247 research outputs found

    Three models of ordinal computability

    Get PDF
    In this thesis we expand the scope of ordinal computability, i.e., the study of models of computation that are generalized to infinite domains. The discipline sets itself apart from classical work on generalized recursion theory by focusing strongly on the computational paradigm and an analysis in elementary computational steps. In the present work, two models of classical computability of which no previous generalizations to ordinals are known to the author are lifted to the ordinal domain, namely λ-calculus and Blum-Shub-Smale machines. One of the multiple generalizations of a third model relevant to this thesis, the Turing machine, is employed to further study classical descriptive set theory. The main results are: An ordinal λ-calculus is defined and confluency properties in the form of a weak Church-Rosser theorem are established. The calculus is proved to be strongly related to the constructible hierarchy of sets, a feature typical for an entire subfamily of models of ordinal computation. Ordinal Turing machines with input restricted to subsets of ω are shown to compute the Δ12 sets of reals. Conversely, the machines can be employed to reprove the absoluteness of Σ12 sets (Shoenfield absoluteness) and basic properties of Σ12 sets. New tree representations and new pointclasses defined by the means of ordinal Turing computations are introduced and studied. The Blum-Shub-Smale model for computation on the real numbers is lifted to transfinite running times. The supremum of possible runtimes is determined and an upper bound on the computational strength is given. Summarizing, this thesis both expands the field of ordinal computability by enlarging its palette of computational models and also connects the field further by tying in the new models into the existing framework. Questions that have been raised in the community, e.g. on the possibility of generalizations of λ-calculus and Blum-Shub-Smale machines, are addressed and answered

    La Oveja : su estructura y sus órganos interiores /

    Get PDF

    El Perro : su estructura y sus órganos interiores /

    Get PDF
    A la portada: Figuras según las indicaciones hechas por el autor

    Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh

    Get PDF
    Tidal salt marshes are important contributors to soil carbon (C) stocks despite their relatively small land surface area. Although it is well understood that salt marshes have soil C burial rates orders of magnitude greater than those of terrestrial ecosystems, there is a wide range in accrual rates among spatially distributed marshes. In addition, wide ranges in C accrual rates also exist within a single marsh ecosystem. Tidal marshes often contain multiple species of cordgrass due to variations in hydrology and soil biogeochemistry caused by microtopography and distance from tidal creeks, creating distinct subsites. Our overarching objective was to observe how soil C concentration and dissolved organic carbon (DOC) vary across four plant phenophases and across three subsites categorized by unique vegetation and hydrology. We also investigated the dominant biogeochemical controls on the spatiotemporal variability of soil C and DOC concentrations. We hypothesized that subsite biogeochemistry drives spatial heterogeneity in soil C concentration, and this causes variability in total soil C and DOC concentrations at the marsh scale. In addition, we hypothesized that soil C concentration and porewater biogeochemistry vary temporally across the four plant phenophases (i.e., senescence, dormancy, green-up, maturity). To test these interrelated hypotheses, we quantified soil C and DOC concentrations in 12 cm sections of soil cores (0–48 cm depth) across time (i.e., phenophase) and space (i.e., subsite), alongside several other porewater biogeochemical variables. Soil C concentration varied significantly (p &lt; 0.05) among the three subsites and was significantly greater during plant dormancy. Soil S, porewater sulfide, redox potential, and depth predicted 44 % of the variability in soil C concentration. There were also significant spatial differences in the optical characterization properties of DOC across subsites. Our results show that soil C varied spatially across a marsh ecosystem by up to 63 % and across plant phenophase by 26 %, causing variability in soil C accrual rates and stocks depending on where and when samples are taken. This shows that hydrology, biogeochemistry, and plant phenology are major controls on salt marsh C content. It is critical to consider spatiotemporal heterogeneity in soil C concentration and porewater biogeochemistry to account for these sources of uncertainty in C stock estimates. We recommend that multiple locations and sampling time points are sampled when conducting blue C assessments to account for ecosystem-scale variability.</p

    PopulusPtERF85 Balances Xylem Cell Expansion and Secondary Cell Wall Formation in Hybrid Aspen

    Get PDF
    Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identified a novel role for the ethylene-induced Populus Ethylene Response Factor PtERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of PtERF85 is high in phloem and cambium cells and during the expansion of xylem cells, while it is low in maturing xylem tissue. Extending PtERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation, and growth. The expression of genes associated with plant vascular development and the biosynthesis of SCW chemical components such as xylan and lignin, was down-regulated in the transgenic trees. Our results suggest that PtERF85 activates genes related to xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of PtERF85 during wood development together with the observed phenotypes in response to ectopic PtERF85 expression suggests that PtERF85 contributes to the transition of fiber cells from elongation to secondary cell wall deposition

    Методические подходы к оценке экологической безопасности региона

    Full text link
    В статье рассматриваются методические подходы к оценке уровня экологической безопасности региона и муниципального образования, обосновываются пороговые значения состояния безопасности, приводятся результаты расчетов для Свердловской област

    PopulusPtERF85 Balances Xylem Cell Expansion and Secondary Cell Wall Formation in Hybrid Aspen

    Get PDF
    Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identified a novel role for the ethylene-induced Populus Ethylene Response Factor PtERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of PtERF85 is high in phloem and cambium cells and during the expansion of xylem cells, while it is low in maturing xylem tissue. Extending PtERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation, and growth. The expression of genes associated with plant vascular development and the biosynthesis of SCW chemical components such as xylan and lignin, was down-regulated in the transgenic trees. Our results suggest that PtERF85 activates genes related to xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of PtERF85 during wood development together with the observed phenotypes in response to ectopic PtERF85 expression suggests that PtERF85 contributes to the transition of fiber cells from elongation to secondary cell wall deposition

    An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition

    Get PDF
    Abstract Differentiation of xylem elements involves cell expansion, secondary cell wall deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula x tremuloides). Xylem properties, secondary cell wall (SCW) chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, FT-IR, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells. This article is protected by copyright. All rights reserved.Peer reviewe
    corecore