106 research outputs found

    Simple atmospheric perturbation models for sonic-boom-signature distortion studies

    Get PDF
    Sonic-boom propagation from flight level to ground is influenced by wind and speed-of-sound variations resulting from temperature changes in both the mean atmospheric structure and small-scale perturbations. Meteorological behavior generally produces complex combinations of atmospheric perturbations in the form of turbulence, wind shears, up- and down-drafts and various wave behaviors. Differences between the speed of sound at the ground and at flight level will influence the threshold flight Mach number for which the sonic boom first reaches the ground as well as the width of the resulting sonic-boom carpet. Mean atmospheric temperature and wind structure as a function of altitude vary with location and time of year. These average properties of the atmosphere are well-documented and have been used in many sonic-boom propagation assessments. In contrast, smaller scale atmospheric perturbations are also known to modulate the shape and amplitude of sonic-boom signatures reaching the ground, but specific perturbation models have not been established for evaluating their effects on sonic-boom propagation. The purpose of this paper is to present simple examples of atmospheric vertical temperature gradients, wind shears, and wave motions that can guide preliminary assessments of nonturbulent atmospheric perturbation effects on sonic-boom propagation to the ground. The use of simple discrete atmospheric perturbation structures can facilitate the interpretation of the resulting sonic-boom propagation anomalies as well as intercomparisons among varied flight conditions and propagation models

    Combined Winds and Turbulence Prediction System for Automated Air-Traffic Management Applications

    Get PDF
    A time-lagged ensemble of energy dissipation rate (EDR)-scale turbulence metrics is evaluated against in situ EDR observations from commercial aircraft over the contiguous United States and applied to air-traffic management (ATM) route planning. This method uses the Graphic Turbulence Guidance forecast methodology with three modifications. First, it uses the convection-permitting-scale (x = 3 km) Advanced Research version of the Weather Research and Forecasting Model (ARW) to capture cloud-resolving-scale weather phenomena. Second, turbulence metrics are computed for multiple ARW forecasts that are combined at the same forecast valid time, resulting in a time-lagged ensemble of multiple turbulence metrics. Third, probabilistic turbulence forecasts are provided on the basis of the ensemble results, which are applied to the ATM route planning. Results show that the ARW forecasts match well with observed weather patterns and the overall performance skill of the ensemble turbulence forecast when compared with the observed data is superior to any single turbulence metric. An example wind-optimal route (WOR) is computed using areas experiencing 10% probability of encountering severe-or-greater turbulence. Using these turbulence data, lateral turbulence avoidance routes starting from three different waypoints along the WOR from Los Angeles International Airport to John F. Kennedy International Airport are calculated. The examples illustrate the trade-off between flight time/fuel used and turbulence avoidance maneuvers

    Experimental Validation of a Forward Looking Interferometer for Detection of Clear Air Turbulence due to Mountain Waves

    Get PDF
    The Forward-Looking Interferometer (FLI) is an airborne sensor concept for detection and estimation of potential atmospheric hazards to aircraft. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry technologies that have been developed for satellite remote sensing. The FLI is being evaluated for its potential to address multiple hazards, during all phases of flight, including clear air turbulence, volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing. In addition, the FLI is being evaluated for its potential to detect hazardous runway conditions during landing, such as wet or icy asphalt or concrete. The validation of model-based instrument and hazard simulation results is accomplished by comparing predicted performance against empirical data. In the mountain lee wave data collected in the previous FLI project, the data showed a damped, periodic mountain wave structure. The wave data itself will be of use in forecast and nowcast turbulence products such as the Graphical Turbulence Guidance and Graphical Turbulence Guidance Nowcast products. Determining how turbulence hazard estimates can be derived from FLI measurements will require further investigation

    Safety and efficacy of sonothrombolysis for acute ischaemic stroke: a multicentre, double-blind, phase 3, randomised controlled trial

