437 research outputs found

    Baryons in QCD_{AS} at Large N_c: A Roundabout Approach

    Full text link
    QCD_{AS}, a variant of large N_c QCD in which quarks transform under the color two-index antisymmetric representation, reduces to standard QCD at N_c = 3 and provides an alternative to the usual large N_c extrapolation that uses fundamental representation quarks. Previous strong plausibility arguments assert that the QCD_{AS} baryon mass scales as N_c^2; however, the complicated combinatoric problem associated with quarks carrying two color indices impeded a complete demonstration. We develop a diagrammatic technique to solve this problem. The key ingredient is the introduction of an effective multi-gluon vertex: a "traffic circle" or "roundabout" diagram. We show that arbitrarily complicated diagrams can be reduced to simple ones with the same leading N_c scaling using this device, and that the leading contribution to baryon mass does, in fact, scale as N_c^2.Comment: 9 pages, 9 pdf figures, ReVTeX with pdflate

    Evaluating the cytotoxicity of innate immune effector cells using the GrB ELISPOT assay

    Get PDF
    BACKGROUND: This study assessed the Granzyme B (GrB) ELISPOT as a viable alternative to the (51)Cr-release assay for measuring cytotoxic activity of innate immune effector cells. We strategically selected the GrB ELISPOT assay because GrB is a hallmark effector molecule of cell-mediated destruction of target cells. METHODS: We optimized the GrB ELISPOT assay using the human-derived TALL-104 cytotoxic cell line as effectors against K562 target cells. Titration studies were performed to assess whether the ELISPOT assay could accurately enumerate the number of GrB-secreting effector cells. TALL-104 were treated with various secretion inhibitors and utilized in the GrB ELISPOT to determine if GrB measured in the ELISPOT was due to degranulation of effector cells. Additionally, CD107a expression on effector cells after effector-target interaction was utilized to further confirm the mechanism of GrB release by TALL-104 and lymphokine-activated killer (LAK) cells. Direct comparisons between the GrB ELISPOT, the IFN-γ ELISPOT and the standard (51)Cr-release assays were made using human LAK cells. RESULTS: Titration studies demonstrated a strong correlation between the number of TALL-104 and LAK effector cells and the number of GrB spots per well. GrB secretion was detectable within 10 min of effector-target contact with optimal secretion observed at 3–4 h; in contrast, optimal IFN-γ secretion was not observed until 24 h. The protein secretion inhibitor, brefeldin A, did not inhibit the release of GrB but did abrogate IFN-γ production by TALL-104 cells. GrB secretion was abrogated by BAPTA-AM (1,2-bis-(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid tetra(acetoxymethyl) ester), which sequesters intracellular Ca(2+), thereby preventing degranulation. The number of effector cells expressing the degranulation associated glycoprotein CD107a increased after interaction with target cells and correlated with the stimulated release of GrB measured in the ELISPOT assay. CONCLUSIONS: Because of its high sensitivity and ability to estimate cytotoxic effector cell frequency, the GrB ELISPOT assay is a viable alternative to the (51)Cr-release assay to measure MHC non-restricted cytotoxic activity of innate immune cells. Compared to the IFN-γ ELISPOT assay, the GrB ELISPOT may be a more direct measure of cytotoxic cell activity. Because GrB is one of the primary effector molecules in natural killer (NK) cell-mediated killing, detection and enumeration of GrB secreting effector cells can provide valuable insight with regards to innate immunological responses

    Understanding the uncertainty in global forest carbon turnover

    Get PDF
    The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985-2014 global average forest biomass turnover times vary from 12.2 to 23.5 years between TBMs. TBM differences in phenological processes, which control allocation to, and turnover rate of, leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time, and thus biomass change, for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Thirteen model-based hypotheses of controls on turnover time are identified, along with recommendations for pragmatic steps to test them using existing and novel observations. Efforts to resolve uncertainty in turnover time, and thus its impacts on the future evolution of biomass carbon stocks across the world\u27s forests, will need to address both mortality and establishment components of forest demography, as well as allocation of carbon to woody versus non-woody biomass growth

    Population Health Solutions for Assessing Cognitive Impairment in Geriatric Patients.

    Get PDF
    In December 2017, the National Academy of Neuropsychology convened an interorganizational Summit on Population Health Solutions for Assessing Cognitive Impairment in Geriatric Patients in Denver, Colorado. The Summit brought together representatives of a broad range of stakeholders invested in the care of older adults to focus on the topic of cognitive health and aging. Summit participants specifically examined questions of who should be screened for cognitive impairment and how they should be screened in medical settings. This is important in the context of an acute illness given that the presence of cognitive impairment can have significant implications for care and for the management of concomitant diseases as well as pose a major risk factor for dementia. Participants arrived at general principles to guide future screening approaches in medical populations and identified knowledge gaps to direct future research. Key learning points of the summit included: recognizing the importance of educating patients and healthcare providers about the value of assessing current and baseline cognition;emphasizing that any screening tool must be appropriately normalized and validated in the population in which it is used to obtain accurate information, including considerations of language, cultural factors, and education; andrecognizing the great potential, with appropriate caveats, of electronic health records to augment cognitive screening and tracking of changes in cognitive health over time

    Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group.

