23 research outputs found

    Pulmonary Delivery of Proteins Using Nanocomposite Microcarriers.

    Get PDF
    In this study, Taguchi design was used to determine optimal parameters for the preparation of bovine serum albumin (BSA)-loaded nanoparticles (NPs) using a biodegradable polymer poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL). NPs were prepared, using BSA as a model protein, by the double emulsion evaporation process followed by spray-drying from leucine to form nanocomposite microparticles (NCMPs). The effect of various parameters on NP size and BSA loading were investigated and dendritic cell (DC) uptake and toxicity. NCMPs were examined for their morphology, yield, aerosolisation, in vitro release behaviour and BSA structure. NP size was mainly affected by the polymer mass used and a small particle size ≤500 nm was achieved. High BSA (43.67 ± 2.3 μg/mg) loading was influenced by BSA concentration. The spray-drying process produced NCMPs (50% yield) with a porous corrugated surface, aerodynamic diameter 1.46 ± 141 μm, fine particle dose 45.0 ± 4.7 μg and fine particle fraction 78.57 ± 0.1%, and a cumulative BSA release of 38.77 ± 3.0% after 48 h. The primary and secondary structures were maintained as shown by sodium dodecyl sulphate poly (acrylamide) gel electrophoresis and circular dichroism. Effective uptake of NPs was seen in DCs with >85% cell viability at 5 mg/mL concentration after 4 h. These results indicate the optimal process parameters for the preparation of protein-loaded PGA-co-PDL NCMPs suitable for inhalation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci

    Integrated motor drives: state of the art and future trends

    Get PDF
    With increased need for high power density, high efficiency and high temperature capabilities in Aerospace and Automotive applications, Integrated Motor Drives (IMD) offers a potential solution. However, close physical integration of the converter and the machine may also lead to an increase in components temperature. This requires careful mechanical, structural and thermal analysis; and design of the IMD system. This paper reviews existing IMD technologies and their thermal effects on the IMD system. The effects of the power electronics (PE) position on the IMD system and its respective thermal management concepts are also investigated. The challenges faced in designing and manufacturing of an IMD along with the mechanical and structural impacts of close physical integration is also discussed and potential solutions are provided. Potential converter topologies for an IMD like the Matrix converter, 2-level Bridge, 3-level NPC and Multiphase full bridge converters are also reviewed. Wide band gap devices like SiC and GaN and their packaging in power modules for IMDs are also discussed. Power modules components and packaging technologies are also presented

    Dynamic frustrated magnetism in Tb<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> at 50 mK

    Get PDF
    The low temperature (T<1K) properties of the cooperative paramagnet Tb2Ti2O7 have been studied by ac susceptibility, neutron diffraction and neutron spin echo techniques. Like several other frustrated magnets, Tb2Ti2O7, is believed to remain paramagnetic down to 3c0.07K. However, recent studies [Yasui et al., J. Phys. Soc. Jpn. 71, 599 (2002), for example] suggest that Tb2Ti2O7 enters an ordered, albeit glassy, state at a relatively high temperature, 3c1.5K. Our results confirm that the majority of the spins in Tb2Ti2O7 fluctuate very rapidly, even at 50 mK and that static, spatial correlations do not develop beyond nearest neighbor at similar temperatures. We suggest that the observation of a partial freezing of this magnetic system, at finite temperature, is a result of a small fraction of spins freezing around defects in the stoichiometric crystal structure.Peer reviewed: YesNRC publication: Ye
    corecore