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Abstract

In this thesis we expand the scope of ordinal computability, i.e., the study of
models of computation that are generalized to infinite domains. The discipline
sets itself apart from classical work on generalized recursion theory by focusing
strongly on the computational paradigm and an analysis in elementary compu-
tational steps. In the present work, two models of classical computability of
which no previous generalizations to ordinals are known to the author are lifted
to the ordinal domain, namely λ-calculus and Blum-Shub-Smale machines. One
of the multiple generalizations of a third model relevant to this thesis, the Tur-
ing machine, is employed to further study classical descriptive set theory. The
main results are:

An ordinal λ-calculus is defined and confluency properties in the form of
a weak Church-Rosser theorem are established. The calculus is proved to be
strongly related to the constructible hierarchy of sets, a feature typical for an
entire subfamily of models of ordinal computation.

Ordinal Turing machines with input restricted to subsets of ω are shown to
compute the ∆1

2 sets of reals. Conversely, the machines can be employed to re-
prove the absoluteness of Σ1

2 sets (Shoenfield absoluteness) and basic properties
of Σ1

2 sets. New tree representations and new pointclasses defined by the means
of ordinal Turing computations are introduced and studied.

The Blum-Shub-Smale model for computation on the real numbers is lifted
to transfinite running times. The supremum of possible runtimes is determined
and an upper bound on the computational strength is given.

Summarizing, this thesis both expands the field of ordinal computability
by enlarging its palette of computational models and also connects the field
further by tying in the new models into the existing framework. Questions that
have been raised in the community, e.g. on the possibility of generalizations of
λ-calculus and Blum-Shub-Smale machines, are addressed and answered.
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8 CHAPTER 1. INTRODUCTION

1.1 Infinity and computation

Computational reasoning in the traditional sense relies heavily on the require-
ment of finiteness. A finite program on finite data needs to run for only finitely
many steps before halting. Relaxing these constraints leads to what we call
models of hypercomputation. For instance, the classical oracle machines do
away with the first finiteness restriction while retaining the latter two; a possi-
bly infinite set of integers is supplied together with the program and during the
course of the computation the program may ask whether some pieces of data in
the memory belong to that set or not.

The notion of ordinal numbers, or ordinals, is a mathematical concept of
infinity that bears great similarities to natural numbers. It captures the idea of
‘counting’ along infinite sets. While the juxtaposition of the words ‘counting’
and ‘infinite’ appears unintuitive at first, objects that lend themselves to count-
ing along their elements appear naturally in mathematics. A linear order is a
set which can be imagined as points in a line. If the line is imagined to run from
left to right, out of any two elements we can call the one to the left ‘smaller’ than
the other. Examples include, of course, the common numbers, be it rational,
real, integer, or natural. Now the reals, for example, do not lend themselves well
to counting; even if we fix a point where we would like to start counting (and,
in essence, forget all numbers left of that point), there is no proper concept of
‘next element’. We solve both problems, the lack of least element and the lack
of next element, by restricting the notion of linear orders to that of well-orders:
A well-order is a linear order where every nonempty subset, including the entire
set itself, has a least element. So we can start counting at the least element
and continue with the least element of the subset that arises by leaving out the
previously counted elements. Up to isomorphism, the set of natural numbers
N is in fact the smallest infinite well-order. We can define larger well-orderings
by gluing two copies of N together, declaring all numbers of the second copy
greater than any number in the first:

0, 1, 2, 3, . . . 0′, 1′, 2′, 3′, . . .

Counting across the dots, or limits, requires an application of the well-foundedness
property: Since it is certain that the counting process will eventually reach ev-
ery natural number, one can continue with the least element that cannot be
reached by iterations of ‘+1’ on 0, in this case 0′. A particular type of well-
orders built up in this way are the ordinal numbers used in set theory. Ordinals
characterize well-orders, that is, for any well-order, there is an order-isomorphic
ordinal. They also build the back-bone of the typical hierarchical models of set
theory: The prototypical model V of the set theory ZFC can be represented as
an iteration of power set operations along all ordinals, starting with the empty
set.

Set theoretically, the ordinals are defined as those sets that are transitive
(i.e., all elements are in fact subsets) and whose elements are well-ordered by
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the ∈-relation. They take the following form:

0 = ∅
1 = 0 ∪ {0} = {0}
2 = 1 ∪ {1} = {0, 1}
...

ω = N
ω + 1 = ω ∪ {ω}

...

The ordinals form a well-ordered class Ord that is equipped with a certain or-
dinal arithmetic. It is set-theoretically possible to perform transfinite recursion
and induction along Ord. For a proper introduction, we refer the interested
reader to one of the standard textbooks on set theory, for instance the compre-
hensive [Jec03].

Ordinal computability is a particular branch of hypercomputation that stud-
ies computations along ordinals. This, again, is not as unintuitive as it may
sound. One could, for instance, imagine a computer to write out the complete
decimal expansion of some computable irrational number and carrying out real
arithmetic precisely (instead of approximatively) while still working in distinct,
elementary computational steps dealing with each decimal place at a given time.
For a model along these lines, the ordinals provide the proper domain for both
time, i.e., the length of the computation, and space, i.e., the required memory of
the computation. Another, more interesting application is the following: Given
a pair of algorithm and input, classical computability cannot decide whether the
computation halts after finitely many steps or enters an infinite loop (a famous
negative answer to Hilbert’s ‘Entscheidungsproblem’). A computation along an
infinite ordinal, however, could solve this finite halting problem simply by going
through all, possibly infinitely many, computational steps to see if halting oc-
curs. It can then continue computing with this newly-established information
(as an example see the theory of ITTMs [HL00]). Thus, by allowing computa-
tion along larger well orders, the idea of step-by-step computation is retained,
while greatly widening the strength of the computational paradigm.

1.2 Classical computability
Let us first briefly establish the classical models of computability relevant for
this thesis.

1.2.1 The λ-calculus
Developed in the 1930s by Alonzo Church, λ-calculus was one of the first con-
cepts able to capture the idea of what Church called an ‘effectively calcula-
ble function’ and to give a negative answer to Hilbert’s Entscheidungsproblem
[Chu36]. Apart from being of great importance in the early development of com-
putability (in particular in the influential work of Kleene), λ-calculus made its
mark in the emerging discipline of theoretical computer science: The intentional



10 CHAPTER 1. INTRODUCTION

lack of distinction between functions and data in λ-calculus is the core concept
in what is known today as functional programming languages (e.g., Lisp), and
at least rudimentary functional programming capability can be found in almost
every one of today’s programming languages. Although a priori being a recur-
sion scheme, from the modern perspective λ-calculus can rightfully be called a
model of computation.

In λ-calculus, one only treats objects of one type, the so-called λ-terms or
just terms. A term may play the role of a bit of data (say, a natural number),
or a function on natural numbers, or a functional, or a functional of even higher
degree, all depending on the syntactical context. Terms are built up inductively
as follows: Atomic elements are variables. Given some term M that may or
may not contain the variable x, we can construct a new term via λ-abstraction:
The term λx.M can be interpreted as the function that ‘maps x to M(x)’.
Terms may be applied to each other - the term (P,Q) could be interpreted as
value of the term P interpreted as function applied to Q. To give meaning
to the interpretations hinted at, rules of conversion are specified: Apart from
bookkeeping rules dealing with renaming of variables, the integral rule is known
as β-conversion, β-reduction, or the β-rule: A term (λx.M,N) may be reduced
to M N

x , i.e., the term resulting from M by replacing all occurrences of x by N .
If the β-rule cannot be applied to some term and all of its subterms, we say
that this term is in normal form.

Reductions play the role of computations in this context: To define functions
on N, one can declare certain terms to represent the numbers. For instance,
we could set n = λf.λx. (f, (f, . . . (f︸ ︷︷ ︸

n-times

, x) . . .). These terms are in normal form

and represent the n-fold application of the first argument to the second. A
λ-definable function f on N is one for which a term F exists, such that for all
n, (F, n) can be reduced to f(n). A major result due to Church and Rosser

is that, if the term is reducible to a normal form, a certain pattern of β-rule
applications always yields a normal form and that this form is unique.

In this thesis, we shall flesh out a generalization of these concepts to ordinal
numbers. This is work taken up jointly with Tim Fischbach in 2010 and com-
pleted by the author in 2012. The author is not aware of a previous work on
generalizing λ-calculus to the ordinals.

1.2.2 The Turing machine

The Turing machine was developed independently of Church’s λ-calculus, again
with the primary purpose of answering the Entscheidungsproblem [Tur36]. As
an abstraction of a human ‘computer’, mechanically carrying out algorithmic
calculations on an idealized piece of paper, its approach is fundamentally differ-
ent from Church’s. Surprisingly, the two models are identical in strength. Both
authors claimed to have captured the very essence of computable or effectively
calculable functions on natural numbers, and this assertion is known today as
the Church-Turing thesis.

For most modern readers, however, Turing’s approach is what seems more
intuitive and what makes the Church-Turing thesis more plausible. This may
be due to Turing’s clear-cut abstraction from the schematical calculations ev-
erybody is taught in school or due to the ubiquitous electronic computers of
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modern day, which very strongly resemble Turing machines: A Turing machine
consists of a one-side infinite strip of tape that is subdivided into single cells.
Every cell contains a bit of data, for instance the numbers either 0 or 1. On
this tape, a read-write head (initially resting on cell 0) moves about which has
a finite number of states and at any time reads a single cell. A look-up table
lists, for a combination of state and current cell content, an instruction of the
following form: Write a certain symbol in the current cell, move the head by
one cell to the left or right, and change into a certain state. If the program
wants to change to a state for which the table does not have any entry, the
computation halts. This table is what is called the machine’s program. With
only slight modifications, this is a workable model for the hard- and software so
familiar to us.

The standard definition for computable functions goes as follows: A function
on natural numbers is computable if there is a Turing program such that for
every n the computation by this program with initial tape content n (e.g., coded
as a 1 in the n-th cell and 0’s everywhere else) halts and puts out f(n), i.e., the
tape is empty except for a 1 in cell number f(n). Functions of higher arity can
be implemented by fixing some coding of multiple numbers onto the tape, e.g.,
by arithmetically coding tuples into single natural numbers.

With this model we can define:

• Enumerable or semi-decidable sets of natural numbers (‘enumerable re-
als’): A set A ⊆ ω is enumerable if there is a Turing program that halts
only on the members of A.

• Decidable sets of natural numbers or decidable reals: A program P gives
output 1 on all n that are in the set and 0 on all other natural num-
bers. Also, a set is decidable exactly if both itself and its complement is
enumerable.

• Enumerable or semi-decidable sets of reals: A real, coded as a subset of
ω, can be put on the tape as a infinite series of 0s and 1s representing its
characteristic function. A set of reals A is enumerable if there is a program
that halts exactly on the initial tape contents that correspond to elements
of A.

• Decidable sets of reals: Again, we want a program with output 1 on
members and 0 on non-members, inputs being characteristic functions of
subsets of ω. Also here we have a characterization of decidable as both
enumerable and ‘co-enumerable’.

The last two notions take rather trivial forms in the classical theory but will
be of great interest in the generalization to ordinals studied in this thesis.

An often used feature of Turing machines is the existence of a so-called
universal machine. One can code Turing programs into natural numbers such
that there is a Turing program U so that for any program P and input n,
the computation by U on inputs n and a code for P halts if and only if the
computation by P on n does and, if so, the outputs are the same. This approach
is compatible with infinite initial tape contents; for instance reserve every second
tape cell for the input and store the program in the remaining cells.

Generally, one need not worry too much about arranging data on the tape
and can imagine the machine having access to a fixed finite number of work
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tapes with independent read-write heads: Simply use every 2k-th cell to store
the information of the k-th tape and use the 2k+ 1-th cells to keep track of the
virtual read-write heads. In fact, via some clever coding such as Gödel pairing,
one can accommodate ω-many tapes, although this can never be appreciated by
classic, finitary Turing computations. The infinitary versions introduced below,
however, may make use of this.

1.2.3 The Blum-Shub-Smale machine

There are different approaches to model computational reasoning on the real
numbers R.

Blum-Shub-Smale (BSS) machines provide an algebraic approach to algo-
rithmic reasoning on the reals. The idea by Blum, Shub, and Smale bears
resemblance to dynamical systems: A point in Rn is moved around step by step
via ‘elementary’ operations. The elementary operations in their model are given
by a program of finitely many polynomial or rational functions as instructions.
Conditional jumps inside the program happen depending on certain rational
functions taking positive or negative values [BSS89]1.

In contrast to BSS machines, which considers reals as atomic elements, com-
putable analysis (c.a.) treats reals as limits of their finite decimal approxima-
tions [Wei00]. Turing machines are employed to approximate their computable
functions: A function is computable if there is a Turing machine such that for
any desired output precision the Turing machine determines the output of the
function up to this precision in finite time. More formally, one considers so-
called type-2 Turing machines: Such a machine has one input tape, one output
tape, and a finite number of scratch tapes. Both the input and the output tape’s
heads may only move to the right. The input tape is read only, the output tape
write only. The scratch tapes, however, may use the full functionality of Turing
machines. The desired program now produces the output bit per bit on the
output tape and may never revise a bit once written. In the nontrivial case
of an output with infinite binary expansion, the machine will run for ω many
steps, i.e., not terminate in the classical sense. However, it is clear that every
output precision is reached at some finite time and, at any such time, only a
certain number of input bits will have been read. Due to the in theory infinite
runtime, this defines a model of hypercomputation. It is, however, much weaker
than the hypercomputational Turing models usually considered in ordinal com-
putability and is, obviously, easily simulated by, e.g., an ITTM (infinite time
Turing machine, see below).

