37 research outputs found

    Leptospirosis Pathophysiology: Into the Storm of Cytokines

    Get PDF
    Leptospirosis is a neglected tropical zoonosis caused by pathogenic spirochetes of the genus Leptospira. Infected reservoir animals, typically mice and rats, are asymptomatic, carry the pathogen in their renal tubules, and shed pathogenic spirochetes in their urine, contaminating the environment. Humans are accidental hosts of pathogenic Leptospira. Most human infections are mild or asymptomatic. However, 10% of human leptospirosis cases develop into severe forms, including high leptospiremia, multi-organ injuries, and a dramatically increased mortality rate, which can relate to a sepsis-like phenotype. During infection, the triggering of the inflammatory response, especially through the production of cytokines, is essential for the early elimination of pathogens. However, uncontrolled cytokine production can result in a cytokine storm process, followed by a state of immunoparalysis, which can lead to sepsis and associated organ failures. In this review, the involvement of cytokine storm and subsequent immunoparalysis in the development of severe leptospirosis in susceptible hosts will be discussed. The potential contribution of major pro-inflammatory cytokines in the development of tissue lesions and systemic inflammatory response, as well as the role of anti-inflammatory cytokines in contributing to the onset of a deleterious immunosuppressive cascade will also be examined. Data from studies comparing susceptible and resistant mouse models will be included. Lastly, a concise discussion on the use of cytokines for therapeutic purposes or as biomarkers of leptospirosis severity will be provided

    Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827

    Get PDF
    HD 106315 and GJ 9827 are two bright, nearby stars that host multiple super-Earths and sub-Neptunes discovered by K2 that are well suited for atmospheric characterization. We refined the planets' ephemerides through Spitzer transits, enabling accurate transit prediction required for future atmospheric characterization through transmission spectroscopy. Through a multiyear high-cadence observing campaign with Keck/High Resolution Echelle Spectrometer and Magellan/Planet Finder Spectrograph, we improved the planets' mass measurements in anticipation of Hubble Space Telescope transmission spectroscopy. For GJ 9827, we modeled activity-induced radial velocity signals with a Gaussian process informed by the Calcium II H&K lines in order to more accurately model the effect of stellar noise on our data. We measured planet masses of M_b = 4.87 ± 0.37 M_⊕, M_c = 1.92 ± 0.49 M_⊕, and M_d = 3.42 ± 0.62 M_⊕. For HD 106315, we found that such activity radial velocity decorrelation was not effective due to the reduced presence of spots and speculate that this may extend to other hot stars as well (T_(eff) > 6200 K). We measured planet masses of M_b = 10.5 ± 3.1 M_⊕ and M_c = 12.0 ± 3.8 M_⊕. We investigated all of the planets' compositions through comparison of their masses and radii to a range of interior models. GJ 9827 b and GJ 9827 c are both consistent with a 50/50 rock-iron composition, GJ 9827 d and HD 106315 b both require additional volatiles and are consistent with moderate amounts of water or hydrogen/helium, and HD 106315 c is consistent with a ~10% hydrogen/helium envelope surrounding an Earth-like rock and iron core

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    In Vitro Sensitivity and Resistance of 46 Leptospira Strains Isolated from Rats in the Philippines to 14 Antimicrobial Agents▿ †

    No full text
    The in vitro susceptibilities of 46 Leptospira isolates from rats to 14 antimicrobial agents were tested. All of the strains were found to be sensitive to ampicillin, cefotaxime, ciprofloxacin, norfloxacin, doxycycline, erythromycin, and streptomycin. In contrast, the tested isolates showed resistance to amphotericin B, 5-fluorouracil, fosfomycin, trimethoprim, sulfamethoxazole, neomycin, and vancomycin. These findings will help in selecting effective and ineffective antimicrobials for treatment of leptospirosis and for the development of new selective media, respectively

    Leptospira Is an Environmental Bacterium That Grows in Waterlogged Soil

    No full text
    Leptospirosis is a zoonotic disease caused by infection with pathogenic leptospires. Consistent with recent studies by other groups, leptospires were isolated from 89 out of 110 (80.9%) soil or water samples from varied locations in the Philippines in our surveillance study, indicating that leptospires might have a life cycle that does not involve animal hosts. However, despite previous work, it has not been confirmed whether leptospires multiply in the soil environment under various experimental conditions. Given the fact that the case number of leptospirosis is increased after flood, we hypothesized that waterlogged soil, which mimics the postflooding environment, could be a suitable condition for growing leptospires. To verify this hypothesis, pathogenic and saprophytic leptospires were seeded in the bottles containing 2.5 times as much water as soil, and bacterial counts in the bottles were measured over time. Pathogenic and saprophytic leptospires were found to increase their number in waterlogged soil but not in water or soil alone. In addition, leptospires were reisolated from soil in closed tubes for as long as 379 days. These results indicate that leptospires are in a resting state in the soil and are able to proliferate with increased water content in the environment. This notion is strongly supported by observations that the case number of leptospirosis is significantly higher in rainy seasons and increased after flood. Therefore, we reached the following conclusion: environmental soil is a potential reservoir of leptospires. IMPORTANCE Since research on Leptospira has focused on pathogenic leptospires, which are supposed to multiply only in animal hosts, the life cycle of saprophytic leptospires has long been a mystery. This study demonstrates that both pathogenic and saprophytic leptospires multiply in the waterlogged soil, which mimics the postflooding environment. The present results potentially explain why leptospirosis frequently occurs after floods. Therefore, environmental soil is a potential reservoir of leptospires and leptospirosis is considered an environment-borne as well as a zoonotic disease. This is a significant report to reveal that leptospires multiply under environmental conditions, and this finding leads us to reconsider the ecology of leptospires