    Get PDF
    Background: Pulsed-wave ultrasound increases the exposure of an intracranial thrombus to alteplase (recombinant tissue plasminogen activator), potentially facilitating early reperfusion. We aimed to ascertain if a novel operator-independent transcranial ultrasound device delivering low-power high-frequency ultrasound could improve functional outcome in patients treated with alteplase after acute ischaemic stroke. Methods: We did a multicentre, double-blind, phase 3, randomised controlled trial (CLOTBUST-ER) at 76 medical centres in 14 countries. We included patients with acute ischaemic stroke (National Institutes of Health Stroke Scale score ≥10) who received intravenous thrombolysis (alteplase bolus) within 3 h of symptom onset in North America and within 4·5 h of symptom onset in all other countries. Participants were randomly allocated (1:1) via an interactive web response system to either active ultrasound (2 MHz pulsed-wave ultrasound for 120 min [sonothrombolysis]; intervention group) or sham ultrasound (control group). Ultrasound was delivered using an operator-independent device, which had to be activated within 30 min of the alteplase bolus. Participants, investigators, and those assessing outcomes were unaware of group assignments. The primary outcome was improvement in the modified Rankin Scale score at 90 days in patients enrolled within 3 h of symptom onset, assessed in the intention-to-treat population as a common odds ratio (cOR) using ordinal logistic regression shift analysis. This trial is registered with ClinicalTrials.gov, number NCT01098981. The trial was stopped early by the funder after the second interim analysis because of futility. Findings: Between August, 2013, and April, 2015, 335 patients were randomly allocated to the intervention group and 341 patients to the control group. Compared with the control group, the adjusted cOR for an improvement in modified Rankin Scale score at 90 days in the intervention group was 1·05 (95% CI 0·77–1·45; p=0·74). 51 (16%) of 317 patients in the intervention group and 44 (13%) of 329 patients in the control group died (unadjusted OR 1·24, 95% CI 0·80–1·92; p=0·37) and 83 (26%) and 79 (24%), respectively, had serious adverse events (1·12, 0·79–1·60; p=0·53). Interpretation: Sonothrombolysis delivered by an operator-independent device to patients treated with alteplase after acute ischaemic stroke was feasible and most likely safe, but no clinical benefit was seen at 90 days. Sonothrombolysis could be further investigated either in randomised trials undertaken in stroke centres that are dependent on patient transfer for endovascular reperfusion therapies or in countries where these treatments cannot yet be offered as the standard of care

    Altered Arterial Stiffness and Subendocardial Viability Ratio in Young Healthy Light Smokers after Acute Exercise

    Get PDF
    Studies showed that long-standing smokers have stiffer arteries at rest. However, the effect of smoking on the ability of the vascular system to respond to increased demands (physical stress) has not been studied. The purpose of this study was to estimate the effect of smoking on arterial stiffness and subendocardial viability ratio, at rest and after acute exercise in young healthy individuals.Healthy light smokers (n = 24, pack-years = 2.9) and non-smokers (n = 53) underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest, and 2, 5, 10, and 15 minutes following an exercise test to exhaustion. Smokers were tested, 1) after 12h abstinence from smoking (chronic condition) and 2) immediately after smoking one cigarette (acute condition). At rest, chronic smokers had higher augmentation index and lower aortic pulse pressure than non-smokers, while subendocardial viability ratio was not significantly different. Acute smoking increased resting augmentation index and decreased subendocardial viability ratio compared with non-smokers, and decreased subendocardial viability ratio compared with the chronic condition. After exercise, subendocardial viability ratio was lower, and augmentation index and aortic pulse pressure were higher in non-smokers than smokers in the chronic and acute conditions. cfPWV rate of recovery of was greater in non-smokers than chronic smokers after exercise. Non-smokers were also able to achieve higher workloads than smokers in both conditions.Chronic and acute smoking appears to diminish the vascular response to physical stress. This can be seen as an impaired 'vascular reserve' or a blunted ability of the blood vessels to accommodate the changes required to achieve higher workloads. These changes were noted before changes in arterial stiffness or subendocardial viability ratio occurred at rest. Even light smoking in young healthy individuals appears to have harmful effects on vascular function, affecting the ability of the vascular bed to respond to increased demands