The main paradigmatic difference between the c.a. and the BSS approach
appears to be whether computation on reals is interpreted from a numerical
standpoint or from an algebraic/analytical one. There are functions that are
computable in c.a. but not with BSS machines. The exponential function is
easily approximated in c.a., but cannot be BSS-computed by finitely many ring
operations on the input. The definition via its power series is a prime example

1The elementary computational steps in BSS computations are based on the operations
and relations of an ordered ring. Note that the BSS definitions may be considered on arbitrary
ordered rings. The ring Z yields the familiar Turing-equivalent computability.
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of elementary use of limits of Cauchy sequences in analysis.

ex =

ω∑
k=0︸︷︷︸

infinitary device

xk

k!︸︷︷︸
unproblematic since finitary

It appears quite natural to ask how this reasoning can be embedded into the
computational framework provided by the BSS model. In many previous suc-
cessful models of ordinal computation, lim inf’s play an important role to define
machine configurations at limit times. In the real analysis context, however,
one could hope for an interesting theory built around strict limits, seeing them
play such an integral part in analytical reasoning and the structure of R itself.

1.3 Ordinal computability — A brief overview

1.3.1 Infinite time Turing machines
It was Joel Hamkins’ and Andy Lewis’ paper on infinite time Turing machines
(ITTMs) [HL00] that started the young field of ordinal computability in the year
2000. In the development of generalized recursion theory in the 1960’s, machine
models for hypercomputation have been considered2, but in all published work
that is known to the author, preference has been given to an approach via
equation calculi and definability. What contrasts ordinal computability against
these approaches is the focus laid on elementary computational steps, accepting
all the interesting anomalies this can produce. A very good example is the
ITTM, where an asymmetry between space and time is generated:

The Turing tape retains its length of ω, but the machine may carry out
more than ω many steps by the addition of a limit rule: At limit times, every
individual cell’s content is set to the inferior limit over its previous contents (or,
equivalently, superior limit as in the original publication [HL00]), the head is
reset to position 0 and a dedicated limit state is entered. The resulting theory
is rich and has produced concepts followed up in further ordinal computability
theory: The notion of clockable ordinals for instance, i.e., those ordinals that
appear as halting times. Or the question of (hyper-)decidable sets of reals, which
take interesting forms whereas, in the classical finite Turing case, these sets are
very easily characterized as the clopen sets. In this thesis, both these questions
are investigated for other machine models, namely infinite time Blum-Shub-
Smale machines (Part III) and ordinal Turing machines (Part II) respectively.

1.3.2 Ordinal Turing machines
The asymmetry of ITTMs is removed in the definition of ordinal Turing ma-
chines (OTMs), which increase the tape length to Ord, so any ordinal number
may appear as a cell index. As defined by Peter Koepke in [Koe05], a dedicated
limit state is avoided, instead at limits, the machine is set to the least state
that is assumed cofinally often. The head is not reset to 0 at limits, but instead
set to the limes inferior of all previous head positions, enabling it to access the
transfinitely indexed cells. The ITTM question of decidable reals (i.e., subsets

2see, e.g., an abstract by Azriel Levy [Lev63]
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of ω) may be generalized to the question of decidable sets of ordinals for OTMs.
It is easy to see that every OTM decidable set of ordinals is an element of the
constructible universe L. Conversely, for every constructible subset A ⊆ Ord
there are finitely many ordinal parameters and an OTM program P such that
P with those parameters computes membership of A. In particular, bounded
truth in L is computable by such machines, so OTMs may be considered a
computability theoretic approach to the constructible hierarchy [Koe05].

If both time and space is limited to some admissible ordinal α, the resulting
α-Turing machines show strong connections to admissible set theory and α-
recursion theory. This theory was started in [KS09] and, with considerable
improvements, continued in [Daw09].

1.3.3 Infinite time register machines

A couple of models of infinite time register machines (ITRMs) have been stud-
ied. Common to all is that the registers contain natural numbers and that time
is, like with ITTMs, unlimited in the ordinals. They employ a lim inf-rule that
sets registers to the lim inf over previous register contents; here, however, we
run into problems if the inferior limit does not take a value in the natural num-
bers due to the register being increased unboundedly below some limit in time.
One definition has the computation break down without result if that happens
[Koe06], the other resets the register to zero [KM08]. The latter approach was
fleshed out along the lines of Hamkins’ and Lewis’ ITTM theory in [CFK+10].

1.3.4 Ordinal register machines

Ordinal register machines (ORMs) were introduced in [KS06] and have proven
to be equivalent in strength to OTMs. They employ finitely many registers,
each containing an ordinal, and a lim inf-rule. They have successfully been used
to do some fine structure theory of the constructible hierarchy L by means of
Silver machines [Wec10].

1.4 This thesis

We shall explore ordinal computability further, in three different areas: Firstly,
we introduce an ordinal λ-calculus. In his Diploma thesis [Fis10], Tim Fisch-
bach compared OTMs and ORMs with existing higher recursion schemes, such
as Kripke’s equation calculus, to constructibility and showed the equivalence
of all approaches on admissible ordinals. This lifting of the most common ap-
proaches to computability theory is clearly missing a λ-calculus variant, which
we shall define here. We prove its equivalence to the existing model, further
strengthening Fischbach’s idea of an ordinal Church-Turing thesis.

The second part consists of Chapters 3 and Chapter 4, the latter which has
already been published as [SS12]. It studies the descriptive set theory of OTMs.
Up to now, OTMs have been used to study the computable subsets of the or-
dinals. We restrict the machine to inputs of length only ω and prove that the
resulting model computes exactly the ∆1

2 sets of reals in Chapter 3. The main
ingredient of this proof is Shoenfield absoluteness of Σ1

2 sets. This result, to-
gether with several others from elementary descriptive set theory, has a strong
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computational flavour. In fact, we will give a proof entirely stated in the OTM
formalism in Chapter 4. We then go on to study new tree representations and
new pointclasses defined by OTM algorithms and establish their basic proper-
ties. Along the way, it is established that our restricted version of OTMs have a
natural nondeterministic variant that behaves very much like the finite version.

Finally, after a brief introduction in Chapter 5, we address to the evident
fact that Blum-Shub-Smale computablity lacks, from an analytical standpoint,
the important concept of limits. In Chapter 6, which has been published as
[KS12], we equip BSS machines with a suitable limit rule. Here, in contrast to
other branches of ordinal computability where one deals with limits of natural
or ordinal numbers, it makes sense to use strict continuous limits, as opposed
to inferior or superior limits. We investigate the supremum of runtimes of
these machines and compare them in strength to the Turing-style models. The
extent of the computable reals of this machine is conjectured (in the mean time,
this conjecture has been proved by Peter Koepke and Andrey Morozov and is
awaiting publication).
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We are going to generalize classical λ-calculus to the ordinal domain. Our
reasoning is centered around a generalization of Church numerals, i.e., terms
that define the n-fold application of their first argument to the second, to numer-
als for transfinite ordinals. Once the new class of ordinal λ-terms is established,
we define a transfinite procedure to assign to a given ordinal λ-term a normal
form if one exists. This normal form procedure is compatible with the classical
case, i.e., will find normal forms for classical terms whenever they exist. We
go on to prove a confluency property for our procedure (‘weak ordinal Church-
Rosser Theorem’). The calculus thus defined is tied into the existing framework
of ordinal computability: Using our terms to define a class of functions on the
ordinals, we show that this class is identical with the class of Σ1(L) definable
functions on Ord.

2.1 Notation from classical λ-calculus
As a reference on classical λ-calculus the author used the monograph by Baren-
dregt [Bar81]. Terms in classical λ-calculus are formed over the alphabet {λ, ., ), (}∪
{vk | k ∈ ω} by the following rules (we allow lower case letters to stand in for
variables such as vk):

(1) Every variable x is a term.

(2) If M is a term and x is a variable, then λx.M is a term.

(3) If M and N are terms, then so is (M,N).

We abbreviate terms of the form λx.λy.M as λxy.M . The subterm relation
S ⊆ T is the transitive closure of the relation M ⊆ M , M ⊆ λx.M , and
M,N ⊆ (M,N). With respect to the expression λx., the notion of x as a bound
or free variable has its intended meaning.

We want to identify terms that arise from each other by renaming of bound
variables. By M N

x we denote the syntactic substitution of every occurrence
of the free variable x in M by the term N . If we want to replace a specific
occurrence of a subterm S of T by some term R, we write the result as T

[
R
S

]
.

Whenever we write such a substitution or replacement, adequate renaming of
bound variables is implied to avoid variable conflicts.

The implied interpretation of λ-terms is the following. A term (λx.M,N) is
to be interpreted as ‘the application of the function M(x) to N ’. Accordingly,
a rule of conversion is defined. The above term may be transformed into M N

x .
More generally, for any term T , any subterm of T of the form (λx.M,N) may
be replaced by M N

x , i.e., we may transform T into T
[(λx.M,N)

M N
x

]
. We call such a

transformation an application of β-conversion or of the β-rule on T . A subterm
of T of the form (λx.M,N) is called a redex (reducible expression) of T .

A term S is in normal form, if β-conversion cannot be applied to it. S is a
normal form of some term T , if T is in normal form and can be obtained from S
by possibly repeated applications of the β-rule. There are terms without normal
forms, e.g., (λx.(x, x), λx.(x, x)). The classical theory proves that the normal
form of a term is uniquely determined if it exists and can be found by a certain
pattern of applications of β-conversion. This was first proved in [CR36]. We
denote the normal form of a term T as T .
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The calculus can be fitted with various semantics. From the perspective of
computability theory, maybe one of the most important ones is the λ-definability
of functions on the natural numbers. There are several ways of modeling natural
numbers as λ-terms; consider the following:

0 = λfx.x

1 = λfx.(f, x)

...

n = λfx. (f, (f, (. . . (f︸ ︷︷ ︸
n-times

, x) . . .)

...

The terms thus defined are referred to as Church numerals.
A partial function f : N ⊃ dom f → N is called λ-definable if there is a

λ-term F such that for all n ∈ dom f :

(F, n) = f(n)

The class of λ-definable functions is identical to the class of Turing-computable
functions. By virtue of the Church–Turing thesis we also speak of the class of
computable functions.

2.2 λI-calculus
The basis for our generalization of λ-calculus shall be given by the λI-calculus
as described in [Bar81, Chapter 9]. The λI-terms form a subset of the λ-terms
and are formed by replacing formation rule (2) by the following:

(2) If M is a term and x is a variable that appears free in M , then λx.M is a
term.

With λI, trivial applications (‘forget the argument’) are impossible, as terms
of the form K = λxy.x are illegal. So, in general, case distinctions (returning one
of several arguments depending on the situation) or constant functions cannot
be defined in λI. For functions on numerals, however, this can be circumvented,
exploiting the syntactic structure of Church numerals.

Definition 2.1 ([Bar81]). Set I = λy.y. This is a λI-term defining the unary
identity function.

As an example, the numeral 0 could be replaced by 0′ = λfx.(((f, I), I), x).
Let n′ = n for all n > 0. Note that the normal form of ((0′, n′),m′) is m′, so, on
numerals, the meaning ‘0-fold application of the first argument to the second’
is retained.

In contrast to λI-terms, the full set of λ-terms is sometimes referred to as
λK-terms. Omitting further details which can be found in [Bar81], we state the
following:
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Fact 2.2 ([Bar81]). The λI-definable functions on natural numbers coincide
with the λK-definable ones.

2.3 Ordinal λ-terms
Our approach revolves around the idea of generalizing Church numerals from
‘the n-fold application of f to x’ to ‘the α-fold application of f to x’. The intent
behind that idea is that terms defining the successor function or arithmetic
should generalize to the successor function on ordinals or ordinal arithmetic.

Note 2.3. In developing our theory, we briefly considered introducing terms of
transfinite length, but the asymmetry of ordinals — a limit ordinal has a right
neighbor (a least larger ordinal) but no left neighbor (largest smaller ordinal)
— limits the intuitive use of syntactical operations on such strings. Instead,
we introduce symbols for ordinals on term level and we propose the following
generalization of λ-terms to ordinal λ-terms.

Definition 2.4 (Fischbach-Seyfferth). Over the alphabet ΣOrd = {λ, ., ), (} ∪
{vk | k ∈ ω} ∪ {α | α ∈ Ord} define the set TermOrd of ordinal λ-terms by

(1) Every variable x is an ordinal λ-term.

(2) If M is an ordinal λ-term and x appears free in M , then λx.M is an ordinal
λ-term.

(3) If α is an ordinal and M and N are ordinal λ-terms, then so is α(M,N).

We often write (M,N) instead of 1(M,N).

Informally, we refer to ordinal λ-terms just as terms.
We introduce an equivalence relation 'v on terms, identifying all terms that

can be obtained from each other by renaming of bound variables. If V is a
finite set of variables with largest element vi, define for every equivalence its
v-minimal term over V as the one where all bound variables are named vi+1,
vi+2, vi+3, etc. from left to right. For a term T , we denote by TVv its v-minimal
term over V . We simply write v-minimal and Tv if V = ∅.

Definition 2.5 (Fischbach-Seyfferth). The (ordinal) Church numerals take the
form α = λfx.α(f, x) for α ∈ Ord. More generally, we refer to all terms 'v-
equivalent to some α as Church numerals.

The intended meaning of terms like β(M, α(M,N)) and α+β(M,N) is the
same. So, we want to identify all the terms of the form

αk−1(M, αk−2(M, . . . α0(M,N) . . .))

with
α0+α1+...+αk−1(M,N).

