grown under stressful than
under benign environments. An emerging pattern from multi-
ple studies indicates that flowering time can rapidly respond
to natural selection (Elzinga et al. 2007; Franks, Sim & Weis
2007; Galloway & Burgess 2012), suggesting either ample
standing genetic variation for flowering time within popula-
tions or ample gene flow between populations with differing
phenological set points. The generality of earlier flowering in
response to multiple sources of environmental stress suggests
that phenology may be an important trait responding to differ-
ences in environmental stress, along with growth and compet-
itive ability.
Predictions of the stress-gradient hypothesis are typically

tested using biomass (e.g. Grime 1977; Maestre et al. 2009).
Within a species that varies in salinity tolerance, we found

© 2013 The Authors. Journal of Ecology © 2013 British Ecological Society, Journal of Ecology, 101, 1281–1287

Interactions with conspecifics alter salinity tolerance 1285



that plants growing with a neighbour had greater earlier repro-
duction than plants growing alone (Fig. 2b). Unlike neigh-
bouring effects on vegetative growth, PE effects did not
influence interactions between individuals (Table 1), suggest-
ing that positive interactions between individuals may persist.
Because of the greater overlap in flowering time between soil
origins in the presence of a neighbour in stressful environ-
ments, we would expect greater potential for gene flow when
individuals are grown in high-density than in low-density
populations.
How plants respond to environmental stress and how interac-

tions among individuals can alter such responses remain an
overarching challenge in plant biology. This challenge is further
complicated by environment-specific transgenerational plastic-
ity. Though growing single plants in pots may be adequate in
tests for mechanisms of stress tolerance, manipulating both
stress and density may provide more robust tests on explaining
genetic diversity observed in natural populations. Furthermore,
studies manipulating the types and magnitude of stress across
parent and offspring generations are warranted to elucidate
these patterns more generally and to identify how patterns of
natural selection change across the stress gradient. The general
patterns of competitive ability or stress tolerance also suggest a
fundamental genetic trade-off which may be useful in crop
breeding programmes and testing assumptions of constraints on
adaptive evolution. Identifying the genetic basis of adaptation
to stressful environments and mechanism of adaptive transgen-
erational plasticity will yield insight into how plants evolve in
natural environments with multiple sources of stress.
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Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article:

Table S1. Environmental characteristics of the four populations where
genotypes originated from Northern Tunisia.

Table S2. List of genotypes of the Tunisian Medicago truncatula
used in this study.

Figure S1. Means and � one standard error bars for significant
effects found for total number of leaves measured after 6 weeks.

Data S1. Soil origin and parental environmental influences on seed
size.
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