9 research outputs found

    A Pathway closely related to the D-tagatose pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    Full text link
    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.Doctora

    Structure and kinetics of a monomeric glucosamine-6-phosphate deaminase

    No full text
    Glucosamine 6-phosphate is converted to fructose 6-phosphate and ammonia by the action of the enzyme glucosamine 6-phosphate deaminase, NagB. This reaction is the final step in the specific GlcNAc utilization pathway and thus decides the metabolic fate of GlcNAc. Sequence analyses suggest that the NagB "superfamily" consists of three main clusters: multimeric and allosterically regulated glucosamine-6-phosphate deaminases (exemplified by Escherichia coli NagB), phosphogluconolactonases, and monomeric hexosamine-6-phosphate deaminases. Here we present the three-dimensional structure and kinetics of the first member of this latter group, the glucosamine-6-phosphate deaminase, NagB, from Bacillus subtilis. The structures were determined in ligand-complexed forms at resolutions around 1.4 Å. BsuNagB is monomeric in solution and as a consequence is active (kcat 28 s-1, Km(app) 0.13 mM) without the need for allosteric activators. A decrease in activity at high substrate concentrations may reflect substrate inhibition (with Ki of 4 mM). The structure completes the NagB superfamily structural landscape and thus allows further interrogation of genomic data in terms of the regulation of NagB and the metabolic fate(s) of glucosamine 6-phosphate
    corecore