Let T be a term. We call a replacement of all subterms of T that are of the former
form by their equivalent terms of the latter form a contraction of applications of
T . We define an equivalence relation 'a by identifying every term T with the
terms resulting from contractions of its applications and closing transitively. For
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a given term T we define its a-minimal term Ta as the shortest term a-equivalent
to T .

In order to define an equivalent to the β-normal form, we define a transfinite
procedure that for every term either finds a term we shall call its normal form
or diverges, the latter which we will interpret as the term not having a normal
form.

2.4 Normal form derivation
The normal form derivation will be a transfinite procedure. We declare a form
of limit convergence for our ordinal λ-terms.

Definition 2.6 (Fischbach-Seyfferth). Consider a term M as a finite sequence
of symbols in ΣOrd, i.e., M : n → ΣOrd for some natural number n ∈ ω. Let
(ji | 0 ≤ i < k) be the increasing sequence of those j < n with M(j) ∈ { α | α ∈
Ord}. Let ~α = (α0, . . . , αk−1) be some sequence of ordinals. Define

(i) the flesh of M as fl(M) = (M(ji) | i < k)

(ii) the skeleton of M as sk(M) : n→ ran(M) with

sk(M)(j) :=

{
M(j), if j /∈ {ji | 0 ≤ i < k}
1, if j ∈ {ji | 0 ≤ i < k}.

(iii) the insertion of ~α in M as

M [~α] =

{
M(j), if j /∈ {ji | 0 ≤ i < k}
αi , if j = ji for some i < k.

Note that sk(M)[fl(M)] = M .

Definition 2.7 (Fischbach-Seyfferth). Let α be a limit ordinal.

(i) Let s : α → Ordn be a sequence of n-tuples of ordinals for some n < ω.
Define the pointwise limes inferior by

lim inf
β→α

s(β) := (lim inf
β→α

s(β)0, . . . , lim inf
β→α

s(β)n−1).

(ii) Let s : α → TermOrd be a sequence of terms. We say that the skeletons
of s converge, if there is a a-minimal and v-minimal skeleton S such that
there is a β < α and for all β < γ < α we have sk(s(γ))a 'v S. We will
call S the limit skeleton for s. If V is a finite set of variables, S may be
chosen v-minimal over V ; we then speak of the limit skeleton over V .

(iii) Let s : α→ Σ∗Ord be a sequence of terms whose skeletons converge to limit
skeleton S. Let γ be minimal such that sk(s(β)a) = S for γ < β < α.
Then the syntactical limes inferior of s exists and is defined by

lim inf
β→α

s(β) := sk(S)[ lim inf
β→α,β>γ

fl(s(β)a)]

If S is the limit skeleton over some finite set of variables V , we speak of
the syntactical limes inferior over V , written lim infVβ→α s(β)
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Note 2.8. In the following we give a deterministic procedure to arrive a given
ordinal λ-term’s normal form. Every step can be seen to correspond to one
application of the classical β-rule. In the classical λI-calculus, any pattern of
iterated application of the β-rule eventually yields a normal form. The idea of α-
fold application of one term to another implies a transfinite length of applications
of a β-rule, and we want to make use of the limit notions for terms we just
defined. We chose to give up the nondeterministic freedom of the finite case
to produce stabilizing and natural behavior at limits. In turn, we get some of
that freedom back by proving a weak confluency property in Section 2.5. There,
we also conjecture a stronger property that would enable us to perform finitely
many arbitrary deviations from the algorithm.

Before we give a rigorous definition, it might be helpful to look at the process
for arriving at a normal form we have in mind a bit more graphically. The
algorithm will maintain a stack. Each stack element is a term whose normal
form is to be determined. The bottom element of the stack is the original term T
we wish to reduce to its normal form by some generalizations of the β-rule. The
next element shall be the leftmost redex of T , i.e., a leftmost subterm S of the
form S = α(λx.M,N) where α > 0. A redex is called leftmost if its operating λ,
i.e., the λ that is spelled out in the representation of S above, appears to the left
of all other operating λ’s of redexes of T . So, S is put on the second stack level.
Recursively, the algorithm will determine the normal form of S. In the mean
time, the stack will get built up and torn down again and as soon as S’s normal
form S is found, our stack will contain exactly two elements: T as the bottom
one with S on top. The next step will be to remove S from the stack, replace
S in T with S and start the procedure over for the resulting term. Eventually,
the bottom element will contain no more redexes and a normal form is found.

So how does the algorithm proceed to determine the normal form of some
redex S = α(λx.M,N)? We retain the intuition of ‘the α-fold application of M
to N ’ by the following procedure: Determine, by putting on the stack consec-
utively, the normal forms of the approximations 1(λx.M,N), 2(λx.M,N), etc.
At limit times, syntactical inferior limits are taken (if they exist, otherwise the
normal form procedure breaks down). More precisely, instead of γ+1(λx.M,N),
we evaluate the a-equivalent term (λx.M, γ(λx.M,N)), substituting the term
N ′ we determined in the previous steps as the normal form of γ(λx.M,N), which
in the end gives us (λx.M,N ′) to evaluate. We can now rely on an application
of what is know as the β-rule in the finite case to end up with M N ′

x which is
what is being put on the stack instead of γ+1(λx.M,N).

Finally, we have to deal with our stack length becoming infinite. This might
happen via the use of terms that work like (λx.(x, x), λx.(x, x)) and may be
used as so-called fixed-point combinators in recursive definitions. For instance,
one usually implements unbounded search by a term describing the following
function Q(α): ‘if condition P holds on α then return α, else evaluate and return
Q(α + 1)’. A normal form procedure for Q(0) will build up a stack of height
β if β is the least ordinal such that P holds. If the stack length approaches a
limit ξ, we shall define the stack content at level ξ in the following way: First,
identify the first (from the bottom) term on the stack whose skeleton appears
cofinally often below ξ as skeleton of terms on the stack. Now, set as the term
on level ξ the syntactical lim inf over all terms on the stack with this skeleton.
In the above example, we will ‘try α’ (i.e., put Q(α) on the stack), then do some
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steps to determine whether P holds for α and if not ‘try α + 1’. In the next
limit we want to ‘try the first limit after α’, i.e., put Q(α + ω) on the stack.
The term Q(0) representing ‘try 0’ obviously is the first whose skeleton appears
cofinally often. Theorem 2.25 will confirm this behavior. To avoid problems
with backtracking downwards in the ordinals, we will keep track of the stack
height on which the first term that lends its skeleton to the limit appears. That
way, as soon as a normal form is found (in our example the least β such that
P holds) and has been handed down step by step until the stack is torn down
to some limit height, we can propagate this normal form directly downwards to
whenever Q(0) was put on the stack.

Note 2.9. Terms of the form 0(λx.M,N) are not treated as reducible; they
are unchanged by the algorithm save for internal modifications of M and N
and may vanish only through contractions of applications. On could argue that
the intended meaning behind such a term is simply N (the 0-fold application of
M to N) but such transformations would reintroduce terms of the form λxy.x,
violating the boundaries of λI-calculus.

For our purposes, there is an added benefit of not resolving 0-fold applica-
tions: The numeral 0 = λfx.0(f, x) is of the same syntactical form as the other
numerals, enabling 0 to be a possible value of a syntactical lim inf of numerals.
However, not setting 0 apart from the other numerals introduces a difficulty with
arithmetic: Several classical algorithms for arithmetic (predecessor of natural
numbers, subtraction, etc.) rely heavily on a term that recognizes the numeral
for 0 among all the other numerals. We resolve this issue by expanding our
calculus by a term that defines equality on ordinals in Definition 2.12.

For the following rigorous definition, some additional information is coded
into the stack elements, but the above structure remains valid. In general, we
consider a stack to be a sequence indexed by a successor ordinal. Operations
changing the stack are either restricting the sequence to another successor or-
dinal or adding a new element on top. The algorithm below will define the
behavior when infinitely many end extensions are carried out. The stack ele-
ments will be tuples (·), so we write a stack of tuples as 〈(·), (·), . . . , (·)〉. We
use the symbol t to denote the composition of two stacks.

We need to elaborate how renaming of bound variables will be handled
in the normal form procedure. Whenever a substitution of the form M N

x or
a replacement of the form M

[
N
P

]
is carried out, we rename bound variables

adequately: In every renaming, new variables are chosen as to not accidentally
bind a free variable of some term farther down on the stack. At limits, we chose
the limit terms v-minimally, while avoiding the variables of certain lower stack
levels: If all stack levels are finite, we can certainly avoid all of the only finitely
many variables used below. If an infinite stack level is reached, we only require
the variables up to the level from which the skeleton is lent to the limit to be
avoided. Inductively, at any given point in time we only need to avoid finitely
many variables.

Definition 2.10 (Fischbach-Seyfferth). Let N be a term. A function s : θ →
(Σ∗Ord ×Σ∗Ord ×Ord×Ord×Ord)<Ord is called a normal form derivation of N
if it satisfies the following conditions:

(a) s(0) = 〈(N, ∅, 0, 0, 0)〉.
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(b) Let ν < θ.

(i) If the topmost element of s(ν) is of the form (N ′, ∅, 0, 0, δ), and N ′

is not a-minimal, and R = β(P, α(P,Q)) be the leftmost subterm on
which a contraction of applications may be carried out, then ν+1 < θ
and s(ν + 1) = s(ν) � ν t 〈(N

[
R

α+β(P,Q)

]
, ∅, 0, 0, δ)〉.

(ii) If the topmost element of s(ν) is of the form (N ′, ∅, 0, 0, δ), and N ′

is a-minimal and contains a subterm of the form γ(λx.P ,Q) where
γ > 0, and α(λx.M,N ′′) is the leftmost such subterm, then ν + 1 < θ
and s(ν + 1) = s(ν) t 〈(N ′′, λx.M,α, 0, δ)〉.

(iii) If the topmost element of s(ν) is of the form (N ′′, λx.M,α, β, δ) with
β < α, then ν + 1 < θ and s(ν + 1) = s(ν) t 〈(M N ′′

x , ∅, 0, 0, δ)〉.
(iv) If the two topmost elements of s(ν) are of the form 〈(N ′′, λx.M,α, β, δ),

(N ′, ∅, 0, 0, δ)〉 and N ′ is a-minimal and does not have a subterm of
the form γ(λx.P ,Q) with γ > 0, then ν + 1 < θ and s(ν + 1) = s(ν) �
(|s(ν)| − 2) t 〈(N ′, λx.M,α, β + 1, δ)〉.

(v) If |s(ν)| is successor of a limit and the topmost element of s(ν) is of the
form (N ′, ∅, 0, 0, δ) and N ′ is a-minimal and does not have a subterm
of the form γ(λx.P ,Q) with γ > 0 and s(ν)(δ) = (N ′′, ∅, 0, 0, γ), then
s(ν + 1) = s(ν) � δ t 〈(N ′, ∅, 0, 0, γ)〉.

(vi) If the two topmost elements of s(ν) are of the form 〈(N ′, ∅, 0, 0, δ),
(N ′′, λx.M,α, α, δ)〉, then ν+1 < θ and s(ν) � (n−2)t〈(Ñ , ∅, 0, 0, δ)〉,
where Ñ arises from N ′ by replacing the leftmost subterm of the form
γ(λx.P ,Q) with N ′′.

(vii) If none of the above conditions hold, apparently we have s(ν) =
(N ′, ∅, 0, 0, 0), N ′ is a-minimal and does not have any redexes, and
|s(ν)| = 1. Then θ = ν + 1 and N ′ is called the result of the normal
form derivation of N , written N = N ′.

(c) Let ξ be a limit ordinal such that s � ξ is defined.

(i) If lim infν<ξ |s(ν)| = γ and the sequence (ν)ν<ξ∧|s(ν)|=γ is unbounded
in ξ, note that the stacks (s(ν) � γ)ν<ξ∧|s(ν)|=γ are eventually constant
some stack s of length γ. Let V be the set of variables of the terms
on the stack levels up to γ. If the skeletons of (s(ν)(γ))ν<ξ∧|s(ν)|=γ
converge, then

s(ξ) = s t
〈(

lim inf Vν<ξ∧|s(ν)|=γ pr0(s(ν)),

∅, 0, 0, lim inf ν<ξ∧|s(ν)|=γ pr4(s(ν))
)〉
.

If they do not converge, then ξ = θ and the normal form derivation of
N is said to diverge, written N ↑.

(ii) If, on the other hand, lim infν<ξ |s(ν)| = γ, η is a limit, and (|s(ν)|)ν<ξ
is unbounded in η, we require that for every γ < η there is a time
ν < ξ such that for every µ > ν we have s(µ) � γ = s(ν) � γ.
This way we obtain a limit stack t of length η. It remains to be
determined what element is to be put on top of this limit stack at time
ξ. Choose the first (i.e., with minimal γ) skeleton u = sk pr0(t(γ)) of
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(pr0(t(ν)))ν<η∧“ν is even” such that either u or an v- or a-equivalent
term appears unboundedly often as skeleton in the first coordinate of
t. Let V be the set of variables of the terms on the stack levels up to
γ. Set

s(ξ) = t t
〈(

lim inf Vν<η∧“ν is even”∧sk pr0(t(ν))=upr0(t(ν)), ∅, 0, 0, γ
)〉

.

If no limit stack t exists or no skeleton appears unboundedly often in
t, then ξ = θ and the normal form derivation of N is said to diverge,
written N ↑.

If no normal form derivation exists for some term N , we also say that the
normal form derivation of N diverges, written N ↑.

