57 research outputs found
A new open access journal for a rapidly evolving biomedical field: introducing Molecular Cytogenetics
White light-activated bactericidal coating using acrylic latex, crystal violet, and zinc oxide nanoparticles
In this study, a white light-activated bactericidal coating consisting of acrylic latex, zinc oxide nanoparticles (ZnO NPs) and crystal violet (CV) was produced through a two-step dipping process. CV molecules and ZnO NPs were incorporated into an acrylic latex coating deposited onto a glass substrate. After the incorporation, the colour of the coating surface changed to purple from colourless and XPS sputtering analysis showed the existence of ZnO NPs within the coating. In a bactericidal test, the CV dyed samples showed an intrinsic bactericidal activity (0.7-0.88 log reduction in viable bacteria number) against S. aureus whereas it was not observed on E. coli in the dark. Upon white light irradiation (light intensity: 512 lux), the bactericidal activity of the CV-dyed sample was significantly enhanced. Compared to the control, the CV-dyed samples showed 1.16-2.51 log reduction against both bacterial strains in white light. In terms of the testing against S. aureus in white light, ZnO NPs addition into the CV-dyed sample showed enhanced bactericidal activity. The bactericidal activity of the CV-dyed sample with ZnO NPs was 1.34 log higher than the CV-dyed sample. Based on data obtained from TR-EPR spectroscopy, it is speculated that the addition of ZnO NPs into the dye induces an alternative photoredox pathway, resulting in more generation of reactive oxygen species lethal to bacterial cells. It is expected that this technique could be used to transform a wide range of surfaces into bactericidal surfaces and contribute to maintaining low pathogen levels on hospital surfaces related to healthcare-associated infection
Insurance Rating of Patients with Inflammatory Bowel Disease: Report of a Conference on Morbidity and Mortality
Patient members reported to the Crohn’s and Colitis Foundation of Canada (CCFC) about their difficulties to obtain insurance. In 1991, the Lay Board of the CCFC requested its Medical Advisory Board (MAB) to investigate this problem. At that time, insurance ratings could be illustrated by the 1985 edition of Brackenridge’s monograph on life risks. The MAB found that data on mortality were outdated. A conference on morbidity and mortality of inflammatory bowel disease (IBD) was organized by the authors and held in May 1992. Based on questionnaires to patients, evidence provided by invited speakers and the results of small group conferences, it was concluded that patients with IBD have difficulties in obtaining insurance, even though the quality of life and mortality of IBD patients is not very different from that of the general population. However, the mortality rate of the healthy insured population is lower than that of the general population, and thus much lower than that of IBD patients. Patients have a better chance to obtain insurance if there is a close cooperation between the treating physician and the medical officer of the insurance company. Changes have occurred since the conference held in May 1992. The recent edition of Brackenridge’s text (1992) provides a better prognosis but unfortunately unchanged rating for patients with IBD than did the 1985 edition. Close cooperation between the Patient Advisory Committee of the CCFC and the Executives of the Canadian Life Insurance Medical Officers Association may further improve the insurance rating of patients with IBD
Acute intestinal failure: international multicenter point-of-prevalence study
Background & aims: Intestinal failure (IF) is defined from a requirement or intravenous supplementation due to failing capacity to absorb nutrients and fluids. Acute IF is an acute, potentially reversible form of IF. We aimed to identify the prevalence, underlying causes and outcomes of acute IF. Methods: This point-of-prevalence study included all adult patients hospitalized in acute care hospitals and receiving parenteral nutrition (PN) on a study day. The reason for PN and the mechanism of IF (if present) were documented by local investigators and reviewed by an expert panel. Results: Twenty-three hospitals (19 university, 4 regional) with a total capacity of 16,356 acute care beds and 1237 intensive care unit (ICU) beds participated in this study. On the study day, 338 patients received PN (21 patients/1000 acute care beds) and 206 (13/1000) were categorized as acute IF. The categorization of reason for PN was revised in 64 cases (18.9% of total) in consensus between the expert panel and investigators. Hospital mortality of all study patients was 21.5%; the median hospital stay was 36 days. Patients with acute IF had a hospital mortality of 20.5% and median hospital stay of 38 days (P > 0.05 for both outcomes). Disordered gut motility (e.g. ileus) was the most common mechanism of acute IF, and 71.5% of patients with acute IF had undergone abdominal surgery. Duration of PN of ≥42 days was identified as being the best cut-off predicting hospital mortality within 90 days. PN ≥ 42 days, age, sepsis and ICU admission were independently associated with 90-day hospital mortality. Conclusions: Around 2% of adult patients in acute care hospitals received PN, 60% of them due to acute IF. High 90-day hospital mortality and long hospital stay were observed in patients receiving PN, whereas presence of acute IF did not additionally influence these outcomes. Duration of PN was associated with increased 90-day hospital mortality
An aberrant NOTCH2-BCR signaling axis in B cells from patients with chronic GVHD
B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this “NOTCH2-BCR axis” in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8, each critical to B-cell differentiation and fate. All-trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4-to-IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5, but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity
Genetic determinants of risk in pulmonary arterial hypertension:international genome-wide association studies and meta-analysis
Background: Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. Methods: We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11 744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. Findings: A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13 × 10 –15 ) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], p=7·65 × 10 –20 ) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], p=1·69 × 10 –12 ; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity. Interpretation: This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. Funding: UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR. </p
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Recommended from our members
The stock promotion business ::the inside story of Canadian mining deals and the people behind them /
- …
