18 research outputs found

    A new method for ecoacoustics? Toward the extraction and evaluation of ecologically-meaningful soundscape components using sparse coding methods

    Get PDF
    Passive acoustic monitoring is emerging as a promising non-invasive proxy for ecological complexity with potential as a tool for remote assessment and monitoring (Sueur and Farina, 2015). Rather than attempting to recognise species-specific calls, either manually or automatically, there is a growing interest in evaluating the global acoustic environment. Positioned within the conceptual framework of ecoacoustics, a growing number of indices have been proposed which aim to capture community-level dynamics by (e.g. Pieretti et al., 2011; Farina, 2014; Sueur et al., 2008b) by providing statistical summaries of the frequency or time domain signal. Although promising, the ecological relevance and efficacy as a monitoring tool of these indices is still unclear. In this paper we suggest that by virtue of operating in the time or frequency domain, existing indices are limited in their ability to access key structural information in the spectro-temporal domain. Alternative methods in which time-frequency dynamics are preserved are considered. Sparse-coding and source separation algorithms (specifically, shift-invariant probabilistic latent component analysis in 2D) are proposed as a means to access and summarise time- frequency dynamics which may be more ecologically-meaningful

    Genomic Signatures of Strain Selection and Enhancement in Bacillus atrophaeus var. globigii, a Historical Biowarfare Simulant

    Get PDF
    (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS). on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the “military” isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of “military” isolates on lactate-containing media, and showed that the “military” strains exhibited a hypersporulating phenotype.Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Conditions for non-oscillatory response of multiple non-linear systems

    No full text
    A dynamical system is modelled by the non-linear equation: x¨+F(x, ẋ) = 0, where F is an analytic function denned on some open domain δ phase-space E2nAssuming the ultimate boundedness of responses in the arbitrarily largo bounded neighbourhood δHδ of an asymptotically stable single singular point, the conditions for non-oscillatory approach of responses to that point are considered. The design of the system to achieve this property is proposed, proving that linear criteria may be employed

    Delivery of Fall Prevention Interventions for At-Risk Older Adults in Rural Areas: Findings from a National Dissemination

    No full text
    Falls incidence rates and associated injuries are projected to increase among rural-dwelling older adults, which highlights the need for effective interventions to prevent falls and manage fall-related risks. The purpose of this descriptive study was to identify the geospatial dissemination of eight evidence-based fall prevention programs (e.g., A Matter of Balance, Stepping On, Tai Chi, Otago Exercise Program) across the United States (U.S.) in terms of participants enrolled, workshops delivered, and geospatial reach. These dissemination characteristics were compared across three rurality designations (i.e., metro areas; non-metro areas adjacent to metro areas; and, non-metro areas not adjacent to metro areas). Data were analyzed from a national repository of 39 Administration for Community Living (ACL) grantees from 2014–2017 (spanning 22 states). Descriptive statistics were used to assess program reach, delivery-site type, and completion rate by rurality. Geographic information systems (GIS) geospatially represented the collective reach of the eight interventions. Of the 45,812 participants who attended a fall prevention program, 12.7% attended workshops in non-metro adjacent areas and 6.6% attended workshops in non-metro non-adjacent areas. Of the 3755 workshops delivered (in over 550 unique counties), most were delivered in senior centers (26%), residential facilities (20%), healthcare organizations (13%), and faith-based organizations (9%). On average, the workshop attendance/retention rates were consistent across rurality (~70%). Findings highlight the need to diversify the delivery infrastructure for fall prevention programs to adequately serve older adults in rural areas. Ongoing efforts are needed to offer sustainable technical assistance and to develop scalable clinical-community referral systems to increase fall prevention program participation among rural-dwelling older adults
    corecore