Definition 2.11 (Seyfferth). Let α0, . . . , αn be a finite sequence of ordinal
numbers. A function f : Ordk → Ord is ordinal λ-definable in parameters ~α
if there is an ordinal λ-term T in which all applications are of the form β(·, ·)
where β ∈ ω ∪ {α0, . . . , αn−1} such that for all (γ0, . . . , γk−1) ∈ Ordk we have

(. . . (T, γ0), γ
1
), . . .), γk−1) 'v f(γ0, . . . , γk−1).

If f is a partial function, we call f ordinal λ-definable in ~α if f � dom f is ordinal
λ-definable in ~α and (T, γ) ↑ on γ /∈ dom f . If ~α = ∅, we simply speak of ordinal
λ-definability.

As explained in Note 2.9, we would like to add the capability of defining
equality on ordinals to our calculus:

Definition 2.12 (Seyfferth). Let us add a constant symbol E to our alphabet
and consider the terms formed over ΣOrd ∪ {E} with the additional rule ‘E is
a term’ as the ordinal λ + E-terms. We extend Definition 2.10 by a case for
terms of the form 1(1(E,α), β): The algorithm is to replace 1(1(E,α), β) with
the normal form TI = λxy.(((y, I), I), x) if α = β and with the normal form
FI = λx.(((x, I), I), I) else. In all other cases, E is to be treated like a variable
symbol. The resulting notion of definability for functions on the ordinals is that
of ordinal λ+ E-definable functions.

The terms TI and FI will be used in the following manner:

Suppose ((P, I), I) 'v ((Q, I), I) 'v I.

Then ((B,P ), Q) 'v

{
P , if B = TI

Q , if B = FI .

The term ((B,P ), Q) hence may be read as ifB then P elseQ. We shall also
consider variations of TI and FI : The terms TJ and FJ as well as T3 and F3

are defined later on and behave similarly, for terms P and Q vanishing under
different conditions.

Some examples are in order now. We take the liberty of abbreviating some
terms in these examples, numerals for instance. Additional steps are added to
write them out whenever necessary. We may also use extra lines to carry out
substitutions etc. Apart from this, there is a line for every step in the normal
form derivation where the stack has odd height, i.e., the topmost element is of
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the form (N ′, ∅, 0, 0, δ). Every line contains the first entry of the topmost stack
element. Stack height is suggested by indentation. We mark the approximation
steps by leading numbers to facilitate reading. We highlight the leftmost redex
by overlining. We deliberately use our normal form notation here: the algorithm
will recursively determine the normal form of the overlined term and, once found,
replace the term with its normal form.

Example 2.13 (Seyfferth). Let us count up to ω to illustrate the desired lim inf
behavior. The term S+

c = λnfx.(f, ((n, f), x)) classically defines the successor
function of a given numeral. We show that the normal form of ω(S+

c , 0) is ω.
Let us run our algorithm:

ω(S+
c , 0) write out S+

c

ω(λnfx.(f, ((n, f), x)), 0) the entire term is the leftmost redex

1: λfx.(f, ((n, f), x))
0

n
start the approximation of the ω redex

λfx.(f, ((0, f), x)) write out 0

λfx.(f, ((λgy.0(g, y), f), x)) identify leftmost redex

1: λy.0(g, y)
f

g
first and only approximation step

λy.0(f, y) return redex-free term

λfx.(f, (λy.0(f, y), x)) identify leftmost redex

1: 0(f, y)
x

y
first and only approximation step

0(f, x) return redex-free term

λfx.(f, 0(f, x)) contract applications to obtain an a-minimal term

λfx.(f, x)

1 supply redex-free term to next approximation step

2: λfx.(f, ((n, f), x))
1

n
second approximation step

... analogously to first approximation step

2 hand redex-free term to next approximation step
... analogously for all finite steps

ω: lim inf
n→ω

n take lim inf at limit step

lim inf
n→ω

λfx.n(f, x) evaluate syntactical lim inf

λfx.ω(f, x) last approximation step; return redex-free form

λfx.ω(f, x) normal form reached

ω

The example above can be used to prove that the successor function on
ordinals is ordinal λ-definable. The following example is given to show some
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nested limits, suggesting that recursively defined ordinal arithmetic can be im-
plemented in a straightforward manner.

Example 2.14 (Seyfferth). If α, β > 0 then λfx.((β, (α, f)), x) defines the

product α · β.

λfx.((β, (α, f)), x) write out numerals

λfx.((λgy.β(g, y), (λhz.α(h, z), f)), x) identify leftmost redex

1: λy.β(g, y)
(λhz.α(h, z), f)

g
first and only approximation step

λy.β((λhz.α(h, z), f), y) identify leftmost redex

1: λz.α(h, z)
f

h
first and only approximation step

λz.α(f, z) return redex free term

λy.β(λz.α(f, z), y) identify leftmost redex

1: α(f, z)
y

z
first approximation step of the β redex

α(f, y) hand redex-free term to next approximation step

2: α(f, z)
α(f, y)

z
second approximation step

α(f, α(f, y)) contract applications
α·2(f, y) hand redex-free term to next approximation step

... analogously for all finite steps

ω: lim inf
n→ω

α·n(f, y) take lim inf at limit step

α·ω(f, y) hand redex-free term to next approximation step
... analogously for all further steps

β: lim inf
γ→β

α·γ(f, y) take lim inf at limit step

α·β(f, y) last approximation step; return redex-free term

λy.α·β(f, y) return redex-free term

λfx.(λy.α·β(f, y), x) identify leftmost redex

1: λy.α·β(f, y)
x

y
first and only approximation step

α·β(f, x) return redex-free term

λfx.α·β(f, x) normal form reached

α · β

The two examples just given only illustrate the limit case (c)(i). For an
example for case (c)(ii) see section 2.6.2.
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Classical λI-terms are ordinal λ-terms. On the other hand, if we have an
ordinal λ-term where for all applications α(M,N) we have that α is finite, we
can convert it to a classical λI-term by a map φ given by:

• replacing any subterm of the form n(M,N) by (M, (M, (. . . (M︸ ︷︷ ︸
n-times

, N) . . .) if

n > 0,

• replacing any subterm of the form 0(M,N) by (((M, I), I), N). In partic-
ular, this maps 0 to 0′ = λfx.(((f, I), I), x), the term [Bar81] uses in the
treatment of λI-calculus.

Proposition 2.15 (Seyfferth). IfM is a classical λI-term with classical normal
formM ′ andM ′′ is the output of our algorithm on inputM , then φ(M ′′) 'v M ′a.

Proof. In λI-calculus, every reduction strategy (pattern of applying the β-rule
to various subterms until no redex is left) is normalizing, i.e., eventually yields
normal forms. Our algorithm, although working with a-minimal terms, will
simply run a finite number of applications of the β-rule before halting with a
term M ′′ without redexes. Converting this term to a classical λI-term does not
introduce any redexes, so the resulting term is also classically in normal form.
Since classically normal forms are unique up to renaming of variables, we have
indeed found a term 'v-equivalent to M ′.

2.5 A weak Church-Rosser Theorem for our al-
gorithm

The classical Church-Rosser result establishes that for any two terms Q and
Q′ that are obtained from the same term P via β-reduction, there is a term R
that can be obtained from Q and Q′ by β-reduction. This ‘diamond property’
is known as the Church-Rosser property. It ensures that normal forms are
unique. In the λK-calculus, a term’s unique normal form is obtained by a certain
pattern of applications of the β-rule, whereas in λI, any pattern of applications
of the β-rule leads to the term’s normal form, given that one exists. In our
situation, where restrict ourselves from applying the β-rule freely for the sake
of convergence at limits, we propose the following as the correct lifting of the
Church-Rosser theorem:

Conjecture 2.16 (Seyfferth). Let T be a term with normal form and let S ⊆ T
be a subterm. Then T 'v T

[
S
S

]
.

For the purposes of this thesis, the following result is sufficient, as it will
establish that the composition of two λ-definable functions is λ-definable. We
will refer to it as the weak Church-Rosser Theorem for ordinal λ-calculus (results
for λ+ E follow analogously).

Theorem 2.17 (Seyfferth). Let T be a term with normal form and let S ⊆ T
be a subterm of the form S = α(M,N) such that all free variables in S are not

bound in T . Then T 'v T
[
S
S

]
.
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Proof. Fix some term S of the form α(M,N). We can assume that S is not in
normal form, otherwise we would be done. Let T be some term with S as a
subterm, such that all free variables in S are not bound in T . Assume that T
has a normal form. We will compare the normal form derivations t of T and t′

of T
[
S
S

]
. It will be evident that t and t′ have basically the same steps, except

for subsequences of t that parallel the normal form derivation of S.
Let θ be the length of t and let θ′ be the length of t′. We define recursively an

injective and weakly monotonous map f : θ′ → θ such that for every γ < θ′ we
have that every stack element of t′(γ) can be obtained from t(f(γ)) by replacing
copies of S by copies of S and the stacks t′(γ) and t(γ) have the same height. We
define this map ‘the other way round’, by defining a surjective and increasing
but not injective partial map g from t to t′ such that our condition holds: At any
time δ, we have that all stack elements of t′(g(δ)) arise from t(δ) by replacing
copies of S by copies of S (and possibly some variable renaming, which we shall
surpress for the rest of this argument). We then can choose as f(γ) the largest
δ with g(δ) = γ (it will be clear from the construction that there always will be
a largest pre-image). Let θ0 + 1 = θ and θ′0 + 1 = θ′ (normal form derivations
always have successor length). The construction below makes sure that g is
defined on θ0. Since g is surjective and increasing, g(θ0) = θ′0.

Then t′(θ′0) is a stack of height 1 and its top element is in normal form.
Therefore t(f(θ′0)) is also also a stack of height 1 with top element in normal

form and we have f(θ′0) = θ0 and T 'v T
[
S
S

]
.

Throughout the recursive definition of g, we shall keep track of the residu-
als of S along the normal form derivation t. The term residual was coined by
Church and Rosser in their paper proving confluency properties for the classi-
cal λI-calculus [CR36]. We use it in the following way: During a normal form
derivation, the subterm S of the original term T may be moved around or du-
plicated due to other redexes being resolved. The resulting subterms α(M ′, N ′)
are called residuals of S. Residuals of S vanish as soon as the application term
α(M ′, N ′) is put on the stack and evaluated. Note that the free variables of
residuals of S remain unbound in the surrounding term. We will make only
informal use of the notion of residuals, as all the details will be made clear in
the definition of g.

At time 0, we set g(0) = 0. Our condition holds. So let g be defined up to δ
and let t(δ) be of odd height. Consider the term T ′ that is the topmost element
of t(δ) (more precisely, the first component of the topmost element, which is
the term in whose normal form we are interested at time δ). Assume that our
condition holds up to δ and let S0, S1, . . . , Sk−1 denote those copies of S that
are residuals of S in T ′. Note that, as with S in T , all free variables of the Si
are unbound in T ′.

Case 0. If T ′ is not a-minimal, consider the leftmost term of the form
θ(Q, η(Q,R)). If the second part η(Q,R) is not one of the Si, set g(δ + 1) =
g(δ)+1 as in both t and t′ the next step simply is the contraction of applications.
If η(Q,R) = Si, observe that the next step in t is the contraction of applications;
followed by the first η-many approximation steps, i.e., the entire normal form
derivation of Si minus the last step that returns the result; again followed by
the next θ-many approximation steps. Let γ be the length of the first η-many
approximation steps. Let β be the length of the next θ-many approximation
steps. Set g(δ + 1 + γ + i) = g(δ) + 1 + i for i < β. Then our condition holds
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for t(δ + 1 + γ) and t′(g(δ) + 1) as in both stacks we are just at the beginning
of the θ-many approximation steps of θ(Q,S). The condition carries over to the
next β-many steps that are carried out in the same fashion in t and t′.

Case 1. If T ′ is in normal form, then the next two steps of t will be to
substitute T ′ into a term immediately below T ′ on the stack. The topmost
element of t′(g(δ)) is identical to T ′ since there cannot be any copies of S
around (we assumed S not to be in normal form). Set g(δ + 1) and g(δ + 2)
to g(δ) + 1 and g(δ) + 2 respectively. Our condition, that all stack elements of
t′(g(δ+j)) arise from t(δ+j) by replacing copies of S by copies of S, is retained
(for j = 1, 2).

Case 2. So let T ′ not be in normal form. Let the leftmost redex be P =
β(λx.Q,R).

Case 2.1 P lies to the left of every Si. Let γ be the length of the normal
form derivation and set g(δ + j) = g(δ) + j for j < δ. Clearly, our condition
holds for all these δ+ i. The residuals of S in the topmost element of the t(δ+ i)
are the same as those of T ′.

Case 2.2. There are some Sj , for j ∈ J ⊆ k, that are subterms of P . Each
of those is a subterm either of Q or of R. Let JQ and JR be the subsets of J
containing the indices of subterms of Q and R respectively. We set g(δ + i) =
g(δ) + i for i = 1, 2. At t(δ+ 1) the evaluation of β(λx.Q,R) is prepared, so our
condition holds. So consider t(δ + 2), i.e., the relevant next step in the normal
form development of T . First consider those Sq with q ∈ JQ. Since we assumed
that all free variables of S are unbound in T and we took precautions to not
accidentally bind variables, we know that S does not contain the variable x.
Therefore, the topmost stack element QR

x contains these Sq as subterms. The
replacement does not depend on the structure of Sq, so t′(g(δ+2)) contains S at
exactly the same positions as t(δ + 2) contains the Sq as subterms. Let us turn
to the Sr for r ∈ JR. In t(δ+ 2)’s topmost element QR

x , R has been substituted
for all occurrences of x in Q and with it all the Sr. Since this substitution is also
independent from the syntactic structure of the Sr, again the topmost element
of t′(g(δ + 2)) can be obtained from replacing all copies of all the Sr by S.