    Get PDF
    Cancer immunotherapy has transformed the treatment of cancer. However, increasing use of immune-based therapies, including the widely used class of agents known as immune checkpoint inhibitors, has exposed a discrete group of immune-related adverse events (irAEs). Many of these are driven by the same immunologic mechanisms responsible for the drugs\u27 therapeutic effects, namely blockade of inhibitory mechanisms that suppress the immune system and protect body tissues from an unconstrained acute or chronic immune response. Skin, gut, endocrine, lung and musculoskeletal irAEs are relatively common, whereas cardiovascular, hematologic, renal, neurologic and ophthalmologic irAEs occur much less frequently. The majority of irAEs are mild to moderate in severity; however, serious and occasionally life-threatening irAEs are reported in the literature, and treatment-related deaths occur in up to 2% of patients, varying by ICI. Immunotherapy-related irAEs typically have a delayed onset and prolonged duration compared to adverse events from chemotherapy, and effective management depends on early recognition and prompt intervention with immune suppression and/or immunomodulatory strategies. There is an urgent need for multidisciplinary guidance reflecting broad-based perspectives on how to recognize, report and manage organ-specific toxicities until evidence-based data are available to inform clinical decision-making. The Society for Immunotherapy of Cancer (SITC) established a multidisciplinary Toxicity Management Working Group, which met for a full-day workshop to develop recommendations to standardize management of irAEs. Here we present their consensus recommendations on managing toxicities associated with immune checkpoint inhibitor therapy

    Minor Protease Inhibitor Mutations at Baseline Do Not Increase the Risk for a Virological Failure in HIV-1 Subtype B Infected Patients

    Get PDF
    BACKGROUND: Minor protease inhibitor (PI) mutations often exist as polymorphisms in HIV-1 sequences from treatment-naïve patients. Previous studies showed that their presence impairs the antiretroviral treatment (ART) response. Evaluating these findings in a larger cohort is essential. METHODS: To study the impact of minor PI mutations on time to viral suppression and time to virological failure, we included patients from the Swiss HIV Cohort Study infected with HIV-1 subtype B who started first-line ART with a PI and two nucleoside reverse transcriptase inhibitors. Cox regression models were performed to compare the outcomes among patients with 0 and ≥ 1 minor PI mutation. Models were adjusted for baseline HIV-1 RNA, CD4 cell count, sex, transmission category, age, ethnicity, year of ART start, the presence of nucleoside reverse transcriptase inhibitor mutations, and stratified for the administered PIs. RESULTS: We included 1199 patients of whom 944 (78.7%) received a boosted PI. Minor PI mutations associated with the administered PI were common: 41.7%, 16.1%, 4.7% and 1.9% had 1, 2, 3 or ≥ 4 mutations, respectively. The time to viral suppression was similar between patients with 0 (reference) and ≥ 1 minor PI mutation (multivariable hazard ratio (HR): 1.1 [95% confidence interval (CI): 1.0-1.3], P = .196). The time to virological failure was also similar (multivariable HR:.9 [95% CI:.5-1.6], P = .765). In addition, the impact of each single minor PI mutation was analyzed separately: none was significantly associated with the treatment outcome. CONCLUSIONS: The presence of minor PI mutations at baseline has no effect on the therapy outcome in HIV infected individuals

    Epidemiology and Molecular Relationships of Cryptosporidium spp. in People, Primates, and Livestock from Western Uganda

    Get PDF
    Cryptosporidium is a common gastrointestinal parasite known for its zoonotic potential. We found Cryptosporidium in 32.4% of people, 11.1% of non-human primates, and 2.2% of livestock in the region of Kibale National Park, Uganda. In people, infection rates were higher in one community than elsewhere, and fetching water from an open water source increased the probability of infection. Phylogenetic analyses identified clusters of Cryptosporidium with mixed host origins in people, primates, and livestock outside the park; however, parasites from primates inside the park were genetically divergent, suggesting a separate sylvatic transmission cycle. Infection was not associated with clinical disease in people, even in the case of co-infection with the gastrointestinal parasite Giardia duodenalis. Parasites such as Cryptosporidium may be maintained through frequent cross-species transmission in tropical settings where people, livestock, and wildlife interact frequently, but the parasite may undergo more host-specific transmission where such interactions do not occur. Persistent low-level shedding and immunity may limit the clinical effects of infection in such settings
    corecore