    Intradialytic versus home based exercise training in hemodialysis patients: a randomised controlled trial

    Get PDF
    Background: Exercise training in hemodialysis patients improves fitness, physical function, quality of life and markers of cardiovascular disease such as arterial stiffness. The majority of trials investigating this area have used supervised exercise training during dialysis (intradialytic), which may not be feasible for some renal units. The aim of this trial is to compare the effects of supervised intradialytic with unsupervised home-based exercise training on physical function and arterial stiffness

    Association of plasma and cortical beta-amyloid is modulated by APOE ε4 status.

    Get PDF
    Background: APOE ε4’s role as a modulator of the relationship between soluble plasma beta-amyloid (Aβ) and fibrillar brain Aβ measured by Pittsburgh Compound-B positron emission tomography ([11C]PiB PET) has not been assessed. Methods: Ninety-six Alzheimer’s Disease Neuroimaging Initiative participants with [11C]PiB scans and plasma Aβ1-40 and Aβ1-42 measurements at time of scan were included. Regional and voxel-wise analyses of [11C]PiB data were used to determine the influence of APOE ε4 on association of plasma Aβ1-40, Aβ1-42, and Aβ1-40/Aβ1-42 with [11C]PiB uptake. Results: In APOE ε4− but not ε4+ participants, positive relationships between plasma Aβ1-40/Aβ1-42 and [11C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aβ1-40/Aβ1-42 improved the explained variance in [11C]PiB binding compared to using APOE and plasma Aβ1-40/Aβ1-42 as separate terms. Conclusions: The results suggest that plasma Aβ is a potential Alzheimer’s disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aβ levels

    Twenty-Four-Hour Central (Aortic) Systolic Blood Pressure: Reference Values and Dipping Patterns in Untreated Individuals.

    Get PDF
    Central (aortic) systolic blood pressure (cSBP) is the pressure seen by the heart, the brain, and the kidneys. If properly measured, cSBP is closer associated with hypertension-mediated organ damage and prognosis, as compared with brachial SBP (bSBP). We investigated 24-hour profiles of bSBP and cSBP, measured simultaneously using Mobilograph devices, in 2423 untreated adults (1275 women; age, 18-94 years), free from overt cardiovascular disease, aiming to develop reference values and to analyze daytime-nighttime variability. Central SBP was assessed, using brachial waveforms, calibrated with mean arterial pressure (MAP)/diastolic BP (cSBPMAP/DBPcal), or bSBP/diastolic blood pressure (cSBPSBP/DBPcal), and a validated transfer function, resulting in 144 509 valid brachial and 130 804 valid central measurements. Averaged 24-hour, daytime, and nighttime brachial BP across all individuals was 124/79, 126/81, and 116/72 mm Hg, respectively. Averaged 24-hour, daytime, and nighttime values for cSBPMAP/DBPcal were 128, 128, and 125 mm Hg and 115, 117, and 107 mm Hg for cSBPSBP/DBPcal, respectively. We pragmatically propose as upper normal limit for 24-hour cSBPMAP/DBPcal 135 mm Hg and for 24-hour cSBPSBP/DBPcal 120 mm Hg. bSBP dipping (nighttime-daytime/daytime SBP) was -10.6 % in young participants and decreased with increasing age. Central SBPSBP/DBPcal dipping was less pronounced (-8.7% in young participants). In contrast, cSBPMAP/DBPcal dipping was completely absent in the youngest age group and less pronounced in all other participants. These data may serve for comparison in various diseases and have potential implications for refining hypertension diagnosis and management. The different dipping behavior of bSBP versus cSBP requires further investigation
    • …
    corecore