Case 2.3 There is some i < k such that P is Si or a subterm of Si. Let γ be
the length of the normal form derivation of S. We set g(δ+ γ) to g(δ). Observe
that, by the definition of the normal form derivation, the steps of t between δ
and δ + γ are used to determine the normal form of Si and replace Si in T ′ by
S. So the stacks t(γ) and t(γ + δ) are of the same height and identical on all
but the top layer which differs by the replacement of Si by S. Then, obviously
our condition holds for t(δ + γ) and t′(g(δ)).

We still need to define g at limits. Suppose κ is a limit and let g be defined
on an unbounded subset D ⊆ κ. Assume without loss of generality, that κ\D is
unbounded in κ, i.e., cofinally many steps from t are left out in t � D. All ‘gaps’
in D stem from Case 2.3. If there is a stack height σ that appears cofinally often
in t � D, we know that σ also appears cofinally as stack height in t � κ. Since
the gaps according to Case 2.3 each start and end with the same stack heights
and only increase stack height in between, they cannot factor in the lim inf of
t � κ. So we are safe to set g(κ) = limγ<κ g(γ). Now suppose the stack heights
increase unboundedly in t � D. Since the gaps only make the stack higher, also
the stack heights of t � κ increase unboundedly. But in fact, the stack height
at the beginning and the end of each gap is the same. Every gap ends before
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κ (since D is unbounded), so the part of the stack that gets built up and torn
down within a gap cannot factor in to the ‘limit stack’ (as per Definition 2.10,
(c), (ii)). Hence, the first skeleton on the limit stack that appears cofinally often
in t � D is the same as in t � κ. So we are safe to set g(κ) = limγ<κ g(γ). In both
cases the condition holds and residuals are inherited from below the limit.

2.6 Ordinal λ-definable functions and ordinal com-
putability

We shall now explore which functions on the ordinals are ordinal λ-definable. In
his Diploma thesis [Fis10], Tim Fischbach showed how various existing notions
of ordinal computability coincide in strength. We tie in our proposed model of
ordinal λ-definability into this framework to state our main result at the end of
this section.

2.6.1 Primitive recursive set and ordinal functions
A generalization of primitive recursive functions on natural numbers, operating
on the universe of sets, has been used in the study of the constructible hierarchy
[JK71, Dev73]. In [JK71], Jensen and Karp gave a definition for PrimO, the class
of primitive recursive functions mapping ordinals to ordinals, which is compat-
ible with their notion Prim of primitive recursiveness of functions mapping sets
to sets defined alongside in their paper:

Definition 2.18 ([JK71]). Let b0, . . . , bn−1 be unary ordinal functions, i.e.,
bi : Ord → Ord for 0 ≤ i < n. The symbol PrimO(b0, . . . , bk−1) (primitive
recursive ordinal functions in b0, . . . , bk−1) denotes the collection of all functions
of type (1) to (5) closed under the schemes for substitution (a) and (b) and
recursion (R).

(1) f(ξ) = bi(ξ) for 0 ≤ i < k

(2) prn,i(
~ξ) = ξi, for all n ∈ ω, ~ξ = (ξ1, . . . , ξn) and 1 ≤ i < n.

(3) f(ξ) = 0

(4) f(ξ) = ξ + 1

(5) c(ξ, ζ, γ, δ) =

{
ξ, if γ < δ

ζ, else

(a) f(~ξ, ~ζ) = g(~ξ, h(~ξ), ~ζ)

(b) f(~ξ, ~ζ) = g(h(~ξ), ~ζ)

(R) f(ξ, ~ζ) = g(supη<ξ f(η, ~ζ), ξ, ~ζ)

We write PrimO for PrimO().
Within this paper, we are interested in the case where the bi are constant

ordinal functions with value αi. We therefore will write PrimO(α0, . . . , αk−1) in
these cases.

A relation on ordinals is PrimO if its characteristic function is PrimO.
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Let G1, G2 denote the inverses of the Gödel pairing function, mapping an
ordinal α to the first or second coordinate of the α-th Gödel pair. Based on
[JK71, Theorem 4.4] one readily proves:

Lemma 2.19. Let α be admissible. There is a PrimO relation T such that
for any partial Σ1(Lα)-definable function F : α ⇀ α there is a bounded for-
mula φ and an ordinal number β such that for all γ ∈ α we have F (γ) =
G1 minξ∈α T (ξ, pφq, γ, β).

Proof. Let F be Σ1 via ∃zφ and the parameter w, i.e.,

L(α) |= F (x) = y ↔ ∃zφ(x, y, z, w).

Assume x ∈ domF . Then F (x) = G1 minξ∈α φ(x,G1(ξ), G2(ξ), w). Use the
Prim enumeration N of all constructible sets from [JK71] to find a β such that
F (x) = G1 minξ∈α φ(x,G1(ξ), G2(ξ), N(β)). Since φ is is ∆0 and truth of ∆0

relations is Prim, we get a desired relation T as Prim and via [JK71, 3.5] as
PrimO.

We obtain a different characterization of primitive recursive functions on
ordinals by replacing rules (5) and (R) by:

(5’) e(ξ, ζ) =

{
1 if ξ = ζ

0 else

(R’) If g and h are given, define f by

f(0, ~ζ) = g(~ζ)

f(ξ + 1, ~ζ) = h(f(ξ), ξ, ~ζ)

f(ξ, ~ζ) = lim inf
η<ξ

f(η, ~ζ) if ξ is a limit ordinal

It was proved in Tim Fischbach’s Diploma thesis [Fis10, Appendix A] that
these two schemes are equivalent.

Lemma 2.20 (Fischbach). The class of PrimO functions and the class obtained
from PrimO by replacing (5) by (5’) and (R) by (R’) are the same.

We can now show that the PrimO functions are λ + E-definable, the first
major step towards our main theorem.

Theorem 2.21 (Seyfferth). Every PrimO(~α) function is ordinal λ+E-definable
in ~α.

Proof. A useful device in this proof is the following: Although we cannot forget
arguments in the fashion of λxy.x due to the limitations of λI-calculus, we can do
so if the argument is an ordinal. With J = λz.(((S+

c , z), I), I) the term (J, α) has
normal form I for any α. Define TJ = λxy.((J, y), x) and FJ = λxy.((J, x), y).

(1) If ~α = (α0, . . . , αk−1), then every constant function with value αi is ordinal
λ-definable in αi as λx.((J, x), αi).
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(2) To retrieve the i-th input ordinal, consider the following term:

Pi = λx0x1 . . . xk−1.((. . . (J, x0)), (J, x1)), . . .), (J, xk−1)), xi)

The term (. . . (Pi, α0), α1), . . .), αk−1) has normal form αi.

(3) As above, with

Z = λx0x1 . . . xk−1.((. . . (J, x0)), (J, x1)), . . .), (J, xk−1)), 0)

the term (. . . (Z,α0), α1), . . .), αk−1) has 0 as normal form.

(4) From Example 2.13 it is evident that S+
c indeed defines the successor func-

tion on ordinals.

(5’) The term λxy.((((((E, x), y),TJ),FJ), 0), 1) defines the desired function e.

(a) Let g be defined by a termG and h byH. Define the term (((G, ξ), (H, ξ)), ζ).
Thanks to our Weak Church-Rosser Theorem, this term’s normal form is
'v-equivalent to the normal form of (((G, ξ), h(ξ)), ζ) and therefore the
term defines the composition function f(ξ, ζ) = g(ξ, h(ξ), ζ). The term is
straightforward to adapt for more than one parameter ζ. Similarly: (b).

(R’) First, let us define the ordered pair of two ordinals α and β as the term
[α, β] = λy.((y, α), β). Then we have ([α, β],TJ) = α and ([α, β],FJ) = β.
Let g be defined by G and h defined by H. Define

Fξ = ((ξ, λx.
[
(((H, (x,TJ)), (x,FJ)), ζ), (S+

c , (x,FJ))
]
),
[
(G, ζ), 0

]
),

i.e., the ξ-fold application of some term H∗ =
[
(((H, (x,TJ)), (x,FJ)), ζ),

(x,FJ)] to the term G∗ = [(G, ζ), 0]. Inductively, all approximations
η(H∗, G∗) for 0 < η < ξ have as normal form an ordered pair of two or-
dinals namely [f(η, ζ), η], and the construction with TJ and FJ works at
every approximation step. At limits, the pointwise lim inf ensures that lim-
its are taken in both coordinates of the ordered pair. So (Fξ,TJ) = f(ξ, ζ)
and, by parametrizing ξ and ζ, we can easily give a term F such that
((F, ξ), ζ) = f(ξ, ζ). The terms are straightforward to adapt for more than
one parameter ζ.

This works fine for every ξ > 0. For the case of ξ = 0 we need to modify Fξ
to include a test for zero: Define

F ′ξ = ((((E, ξ), 0), (G, ζ)), F ′′ξ )

F ′′ξ = ((((((E, ξ), 0), 1), ξ), λx.
[
(((H, (x,TJ)), (x,FJ)), ζ), ((S+

c , x),FJ)
]
),
[
(G, ζ), 0

]
)

The modifications to F ′′ξ make sure that its normal form is always an ordinal,
even if ξ = 0. That way the case distinction in F ′ξ works as intended.

2.6.2 Minimization
An ordinal λ-definable predicate on the ordinals is given by a term P such that
(P, α) takes TI as normal form for α in some subset or subclass of the ordinals
and FI for α in the complement.
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In this section, we will see that for every ordinal λ-definable predicate, there
is a function defining its least witness. The proof is a generalization of [Bar81,
Chapter 9, §2] and Barendregt credits Kleene for the construction. In [Bar81],
for any classically λ-definable predicate P on ω, a term HP is given that has
the least witness of the predicate P as normal form. It turns out that the same
term yields least witnesses for ordinal λ-definable predicates on Ord under our
algorithm. The following definitions are direct adaptations.

Definition 2.22. Following [Bar81, Chapter 9, §2] we define the following
terms:

(a) A0 = λxwt.((((((((w,TI), I), I), I), (t, x)), I), I), x)
(this term is used to escape the recursion)

(b) A1 = λxwt.((((w, (t, (S+
c , x))), (S+

c , x)), w), t)
(this term is used to continue the recursion)

(c) T3 = λxy.((((y, I), I), I), x)
(this term is used to forget an argument of the form Ai)

(d) F3 = λxy.((((x, I), I), I), y)
(this term is used to forget an argument of the form Ai)

(e) W = λx.((((x,T3),F3), A0), A1)
(this term switches between A0 and A1 depending on the truth value of x)

The following facts from [Bar81, Chapter 9, §2] hold true for our algorithm.
We shall use these as macros in the upcoming proof of Theorem 2.25.

Lemma 2.23 (Seyfferth).

(i) (TI , (T3,F3)) 'v T3 and (FI , (T3,F3)) 'v F3.

(ii) (((A0, I), I), I) 'v I

(iii) (((A1, I), I), I) 'v I

(iv) ((T3, Ai), Aj) 'v Ai, for i, j ∈ {0, 1}

(v) ((F3, Ai), Aj) 'v Aj, for i, j ∈ {0, 1}

(vi) (W,TI) 'v A0

(vii) (W,FI) 'v A1

Proof. Easily verified by running the algorithm.

Now we can define the term HP that has the least witness for P as normal
form for any ordinal λ-definable predicate P .

Now we can define the term defining witnesses for predicates.

Definition 2.24. Let P be an ordinal λ-definable predicate. Then define HP =
λx.((((W, (P, x)), x),W ), P ).

We give the central result of this subsection, the second ingredient to our
main result:
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Theorem 2.25 (Seyfferth). Let P be an ordinal λ-definable predicate. Then
(HP , 0) 'v γ where γ = minγ∈Ord((P, γ) 'v TI) if such a γ exists. Otherwise
(HP , 0) ↑.

Proof. We demonstrate that the algorithm works correctly. The computation
can be analyzed into the following stages:

• Lines (1) to (8) contain some preliminary setup.

• Lines (9) to (21) form one iteration of the main loop.

• Line (18) marks the time after which the second stack level stabilizes:
Through the following iterations, the stack remains stable up to its second
level. In fact, at the first limit in time, every finite stack level reached so
far contains a term of the same skeleton, cf. line (24).

• Therefore, the same skeleton is assumed at limits and the following suc-
cessor levels, until eventually level γ is reached in line (26).

• Lines (26) to (42) then reduce the topmost stack level, from a complicated
term still containing the subterms used to continue the recursion, to the
bare Church numeral γ.

• In the steps abbreviated in line (43), the stack is torn down. Note that at
all stack levels, the entire term was pushed onto the next stack level to be
evaluated (e.g. lines (18), (24), (26)). Therefore, γ is handed down directly
to the previous stack level without being inserted into some surrounding
term. As soon as the first limit level is reached, the stack is immediately
pruned to stack height 2 (cf. line (18)) as per Definition 2.10(b)(v).

• In line (44), the stack has height 1 and contains γ as the desired normal
form.

