23 research outputs found

    Multiple Endodontic Guides for Root Canal Localization and Preparation in Furcation Perforations: A Report of Two Cases

    Get PDF
    Perforations are managed by surgical or nonsurgical approach depending on the relationship of the perforation site to the crestal bone level and attachment apparatus. Relocating the canal orifice or root canal close to the perforation site is quite challenging even with the aid of a dental operating microscope. In these two case reports, guided endodontics was applied in root canal localization and preparation in cases of furcation perforations. This is the report of two patients (42 and 15-year-old, respectively) who were referred for root canal treatment of the mandibular right first molar. The first case complained of pain on biting, foul odor, and bad taste. The referring dentist noted a furcation perforation and an inability to locate the mesial canals. Radiographic examination showed furcation radiolucency. Definitive diagnosis was symptomatic apical periodontitis. The second case complained of severe throbbing pain along with pain on biting. Mesial canals could not be detected due to a furcation perforation as noted by the referring dentist. Radiographic examination revealed a large furcation perforation and related bone resorption. Definitive diagnosis was acute apical abscess. In each case, a silicone impression of the mandibular arch was obtained and scanned along with cone-beam computed tomography scan to plan for localization and preparation of the mesiobuccal canals using implant planning software. Multiple guides were fabricated through rapid prototyping and allowed for the correct orientation and insertion of endodontic files through the canal. Canals were prepared and then obturated using warm vertical compaction technique and the perforation were repaired by mineral trioxide aggregate (MTA). Six-month and one-year follow-ups revealed no symptoms and evidence of radiographic healing. Thus, multiple endodontic three-dimensional guides can be successful in root canal localization and preparation in cases of furcation perforations

    Detection of electrocardiogram QRS complex based on modified adaptive threshold

    Get PDF
    It is essential for medical diagnoses to analyze Electrocardiogram (ECG signal). The core of this analysis is to detect the QRS complex. A modified approach is suggested in this work for QRS detection of ECG signals using existing database of arrhythmias. The proposed approach starts with   the same steps of previous approaches by filtering the ECG. The filtered signal is then fed to a differentiator to enhance the signal. The modified adaptive threshold method which is suggested in this work, is used to detect QRS complex. This method uses a new approach for adapting threshold level, which is based on statistical analysis of the signal. Forty-eight records from an existing arrhythmia database have been tested using the modified method. The result of the proposed method shows the high performance metrics with sensitivity of 99.62% and a positive predictivity of 99.88% for QRS complex detection

    A mitigation of channel crosstalk effect in dispersion shifted fiber based on durability of modulation technique

    Get PDF
    In fiber optics the Four Wave Mixing (FWM) has the harmful effect of an optical transmission system that can severely limit Wavelength Division Multiplexing (WDM) and reduce the transmission aptness. This work preset the durability of the different modulation format was tested to FWM by using Dispersion Shifted Fiber (DSF). Moreover, the performance of the proposed system is surveyed by changing the fiber length and applying an information rate of 200 Gb/s. The experimental results show that the FWM capacity has decreased significantly by more than 14 dB when applying Return to Zero (RZ) modulation form. In addition, in terms of the propsed system performance in the first channel and with 700 km distance, it was observed that the lower Bit Error Rate (BER) in the normal RZ modulation is equal to 1.3×10-13. As well as it is noticeable when applied the Non Return to Zero (NRZ), the Modified Duobinary Return to Zero (MDRZ) and Gaussian modulation, the system performance will be quickly changed and getting worse, where the BERs increased to 1.3×10-4, 1.3×10-6 and 1.3×10-2 consecutively at same channel and for the same parameters

    The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface

    Get PDF
    Experimental investigation was performed to highlight the influence of ionic bounding and surface roughness effects on the surface wettability. Nanocoating technique via e-beam physical vapor deposition process was used to fabricate aluminium (Al) film of 50, 100, and 150 nm on the surface of an Al substrate. Microstructures of the samples before and after deposition were observed using an atomic force microscopy. A goniometer device was later on used to examine the influence of surface topography on deionised water of pH 4, 7 and 9 droplets at a temperature ranging from 10 °C to 60 °C through their contact angles with the substrate surface, for both coated and uncoated samples. It was found that, although the coated layer has reduced the mean surface roughness of the sample from 10.7 nm to 4.23 nm, by filling part of the microstructure gaps with Al nanoparticles, the wettability is believed to be effected by the ionic bounds between the surface and the free anions in the fluid. As the deionised water of pH 4, and 9 gave an increase in the average contact angles with the increase of the coated layer thickness. On the other hand, the deionised water of pH 7 has showed a negative relation with the film thickness, where the contact angle reduced as the thickness of the coated layer was increased. The results from the aforementioned approach had showed that nanocoating can endorse the hydrophobicity (unwitting) nature of the surface when associated with free ions hosted by the liquid

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Contamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide Systems Prepared by Reactive Ball Milling

    No full text
    Ultrafine MgH2 nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized MgH2 was doped with previously prepared TiC nanopowders, which were contaminated with 2.4 wt. % FeCr (materials of the milling media), and then ball milled under hydrogen gas atmosphere for 50 h. The results related to the morphological examinations of the fabricated nanocomposite powders beyond the micro-and nano-levels showed excellent distributions of 5.2 wt. % TiC/4.6 wt. % FeCr dispersoids embedded into the fine host matrix of MgH2 powders. The as-fabricated nanocomposite MgH2/5.2 wt. % TiC/4.6 wt. % FeCr powders possessed superior hydrogenation/dehydrogenation characteristics, suggested by the low value of the activation energy (97.74 kJ/mol), and the short time required for achieving a complete absorption (6.6 min) and desorption (8.4 min) of 5.51 wt. % H2 at a moderate temperature of 275 °C under a hydrogen gas pressure ranging from 100 mbar to 8 bar. van’t Hoff approach was used to calculate the enthalpy (DH) and entropy (DS) of hydrogenation for MgH2, which was found to be -72.74 kJ/mol and 112.79 J/mol H2/K, respectively. Moreover, van’t Hoff method was employed to calculate the DH and DS of dehydrogenation, which was found to be 76.76 kJ/mol and 119.15 J/mol H2/K, respectively. This new nanocomposite system possessed excellent absorption/desorption cyclability of 696 complete cycles, achieved in a cyclic-life-time of 682 h

    Radiologic Imaging in Meckel Diverticulum Complications

    No full text
    In 1809, Johann Friedrich Meckel the Younger described the most common congenital small bowel anomaly, which was named after him; however, the radiologic manifestations and interventional guidelines related to this entity are still limited to a few large-scale case series as well as proposed therapeutic protocols for the general population. Despite the fact that this entity is more commonly found within the first decade of life, imaging and management protocols remain controversial in the pediatric population, particularly within the asymptomatic group. We present an article depicting the radiologic and histologic findings in a series of Meckel's diverticulum within the pediatric population seen within our institution. We present this series to underscore the importance of high clinical suspicion in the early diagnosis and management of Meckel's diverticulum and to examine further the radiologic and therapeutic protocols within the pediatric population based on our local experience

    Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal

    No full text
    © The Author(s) 2017. Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm3) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application
    corecore