30 research outputs found

    Matrix Approximation with Side Information: When Column Sampling is Enough

    Full text link
    A novel matrix approximation problem is considered herein: observations based on a few fully sampled columns and quasi-polynomial structural side information are exploited. The framework is motivated by quantum chemistry problems wherein full matrix computation is expensive, and partial computations only lead to column information. The proposed algorithm successfully estimates the column and row-space of a true matrix given a priori structural knowledge of the true matrix. A theoretical spectral error bound is provided, which captures the possible inaccuracies of the side information. The error bound proves it scales in its signal-to-noise (SNR) ratio. The proposed algorithm is validated via simulations which enable the characterization of the amount of information provided by the quasi-polynomial side information

    Penilaian Karya Ilmiah C-11

    No full text
    Recent experimental work has shown that variations in the confinement of <i>n</i>-butane at BrĂžnsted acid sites due to changes in zeolite framework structure strongly affect the apparent and intrinsic enthalpy and entropy of activation for cracking and dehydrogenation. Quantum chemical calculations have provided good estimates of the intrinsic enthalpies and entropies of activation extracted from experimental rate data for MFI, but extending these calculations to less confining zeolites has proven challenging, particularly for activation entropies. Herein, we report our efforts to develop a theoretical model for the cracking and dehydrogenation of <i>n</i>-butane occurring in a series of zeolites containing 10-ring channels and differing in cavity size (TON, FER, -SVR, MFI, MEL, STF, and MWW). We combine a QM/MM approach to calculate intrinsic and apparent activation parameters, with thermal corrections to the apparent barriers obtained from configurational-bias Monte Carlo simulations, to account for configurational contributions due to global motions of the transition state. We obtain good agreement between theory and experiment for all activation parameters for central cracking in all zeolites. For terminal cracking and dehydrogenation, good agreement between theory and experiment is found only at the highest confinements. Experimental activation parameters, especially those for dehydrogenation, tend to increase with decreasing confinement. This trend is not captured by the theoretical calculations, such that deviations between theory and experiment increase as confinement decreases. We propose that, because transition states for dehydrogenation are later than those for cracking, relative movements between the fragments produced in the reaction become increasingly important in the less confining zeolites

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Mþller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Analysis of Preferred Mechanisms of CO Oxidation with Atomically Dispersed Pt1/TiO2 Using the Energetic Span Model

    No full text
    This work examines the mechanisms of low-temperature CO oxidation with atomically dispersed Pt on rutile TiO2 (110) using density functional theory and the energetic span model (ESM). Of the 13 distinct pathways spanning Eley-Rideal (ER), termolecular ER (TER), Langmuir-Hinshelwood(LH), Mars-Van Krevelen (MvK) mechanisms as well as their combinations, TER with CO-assisted CO2 desorption yields the highest turnover frequency (TOF). However, this pathway is ruled out because Pt is dynamically unstable in an intermediate state in the TER cycle, determined in a prior ab initio molecular dynamics study by our group. We instead find that a previously neglected pathway – the ER mechanism – is the most plausible CO oxidation route based on agreement with experimental TOFs and turnover-determining states. The preferred mechanism is sensitive to temperature, with LH becoming more favorable than ER and TER above 750 K. By comparing TOFs for Pt1/TiO2 with prior mechanistic studies of various oxide-supported atomically dispersed catalysts in the literature, we also attempt to identify the most viable metal and support materials for CO oxidation

    Linear Free Energy Relationships for Transition Metal Complex Chemistry: Opportunity or Pipe Dream?

    No full text
    We propose a computational framework for developing Taft-like linear free energy relationships to characterize steric effects on the catalytic activity of transition metal complexes. The framework uses the activation strain model and energy decomposition analysis to isolate electronic and geometric effects, and identifies structural descriptors to construct the linear relationship. We demonstrate proof-of-principle for CH activation with enzyme-inspired [Cu2O2]2+ complexes, each coordinated to two identical bidentate diamine N-donors. Electronic effects are largely similar across the chosen systems and geometric effects – quantified by strain energies – are accurately captured by a linear combination of two structural descriptors. A powerful linear free energy relationship emerges that is both transferable to asymmetrically substituted complexes and independent of choice of theory. We outline steps for expanding this approach to create a generalizable Taft framework for inorganic catalyst design

    Computational Strategies to Probe CH Activation in Dioxo-Dicopper Complexes

    No full text
    Our work addresses the long-standing question of the preferred mechanism of CH activation in dioxodicopper complexes, with implications for [Cu2O2]2+ -containing enzymes as well as homogeneous and heterogeneous catalysts, which are capable of performing selective oxidation. Using density functional theory (DFT), we show that the two proposed mechanisms, one-step oxo-insertion and two-step radical recombination, have very distinct and measurable responses to changes in the electrophilicity of N-donors in the catalyst. Using energy decomposition analysis, we calculate the electronic interactions that contribute to transition state stabilization, and the effect of N-donors on these interactions. The analysis shows that oxo-insertion, by virtue of possessing a late and charged transition state, is highly sensitive to N-donor electrophilicity and barriers decrease with more electron-withdrawing N-donors. On the other hand, the radical pathway possesses an early transition state and is therefore relatively insensitive to N-donor variations. One possible strategy, going forward, is the design and execution of complementary experiments to deduce the mechanism based on the presence or absence of N-donor dependence. We adopt an alternative approach where DFT results are contrasted with prior experiments via Hammett relationships. The remarkable agreement between experimental and calculated trends for oxo-insertion with imidazole N-donor catalysts presents compelling evidence in favor of the one-step pathway for CH activation
    corecore