(HP , 0) write out HP (1)

(λx.((((W, (P, x)), x),W ), P ), 0) redex (2)

1: ((((W, (P, 0)), 0),W ), P ) write out W (3)

((((λx.((((x,T3),F3), A0), A1), (P, 0)), 0),W ), P ) redex (4)

1: (((((P, 0),T3),F3), A0), A1) WLOG (P, 0) 'v FI (5)

((((FI ,T3),F3), A0), A1) Lemma 2.23 (6)

((F3, A0), A1) Lemma 2.23 (7)

A1 return (8)

(((A1, 0),W ), P ) write out A1 (9)

(((λxwt.((((w, (t, (S+
c , x))), (S+

c , x)), w), t), 0),W ), P ) redex (10)

1: λwt.((((w, (t, (S+
c , 0))), (S+

c , 0)), w), t) property of S+
c (11)
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λwt.((((w, (t, 1)), 1), w), t) return (12)

((λwt.((((w, (t, 1)), 1), w), t),W ), P ) redex (13)

1: λt.((((W, (t, 1)), 1),W ), t) write out W (14)

λt.((((λx.((((x,T3),F3), A0), A1), (t, 1)), 1),W ), t) redex (15)

1: (((((t, 1),T3),F3), A0), A1) return (16)

λt.((((((((t, 1),T3),F3), A0), A1), 1),W ), t) return (17)

(λt.((((((((t, 1),T3),F3), A0), A1), 1),W ), t), P ) cofinal skeleton (18)

1: ((((((((P, 1),T3),F3), A0), A1), 1),W ), P ) WLOG (19)

(((((((FI ,T3),F3), A0), A1), 1),W ), P ) Lemma 2.23 (20)

(((((F3, A0), A1), 1),W ), P ) Lemma 2.23 (21)

(((A1, 1),W ), P ) write out A1 (22)
... similarly (23)

(λt.((((((((t, 2),T3),F3), A0), A1), 2),W ), t), P ) cofinal sk. (24)
. . . eventually (else obvious divergence) (25)

(λt.((((((((t, γ),T3),F3), A0), A1), γ),W ), t), P )

where (P, γ) 'v TI (26)

1: ((((((((P, γ),T3),F3), A0), A1), γ),W ), P )

assumption (27)

(((((((TI ,T3),F3), A0), A1), γ),W ), P )

Lemma 2.23 (28)

(((((T3, A0), A1), γ),W ), P ) Lemma 2.23 (29)

(((A0, γ),W ), P ) write out A0 (30)

(((λxwt.((((((((w,TI), I), I), I), (t, x)), I), I), x), γ),W ), P )

redex (31)

1: λwt.((((((((w,TI), I), I), I), (t, γ)), I), I), γ)

return (32)

((λwt.((((((((w,TI), I), I), I), (t, γ)), I), I), γ),W ), P )

redex (33)

1: λt.((((((((W,TI), I), I), I), (t, γ)), I), I), γ)

Lemma 2.23 (34)

λt.(((((((A0, I), I), I), (t, γ)), I), I), γ)
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Lemma 2.23 (35)

λt.((((I, (t, γ)), I), I), γ) definition I (36)

λt.((((t, γ), I), I), γ) return (37)

(λt.((((t, γ), I), I), γ), P ) redex (38)

1: ((((P, γ), I), I), γ) assumption (39)

(((TI , I), I), γ) Lemma 2.23 (40)

(I, γ) definition I (41)

γ return (42)

. .
.

note that when going through the stack . . .

. .
.

. . . also over limits in stack height . . .

. .
.

. . . no new redexes appear (43)

γ (44)

2.6.3 Main result

Theorem 2.26 (Seyfferth). A partial function F : Ord ⇀ Ord on the ordinals
is λ + E-definable in finitely many ordinal parameters if and only if it is Σ1-
definable over L.

Proof. By Lemma 2.19, every ordinal Σ1(L) definable function can be obtained
by one minimization over a PrimO relation in an ordinal parameter (and by
evaluating this result by another PrimO function). Theorem 2.25 shows that
minimization over ordinal λ + E-definable relations is ordinal λ + E-definable.
Since by Theorem 2.21 all PrimO functions are ordinal λ+E-definable, it follows
that every Σ1(L) definable function is already ordinal λ+E-definable. It remains
to show that every ordinal λ + E-definable function is Σ1(L) definable. We
use the established equivalence of Σ1(L)-definable functions and α-computable
functions [KS09] and define an OTM program which computes the normal form
derivation of any λ+ E-term:

At any point in the normal form derivation, we would like the current stack
content to be coded on our Turing tape. Each stack element is composed of a
finite number of terms plus some ordinals. Every term can be represented as
the pair of its flesh (a tuple of ordinals) and its skeleton (a finite string over a
countable alphabet). So every stack element can be coded into a finite sequence
of ordinals. This can be coded into our tape via Gödel pairing 〈·, ·〉: Cell number
〈〈n, γ〉, ξ〉 = 1 if and only if the n-th ordinal of stack element γ is greater than
ξ. All ordinals coded in this way are preserved as lim inf’s across limits, due to
the properties of OTMs. The operations on the stack that happen at successor
times are all of syntactical nature on terms and can be carried out by an OTM.

At limits in the normal form derivation, our simulation thereof at first will
set all ordinals involved to their lim inf:
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First, consider the case where some stack height appears cofinal below the
limit. We thus are in the case where some term β(M,N) is approximated.
Then all stack levels up to the lim inf of stack heights will have stabilized and
the trivial lim inf’s are as desired. On the top stack level, however, the OTM
lim inf-rule will produce garbage, as both the non-normalized form and the
normal form of the approximations γ(M,N) appear on the cofinal stack height.
But OTMs can recognize limits (by the flag-flashing technique introduced in
[HL00]) and we can keep track of the stack height on some separate space on
the tape (imagine, for simplicity, an extra tape for this task). Whenever a
limit is reached, we can check whether there is a cofinally assumed stack height:
Simply simulate the computation up to that point time and again, trying out
all values from 0 to the number of the current iteration, again flashing a flag
whenever the stack has the suspected height to see whether it appears cofinally.
This means a vast increase of running time over the length of the normal form
derivation to be simulated, but really poses no problem since, in any case,
we will be done eventually; nevertheless, time improvements are possible via
diagonal enumeration. As soon as the cofinally assumed stack height is known,
the desired lim inf’s can be found by one additional simulation up to the current
step.

In the second case, where no stack height appears cofinally, we are interested
in the first (with respect to stack height) skeleton that appears cofinally often
in the ever increasing stack. We can search through the limit stack, checking for
every possible skeleton whether it appears cofinally and, among those that do,
choose the one that appears on the stack first. Once we identified this skeleton,
we can search through the limit stack again to determine the desired lim inf.

We can restrict both the length of the normal form derivation and the stack
height in definition 2.10 to some admissible ordinal α: If either reaches α, we
say that the normal form derivation diverges. With the resulting notion of α-
normal form derivation we can define the α-λ+E-definable (partial) functions
on α (possibly in parameters < α).

Corollary 2.27. Let α be admissible. A function partial F : α ⇀ α is α-λ+E-
definable in a finite set of parameters < α if and only if it is Σ1-definable over
Lα.

Proof. As above, Lemma 2.19 and Theorems 2.21 and 2.25 ensure that every
Σ1(Lα)-definable function is α-λ-definable in parameters < α. For the converse,
the admissibility of α ensures that the above construction can be carried out on
an α-Turing machine (as definedj, e.g., in [KS09]).

2.7 Open questions

2.7.1 Strong Church-Rosser Theorem

We already stated Conjecture 2.16, that a strong version of the Church Rosser
Theorem holds for our calculus.

Conjecture. Let T be a term with normal form and let S ⊆ T be a subterm.

Then T 'v T
[
S
S

]
.
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2.7.2 λ+ Z-definability
Another open problem is whether we can prove our main result for calculi seem-
ingly weaker than λ + E. We added a predicate for equality of ordinals to our
calculus and defined the λ+E-definable functions to obtain the initial function
(5’) in the definition of primitive recursive functions. All other arguments from
Section 2.6 go through also for λ-definable functions. We conjecture that we
can replace the predicate E by a predicate Z that tests numerals for being zero,
in the same fashion as E tests for equality.

Conjecture. Theorem 2.26 holds for λ+ Z-definable functions.

Proof idea. Equality of ordinals can be defined recursively from a test for 0:

α = β ↔ (α = 0 ∧ β = 0) ∨ (α ≤ β ∧ β ≤ α)

α ≤ β ↔ ∀γ ∈ α ∃δ ∈ β γ = δ

One should be able to carry out this recursion in our ordinal λ-calculus. The ∃
and ∀ quantifiers can be modeled in the following way: Let P be a predicate on
the ordinals and assume we want to decide, e.g., whether P holds for some γ < α.
We define a function f : Ord 7→ {0, 1} such that f(α) = 1↔ ∃γ < α P (α).

f(0) = 0

f(γ + 1) = 1↔ P (γ) ∨ f(γ) = 1

f(µ) = lim inf
ν<µ

f(ν) if µ is a limit

This primitive recursion is λ+ Z-definable if P is so.
Due to Note 2.9, it seems unlikely that we are able to go even weaker than

λ + Z. Since, syntactically, the numeral for 0 is indistinguishable from the
numerals for non-zero ordinals, it appears doubtful to obtain a test for zero by
syntactical tricks. Also, its arithmetical properties cannot be validated without
a means to talk about equality of ordinals.

2.7.3 Variations of the model
As with the other models of ordinal computation, there are interesting varia-
tions imaginable. While λ-calculus does not come with a canonical distinction
between time and space, our normal form algorithm can easily be restricted
in both runtime or stack height. Asymmetric models, such as ITTMs or the
restriction of OTMs in Part II of this thesis, have interesting theories so these
two paths, i.e., restricting stack height but not runtime and restricting input
complexity but neither runtime nor stack height, should be explored. In an early
stage of the development, the author conjectured that the present calculus re-
stricted to finite stacks (and consequently without part (c)(ii) of Definition 2.10)
would be equivalent in strength to the PrimO functions. While plausible from
interpreting terms of the form α(M,N) as some kind of for-loops, it turned out
that this is false: Due to its un-typed nature, the thus defined generalization
of λ-calculus is capable of giving ‘primitive recursive’ definitions for function-
als such as the Ackermann function, while the calculus of primitive recursive
functions is limited to defining only functions on ordinals in a recursive manner.



42 CHAPTER 2. AN ORDINAL λ-CALCULUS

Moving away from looking at the calculus solely as means of defining func-
tions on the ordinals, the work done to generalize λ-calculus may perhaps be
used to extend other calculi that are centered on the re-writing of terms to
the transfinite. The author hopes for the present work to be helpful in further
studies in this direction.
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3.1 Introduction
The study of subsets of real numbers is a classical topic in mathematics. To-
day, descriptive set theory is one of the major active fields in set theory, using
techniques from constructibility, infinite games, and forcing to analyze the prop-
erties of complexity classes of sets of reals. The complexity of such sets is usually
measured by how simple a definition (written in the language of second order
arithmetic) for the set can be given. The following brief overview is based on
Akihiro Kanamori’s excellent introduction in [Kan03].

The language of second order arithmetic refers to statements and terms
over {ap,+,×, exp, <, 0, 1} using variables of type 0 {v0

i | i ∈ ω} and type
1 {v1

i | i ∈ ω} and where ap takes an argument of type 0 and 1 each and has
values in type 0 (+, ×, exp, <, 0, 1 are, as suggested by their symbols, functions,
a relation and constants on type 0). We use the connectives {¬,∨,∧,→,↔}
and the so called number quantifiers {∃0,∀0} and function quantifiers {∃1,∀1}
(ranging over their respective types of variables) to build formulas. Informally,
we use variables k, l, m, etc. for variables of type 0 and x, y, z for type 1 and
omit the type of the quantifiers where possible. The formulas are evaluated over
the structure (ωω, ω, ap,+,×, exp, <, 0, 1). The function ap interprets elements
of ωω as functions on ω and takes as arguments an x ∈ ωω and a k ∈ ω and
returns the value x(k) ∈ ω. Bounded quantification refers to formulas of the
form ∃n(n < m ∧ φ) and ∀n(n < m→ φ) and is abbreviated as ∃n < m φ and
∀n < m φ respectively.

For our considerations, two of the various hierarchies employed in descriptive
set theory are relevant. First consider the lightface arithmetical hierarchy on
these formulas:

A formula is ∆0
0 if only bounded quantification is used.

A formula is Σ0
1 if it is of the form ∃kφ where φ is ∆0

0.

A formula is Π0
1 if it is of the form ∀kφ where φ is ∆0

0.

A formula is Σ0
n+1 if it is of the form ∃kφ where φ is Π0

n.

A formula is Π0
n+1 if it is of the form ∀kφ where φ is Σ0

n.

A set of reals A ⊆ ωω is Σ0
n (or Π0

n) if it has a Σ0
n (or Π0

n) definition φ, i.e.,
x ∈ A↔ φ(x). The set A is called ∆0

n if it is both Σ0
n and Π0

n. It is worth noting
that the Σ0

1 sets are precisely the classically enumerable sets and consequently
the computable sets of reals coincide with the class ∆0

1.
Next, we introduce the lightface analytical hierarchy :

A formula is Σ1
1 if it is of the form ∃xφ where φ is arithmetical.

A formula is Π1
1 if it is of the form ∀xφ where φ is arithmetical.

A formula is Σ1
n+1 if it is of the form ∃xφ where φ is Π1

n.

A formula is Π1
n+1 if it is of the form ∀xφ where φ is Σ1

n.