    Serologic and Molecular Studies of Leptospira and Leptospirosis among Rats in the Philippines

    No full text
    Rats are known to be the most important reservoirs and transmission sources of leptospirosis. However, the status of leptospirosis in the Philippines regarding reservoirs and transmission remains unknown. A survey was conducted in Metro Manila and Laguna that analyzed samples obtained from 106 rats. Using the microscopic agglutination test, we found that 92% of rat serum samples were positive for anti-Leptospira antibodies; the most common infecting serovars were Manilae, Hebdomadis, and Losbanos. On the basis of pulsed-field gel electrophoresis and gyrase B gene sequence analyses, four groups of rat kidney isolates were found: L. interrogans serovar Manilae, serovar Losbanos, and serogroup Grippotyphosa, and L. borgpetersenii serogroup Javanica. Most isolates were lethal after experimental infection of golden Syrian hamsters. Results showed that these four Leptospira serovars and serogroups are circulating among rats, and that these animals may be one of the possible transmission sources of leptospirosis in the Philippines

    Adipose tissue is the first colonization site of <i>Leptospira interrogans</i> in subcutaneously infected hamsters

    Get PDF
    <div><p>Leptospirosis is one of the most widespread zoonoses in the world, and its most severe form in humans, “Weil’s disease,” may lead to jaundice, hemorrhage, renal failure, pulmonary hemorrhage syndrome, and sometimes,fatal multiple organ failure. Although the mechanisms underlying jaundice in leptospirosis have been gradually unraveled, the pathophysiology and distribution of leptospires during the early stage of infection are not well understood. Therefore, we investigated the hamster leptospirosis model, which is the accepted animal model of human Weil’s disease, by using an <i>in vivo</i> imaging system to observe the whole bodies of animals infected with <i>Leptospira interrogans</i> and to identify the colonization and growth sites of the leptospires during the early phase of infection. Hamsters, infected subcutaneously with 10<sup>4</sup> bioluminescent leptospires, were analyzed by <i>in vivo</i> imaging, organ culture, and microscopy. The results showed that the luminescence from the leptospires spread through each hamster’s body sequentially. The luminescence was first detected at the injection site only, and finally spread to the central abdomen, in the liver area. Additionally, the luminescence observed in the adipose tissue was the earliest detectable compared with the other organs, indicating that the leptospires colonized the adipose tissue at the early stage of leptospirosis. Adipose tissue cultures of the leptospires became positive earlier than the blood cultures. Microscopic analysis revealed that the leptospires colonized the inner walls of the blood vessels in the adipose tissue. In conclusion, this is the first study to report that adipose tissue is an important colonization site for leptospires, as demonstrated by microscopy and culture analyses of adipose tissue in the hamster model of Weil’s disease.</p></div

    Investigation of Encephalopathy Caused by Shiga Toxin 2c-Producing <em>Escherichia coli</em> Infection in Mice

    Get PDF
    <div><p>A large outbreak of Shiga toxin (Stx)-producing enteroaggregative <i>Escherichia coli</i> (EAEC) O104:H4 occurred in northern Germany. From this outbreak, at least 900 patients developed hemolytic uremic syndrome (HUS), resulting in more than 50 deaths. Thirty percent of the HUS patients showed encephalopathy. We previously established a mouse model with encephalopathy associated with blood brain barrier (BBB) damage after oral infection with the Shiga toxin (Stx) 2c-producing <i>Escherichia coli</i> O157: H- strain E32511 (E32511). In this model, we detected high expression of the Stx receptor synthase enzyme, glycosphingolipid globotriaosylceramide (Gb3) synthase, in endothelial cells (ECs) and neurons in the reticular formation of the medulla oblongata by <i>in situ</i> hybridization. Caspase-3 was activated in neurons in the reticular formation of the medulla oblongata and the anterior horn of the spinal cord. Astrocytes (ASTs) were activated in the medulla oblongata and spinal cord, and a decrease in aquaporin 4 around the ECs suggested that BBB integrity was compromised directly by Stx2c or through the activation of ASTs. We also report the effectiveness of azithromycin (AZM) in our model. Moreover, AZM strongly inhibited the release of Stx2c from E32511 <i>in vitro</i>.</p> </div
    corecore