We will also set both Σ1
0 and Π1

0 to Σ0
1.
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Again, a set A ⊆ ωω is Σ1
n (or Π1

n or ∆1
n) if it has a Σ1

n (or Π1
n or ∆1

n)
definition φ. The set A is called ∆1

n if it is both Σ1
n and Π1

n.
In fact, analytical sets also have a bit more streamlined definitions, which

will shall use below:

A set A is Σ1
1 if x ∈ A↔ ∃y∀kφ(x � k, y � k, k) where φ is ∆0

0.

A set A is Π1
1 if x ∈ A↔ ∀y∃kφ(x � k, y � k, k) where φ is ∆0

0.

3.2 Tree representations
We consider the following type of trees:

Definition 3.1.

(a) A tree on X is a subset of <ωX that is closed under initial segments. An
infinite branch corresponds to an element of ωX.

(b) A tree on X×Y is a subset of <ωX×<ωY of same length sequences, closed
under pointwise initial segments.

(c) For a tree T on X × Y and some x ∈ ωX or x ∈ <ωX, we denote by Tx the
tree on Y of those sequences y that are compatible with x in T , i.e., that
for all n ∈ ω we have (x � n, y � n) ∈ T .

(d) Trees without infinite branches are called well-founded.

The definition for trees on X × Y has an obvious generalization to finite
tuples X0 ×X1 × . . . Xk−1. We shall in the following only consider trees where
the Xi are ordinals.

Fact 3.2. When ordered by reverse coordinate-wise inclusion, a tree on α0 ×
α1 × . . . αk−1 is well-founded if it has a strictly order-preserving map into the
ordinals (we will call such a map an order-preserving embedding).

Π1
1 sets have the following tree representation, which we shall call the Luzin-

Sierpiński tree: A ⊆ k(ωω) is Π1
1 if and only if there is a recursive tree T on

kω × ω such that

x ∈ A↔Tx is well-founded
↔ there is an order-preserving embedding

of Tx into some countable ordinal

For a proof we refer the reader to textbooks on descriptive set theory, one exam-
ple being [Kan03, Theorem 13.1]. The general idea is: given the Π1

1 definition
x ∈ A ↔ ∀y∃kφ(x � k, y � k, k) for some ∆0

0 φ, define T to be the tree of all
pairs of length k sequences (u, v) so that ¬φ(u � n, v � n, n) for all n ≤ k. There,
infinite branches occur only in subtrees induced by reals in ωω \A.

The Shoenfield tree is a tree representation for Σ1
2 sets: For a Σ1

2 set B ⊂
k(ωω) let A be Π1

1 such that B = {x | ∃y(x, y) ∈ A}. Let T be the Luzin-
Sierpiński tree for A. The Shoenfield tree S for B is such that

x ∈ B ↔ Sx has an infinite branch

where an infinite branch of Sx codes
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• a real y such that (x, y) ∈ A and

• some order-preserving embedding of T(x,y) into some countable ordinal α

This can be coded into an element of ωω1, therefore S is a tree on kω × ω1.
Sx is a tree on ω1.

Since the Shoenfield tree can be constructed within L and even in every
model of KP that contains ω1 as a subset, we can state the following fact:

Fact 3.3 (Shoenfield absoluteness). Every Σ1
2 relation is absolute for transitive

models of KP that contain ω1 as a subset.

This will be re-proved from the perspective of ordinal computability, along
with several further facts from classical descriptive set theory:

Fact 3.4 (Σ1
2 uniformization). For every Σ1

2 relation R ⊆ ωω × ωω there is a
Σ1

2 relation U ⊆ R such that for every x with ∃y(x, y) ∈ R there is precisely one
z with (x, z) ∈ U .

A norm on some set A is a map φ : A→ Ord. A pre-wellordering is a relation
that is total, transitive and well-founded, but not necessarily anti-symmetric.
A Σ1

2 norm is a norm for which there are a Σ1
2 pre-well-ordering P and a Π1

2

pre-well-ordering Q such that:

x ∈ A ∧ φ(x) ≤ φ(y)↔ P (x, y)↔ Q(x, y)

Fact 3.5 (Σ1
2 norms). Every Σ1

2 set has a Σ1
2 norm.

When allowing a real parameter in defining the above hierarchies, we get
boldface versions of the defined pointclasses. The following is often stated in its
boldface version as Suslin’s theorem (every Σ1

2 set is union of ω1-many Borel
sets), but this lightface version also holds true.

Fact 3.6 (Suslin). Every Σ1
2 set is the union of ω1-many ∆1

1 sets.

3.3 Ordinal Turing machines
Using transfinite recursion, we can generalize Turing computations to the infi-
nite. At successor times, the program P is used as in the standard Turing ma-
chine case, with the single exception that when dealing with tapes of transfinite
length, a convention has to be found what should happen when a read-write-
head is being moved left from a cell indexed by a limit ordinal. In this situation
we want the head to be reset to the beginning of the tape (the leftmost cell).

For limit times, the Turing-program cannot determine the tape content,
head positions, and program state, so we have to define them in a sensible way.
Following the lines of [Koe05] we use inferior limits: We want each single cell
of every tape to contain the lim inf of its previous values, the machine state to
be the lim inf of the previous machine states and every tape’s read/write-head
to be located on the cell indexed by the lim inf over the positions it previously
assumed in the limit machine state, i.e., the least cell that was read cofinally
often while the machine was in the same state as at the limit time. The lim inf
of the program states may be imagined as an instruction starting a loop that is
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carried out cofinally often before the limit time. So setting the head according
to that loop ensures that the loop instruction when called at the limit time
operates on the same part of the tape it operated on cofinally often before.

More formally:

Definition 3.7 ([KS09]). Let α be a limit ordinal or α = Ord. Let P ⊆
{0, 1} × ω × {0, 1} × ω × {−1, 1} be finite and let T0 ∈ (α{0, 1}) be the initial
tape content of the tape of length α. A triple

(Tθ, Hθ, Sθ)θ≤Θ

is called an α-Turing computation by P on input T0 if the following conditions
hold:

(a) Θ ≤ α;

(b) Sθ ∈ ω for θ ≤ Θ;

(c) Hθ ∈ α for θ ≤ Θ;

(d) Tθ : α→ {0, 1} for and for θ ≤ Θ;

(e) (Tθ, Hθ, Sθ)θ≤Θ is defined recursively in P and the initial tape contents T0

in the following way:
Termination: Let θ ≤ Θ < α and let (Tθ′ , Hθ′ , Sθ′)θ′≤θ be already defined.
If there is no (a, s, a′, s′, d) ∈ P where Tθ(Hθ) = a and Sθ = s then the
computation halts or terminates, i.e., θ = Θ.
Successor step: Let θ < Θ, let (Tθ′ , Hθ′ , Sθ′)θ′≤θ be already defined and
let there be a c = (a, s, a′, s′, d) ∈ P where Tθ(Hθ) = a and Sθ = s. Choose c
minimally with respect to some fixed well-order on P . As usual we want the
configuration (Tθ+1, Hθ+1, Sθ+1) to be derived from (Tθ, Hθ, Sθ) according
to the instruction c.
We require:

Tθ+1(ξ) =

{
a if ξ = Hθ

Tθ(ξ) otherwise

Hθ+1 =


Hθ + 1 if d = +1

Hθ − 1 if d = −1 and Hθ is a successor ordinal
0 if d = −1 and Hθ is a limit ordinal

Sθ+1 = s′.

Limit step: Now let θ ≤ Θ be a limit ordinal and let (Tθ′ , Hθ′ , Sθ′)θ′<θ be
already defined. For ξ < α set

Sθ = lim inf
θ′<θ

Sθ′

Hθ = lim inf
θ′<θ,Sθ=Sθ′

Hθ′

Tθ(ξ) = lim inf
θ′<θ

Tθ′(ξ).

Divergence: Note that the machine configuration at limit times is always
defined whenever the configurations at all previous stages are defined. If
θ = Θ = α we say that the computation diverges.
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In case of α =∞ = Ord we speak of an ordinal Turing computation (OTM-
computation).

It is described in depth in [Koe05] how these machines can be used to com-
pute a bounded truth predicate for the constructible hierarchy L by

(a) enumerating codes for all elements in L and

(b) enumerating bounded formulas (i.e., formulas in which all quantifiers appear
bounded in the sense of ∃x ∈ y).

These enumerations have to be carefully arranged in a way that for a given pair
of bounded formulas and an assignment of elements from L, truth can be checked
by looking up truth values of pairs of formulas and assignments determined
previously. The result enables us to effectively search L for witnesses of any
given Σ1 formula of set theory.

There are various forms of initial tape contents that can be interpreted as
inputs to computations. For the following we are interested in OTM-computable
sets of reals.

Definition 3.8. A set A ⊆ ω2 is called OTM-enumerable if there is a Turing
program P such that for every x ∈ ω2 the OTM-computation by P on initial
tape content x (written on the first ω-many cells, all other cells being filled with
0s) halts if and only if x ∈ A.

The set A is called OTM-decidable if both A and ω2\A are OTM-enumerable.

We give here a slight improvement over [Koe05, Lemma 2.6].

Lemma 3.9. Let M be a transitive model of KP, i.e., of Kripke-Platek set
theory. Let P be a program and let T (0) : Ord → 2 be an initial tape content
so that T (0) � (Ord ∩M) is ∆1 definable in M . Let S : θ → ω, H : θ → Ord,
T : θ → Ord2 be the ordinal computation by P with input T (0). Then:

(a) The ordinal computation by P with input T (0) is absolute for M below
(Ord � M), i.e., S : θ → ω ∩ M , H : θ → Ord ∩ M , T̄ : θ → θ∩M2
with T̄ (t) = T (t) � (Ord ∩M) is the ordinal computation by P with input
T (0) � (Ord ∩M) as computed in the model M .

(b) If Ord ⊆ M then the ordinal computations by P in M and in the universe
V are equal.

(c) Let Ord ⊆ M and x, y ⊆ Ord, x, y ∈ M . Then P : χx 7→ χy if and only if
M |= P : χx 7→ χy.

(d) Let x, y ⊆ Ord, x, y ∈M . Assume that M |= P : χx 7→ χy. Then P : χx 7→
χy.

Proof. We introduce the requirement that the initial tape content T (0) be ∆1

definable in M in order for the recursive definition of a computation to become
a Σ1 recursion. So the recursion as described in [Koe05] can be carried out in
KP.



3.4. COMPUTING ∆1
2 51

3.4 Computing ∆1
2

Theorem 3.10. A set A of reals is OTM-enumerable if and only if it is Σ1
2.

Proof. Let A be OTM-enumerable, i.e., there is a Turing program P such that
a ∈ A if and only if P halts on input a. Now the latter condition is Σ1

2:
There is a real coding a halting computation on input a; to express coding a
computation of an ordinal machine requires to check the wellfoundedness of the
‘time-axis’; this can be done by another for all quantifier, as well-foundedness
is a Π1

1 property.
Conversely, if A is Σ1

2 by the formula φ, then by the Shoenfield absoluteness
theorem about the absoluteness of Σ1

2 properties we get: a ∈ A if and only if
L[a] |= φ(a) [Jec03, Theorem 25.20]. In models of set theory, φ is uniformly
equivalent to a Σ1 formula ψ of set theory [Jec03, Lemma 25.25]. So a ∈ A if
and only if L[a] |= ψ(a). But the latter can be (semi-)computed by an OTM as
outlined above and proved in [Koe05]: successively build up the L[a]-levels and
check whether ψ(a) is true in the level; if yes, then stop, otherwise continue. So
A is OTM-enumerable.

Corollary 3.11. A set A of reals is OTM-computable if and only if it is ∆1
2.

3.5 Summary of the next chapter
The paper had its origin in the characterization of the OTM-decidable sets of
reals as ∆1

2 just stated, which was proved by Koepke and the author. The au-
thor then realized that Shoenfield absoluteness, the central tool in this proof,
itself can be proved by the means of OTMs: There is an algorithm that finds
the infinite branches in the Shoenfield tree defined in the original proof. Philipp
Schlicht then suggested some more facts like Σ1

2 uniformization and Σ1
2 norms

from descriptive set theory that could be proved as corollaries to the algorith-
mic approach. Together Schlicht and the author defined an alternative tree
representation for Σ1

2 sets, derived from OTM computations, that can play the
role of the Shoenfield tree in both the original and the algorithmic proof. The
tree-searching algorithm used to search the Shoenfield tree prompted the au-
thor to give a definition of nondeterministic OTMs and to prove that they are
not stronger than deterministic OTMs when it comes to decide sets of reals.
Schlicht suggested stratifying the pointclasses between Π1

1 and Σ1
2 via bounds

on the halting time of our algorithm and proving uniformization and existence
of norms for these classes. The previously defined tree of partial computations
was used in proving these results. Finally, Schlicht and the author briefly dis-
cuss the Σ1

2 universality of the OTM’s halting problem, and how the complexity
and the universality properties of iterated jumps depend on the set theoretic
setting.
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4.1 Introduction

Ordinal computability studies generalized computability theory by means of
classical machine models that operate on ordinals instead of natural numbers.
Starting with Joel Hamkins’ and Andy Lewis’ Infinite Time Turing Machines
(ITTM) [HL00], recent years have seen several of those models which provided
alternate approaches and new aspects for various ideas from logic, set theory and
classical areas of generalized computability theory. With ITTMs, the machine
may carry out a transfinite ordinal number of steps while writing 0s and 1s
on tapes of length ω. This is achieved by the addition of a limit rule that
governs the behavior of the machine at limit times. The 0s and 1s on the ω-long
tape are interpreted as subsets of ω (reals). It turns out that the sets of reals
semi-decidable by these machines form a subset of ∆1

2. Similar studies have been
carried out for infinite time register machines (ITRMs), whose computable reals
are exactly the reals in LωCKω [Koe09].

Another direction of ordinal computability lifts classical computability to
study not the subsets of ω, but of an arbitrary ordinal α, or even the class Ord
of all ordinals. In this case, both space and time are set to that ordinal α, i.e.
in the Turing context, we deal with machines that utilize a tape of length α and
either stop in less than α many steps or diverge. The computation is steered by
a standard Turing program and a finite number of ordinal parameters less than
α so the machines can talk about ordinals below α in much the same fashion
as classical Turing machines can about natural numbers. This approach unveils
strong connections to Gödels universe of constructible sets and the classical
work on α-recursion theory [KS09].

In the present paper, we aim between these two approaches by analyzing
the computable sets of reals of Turing machines with Ord space and time but
without allowing arbitrary ordinal parameters. Omission of the parameters
leads to a model in which all computational information is contained in the
real input, the finite Turing program and the limit rules. We work with ordinal
Turing machines (OTMs), the machine model introduced in [Koe05]. Let us
briefly review the basic features, for more detail and background the reader is
referred to the original paper.

An OTM uses the binary alphabet on a one-sided infinite tape whose cells are
indexed by ordinal numbers. At any ordinal point in time, the machine head is
located on one of these cells and the machine is in one of finitely many machine
states indexed by natural numbers. Since we utilize both Ord space and time,
there is no need to use multiple tapes in our definition; any fixed finite number
of tapes can be simulated by interleaving the tapes into one. A typical program
instruction has the form (a, s, a′, s′, d) ∈ {0, 1} × ω × {0, 1} × ω × {−1, 1} and
is interpreted as the instruction “If the symbol currently read by the machine’s
read-write head is a and the machine is currently in state s, then overwrite a
with the symbol a′, change the machine state to s′, and move the head according
to d either to the left or to the right”. At successor times in the course of
the computation, the machine behaves like a standard Turing machine, with
the following exception: If the machine head rests on a cell indexed by a limit
ordinal or 0 and a “move left”-instruction is carried out, then the head is set to
position 0. The machine accesses the transfinite by the following rule, known
as the lim inf-rule:

At a limit time λ, the machine state is set to the lim inf of the states of pre-
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vious time, i.e., the least state that was assumed cofinally often in the previous
steps. Similarly, we set the tape content for each cell individually to the lim inf
of the previous cell contents; in other words, a cell contains a 0 at time λ if it
contained a 0 cofinally often before λ, and it contains a 1 at time λ otherwise.
We also set the head position to the cell indexed by the lim inf over the indices
of the cells visited at previous steps in which the machine’s state matched the
limit stage.

These ordinal machines may be used to describe sets of reals. In order to
input a real number into an ordinal Turing machine, we start the computation
with an initial tape content coding the real; so the initial tape contents is a
sequence of the numbers 0 and 1 written in the cells with finite index. Note that
our basic definitions do not involve ordinal parameters as in [Koe05, Definition
2.5], hence our main results refer to pointclasses defined without parameters.
Since elements of ωω can be coded in ω2 via Gödel pairing, we can have elements
of ωω as input as well. Thus we will also refer to elements of ωω as real numbers.
Let us denote the OTM computation by a program P on input x as P (x) and
abbreviate the statement “P (x) halts” as P (x) ↓. The notion of input and output
of an OTM computations is defined as in [Koe05]. We will say that a partial
function f : X ⇀ Y is OTM computable if there is a program P that halts on
input x ∈ dom f with output f(x) ∈ Y , given a suitable coding of elements of
X and Y into OTM tapes.

Definition 4.1 (Koepke). A set of reals A ⊆ ωω is called OTM semi-decidable
if there is an ordinal Turing machine that halts if and only if the initial tape
content was an element of A. A is called OTM decidable if both A and ωω \ A
are OTM semi-decidable.

Our motivation is to use ordinal machines to refine uniformization results in
descriptive set theory. In [Hjo10] it is shown that many results in descriptive
set theory have simple proofs using admissible sets; we go further than [Hjo10]
in providing explicit algorithms for the constructions. In Section 4.2, we shall
define an algorithm for searching for infinite branches in the Shoenfield tree.
This implies that the Σ1

2 sets of reals are exactly the OTM semi-decidable sets of
reals. As a consequence, we will re-establish Shoenfield’s absoluteness theorem
from the perspective of ordinal computability. The fact that the Σ1

2 sets of
reals are exactly the OTM semi-decidable sets of reals may be alternatively
obtained from Σ1

2 absoluteness and the fact that bounded truth in L is an
OTM computable relation (for the latter see [Koe05]). In Section 4.3, we shall
introduce a tree representation for Σ1

2 sets that is based on finite fragments of
OTM computations. We will apply the algorithm in Section 4.2 to this tree
representation to obtain our main result: Uniformization for classes of sets
OTM semi-decidable by computations with input-dependent upper bounds on
the halting time. Section 4.4 introduces a notion of nondeterministic OTM
computations and establishes that nondeterministically OTM decidable sets are
already deterministically so. We shall then show that the jump structure of our
machines depends on set theoretic assumptions.
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4.2 Computing the Shoenfield tree

In this section, we define an OTM algorithm searching for branches in the
Shoenfield tree. To assist in the computations, let us fix the following OTM
computable functions. The Gödel pairing function is a bijection 〈·, ·〉 : Ord ×
Ord → Ord. Elements of Baire space can be represented as subsets of ω by
coding their graph via Gödel pairing. The function o : ω → <ωω is a computable
bijection providing a computable enumeration of the basic open sets O(i) of the
Baire space ωω, where O(i) denotes the basic open set defined by the sequence
o(i). Let us recall some basic notation commonly used in classical descriptive
set theory: If T is a tree on kω × α and x ∈ k(ωω), let Tx = {u ∈ nα : (x �
n, u) ∈ T, n ∈ ω}. If s ∈ k(mω), let Ts = {u ∈ nα : (s � n, u) ∈ T, n < m}.

We will make use of the standard tree representation for Π1
1 sets due to Luzin

and Sierpiński. Recall that a set B ⊆ k(ωω) is Π1
1 if there is a tree T on kω× ω

such that the relation {(x, i) | o(i) ∈ Tx} is computable and x ∈ B if and only
if Tx is well-founded. Let us call T the Luzin-Sierpiński tree for B. The tree
Tx is well-founded if and only if there is an order-preserving embedding of Tx
into some countable ordinal α. Hence, to check whether x ∈ B, we can look
for a suitable infinite branch in the tree S on kω × ω1 of all pairs (s, u) with
s ∈ k(nω) and u ∈ nω1 for some n ∈ ω where u codes an order-preserving map
fu : Ts ∩ {o(i) | i < length(u)} → ω1. This is the Shoenfield tree projecting to
B.

Let us first define an algorithm searching the Shoenfield tree for a Π1
1 set

B ⊆ ωω. Let T be the Luzin-Sierpiński tree for B. We would like the algorithm
to halt on input x ∈ ωω if and only if x ∈ B. Depth-first-search (DFS) is
employed to find an infinite branch in the subtree of S that consists of the pairs
(s, u), where s = x � n for some n ∈ ω. In other words, we will search Sx,
which is a tree on ω1. Clearly, membership in S of any given pair (s, u) is OTM
decidable inside every admissible set, as the property o(i) ∈ Ts is computable in
the classical sense. Note that ω may be used as a constant, since the constant
function with value ω is OTM computable.

Algorithm 4.2 (Seyfferth).

set α = 0

MAIN:
set u = ();
set n = 0;
call DFS(u);
increment α;
call MAIN;

DFS(u):
if n = ω then stop;
if (x � n, u) ∈ S then increment n and set u = u a 0 and
call DFS(u) and decrement n and set u = u � n;
if u(n) < α increment u(n) and call DFS(u);

The algorithm starts with the empty sequence u = () and in stage α = 0.
Whenever DFS(u) is called, all possible extensions of u by a single ordinal β < α
are considered. When all β < α have been tried, DFS(u) ends. If a extension
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u a β ∈ Sx is found, the recursion will immediately try to extend it further and
DFS(u a β) is called. Whenever the algorithm tries an extension u a β that is
not in Sx, this extension is not followed further and u a (β + 1) is tried next.
If the length n of u has reached ω, a branch is found, i.e., u codes an order
preserving embedding of Tx into the ordinal α. If no branch can be found, the
recursion eventually breaks down, α is incremented, and the algorithm starts
over with the empty sequence.

Throughout the algorithm, the variable u is stored in an extra tape whose
n-th cell contains a 1 if and only if n = 〈p, q〉 and u(p) ≥ q and 0 otherwise.
Therefore, the variable also contains the desired value at limit times.

Lemma 4.3 (Seyfferth). The algorithm will find the lexicographically least in-
finite branch through Sx, if there is one.

Proof. It is clear that if the algorithm finds a branch, it will find the lexico-
graphically least. So we have to show that this branch is eventually found. Let
v ∈ ωω1 be the lexicographically least branch of Sx and let γ be the supremum
of the ordinals in v. The tree Sx∩<ωγ is countable. Observe that the algorithm
visits exactly the nodes of Sx ∩ <ωγ in the stages α < γ and that every node
is visited only once. Since this subtree contains no infinite branches, the algo-
rithm sets α = γ after countably many steps. Note that in stage γ, the algorithm
will first visit the countably many sequences w ∈ Sx that are lexicographically
smaller than v � length(w). No node w that is lexicographically greater than
v � length(w) is visited before the algorithm examines every initial segment of
v, so the algorithm eventually finds the branch in countable time.

Now consider a Σ1
2 set A ⊆ ωω and a Π1

1 set B ⊆ ωω × ωω such that
p(B) = A. We will modify the previous algorithm to semi-decide the set A.
Let T ⊆ (2ω × ω)<ω be the Luzin-Sierpiński tree for B. The Shoenfield tree
S for B is the tree of all (s, t, u) where u codes an order-preserving embedding
fu : Ts,t → Ord. Since B = p([S]) and A = p(B), we have x ∈ A if and
only if the tree S~x (on ω × ω1) has an infinite branch. In order to find such a
branch for a given x, the algorithm proceeds in stages α ∈ Ord. In each stage
α, depth-first-search is employed to find an infinite branch in the subtree of S~x
which consists of the pairs (t, u) where u is a tuple of ordinals below α.

Algorithm 4.4 (Seyfferth).

set α = 0;

MAIN:
set t = ();
set u = ();
set n = 0;
call DFS(t, u);
increment α;
call MAIN;

DFS(t, u):
if n = ω then stop;
if u(n) = α then set u(n) = 0 and increment t(u);
if t(n) = ω then decrement n and set t = t � n and set u =
u � n;
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if (x � n, t, u) ∈ S then increment n and set t = t a 0 and
set u = u a 0 and call DFS(t, u) and decrement n and set
t = t � n and set u = u � n;
increment u(n) and call DFS(t, u);

Here in every call of DFS(t, u), the algorithm tries to extend t and u simulta-
neously by all pairs (m,β) withm ∈ ω and β < α. Again, if (t a m,u a β) ∈ Sx,
the sequence is immediately extended further and DFS(t a m,u a β) is called.
Otherwise, (t a m,u a β + 1) is tried next. If for all β < α (t a m,u a β)
cannot be extended further, then (t a m+ 1, u a 0) is tried next, and so on.

Lemma 4.5 (Seyfferth). The algorithm will find the lexicographically least z
such that Sx,z has a branch, and the lexicographically least branch v through
Sx,z, if such a real z exists.

Proof. Assume z and v are as required. As in Lemma 4.3, we can see that before
stage γ (where γ is the supremum of the range of the embedding coded by v),
only countably many nodes are visited. In stage γ, only countably many nodes
are visited before the branch (z, v) is found.

It is straightforward to generalize this algorithm to semi-decide Σ1
2 subsets

of k(ωω).

Remark 4.6. Notice that the halting time of any halting OTM computation with
input a real x is countable: If we collapse a countable elementary substructure
of some Lα[x] which contains the computation as an element, the collapsing
function maps the computation to an initial segment, since OTM computations
are absolute between transitive models of KP (see [Koe05, Lemma 2.6]). So the
computation in fact halts at a countable time.

Proposition 4.7 (Seyfferth). The OTM semi-decidable subsets of k(ωω) are
exactly the Σ1

2 sets. The OTM decidable sets are the ∆1
2 sets.

Proof. The Shoenfield tree and Lemma 4.5 prove that all Σ1
2 sets are OTM

semi-decidable. On the other hand, OTM semi-decidable sets are easily seen to
be Σ1

2 definable. The second statement follows.

If one wants to prove Shoenfield absoluteness without referring to the Shoen-
field tree (which is defined in terms of descriptive set theory), it can be replaced
with a tree defined by only computational means. We will describe such a tree
in Remark 4.23. It also can replace the Shoenfield tree in all following proofs.

From the algorithms, we obtain short proofs of several results in classical
descriptive set theory (cf. [Jec03, Kec95]).

Corollary 4.8 (Seyfferth). SupposeM is a transitive model of KP with ω1 ⊆M .
Then Σ1

2 relations are absolute between M and V .

Proof. Since OTM computations are absolute between transitive models of KP,
so is membership in Σ1

2 sets.

Corollary 4.9 (Schlicht-Seyfferth). Every Σ1
2 binary relation on the reals has

a Σ1
2 uniformization and every Π1

1 binary relation on the reals has a Π1
1 uni-

formization.
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Proof. Suppose A ⊆ ωω×ωω is a Σ1
2 set. The algorithm semi-deciding (x, y) ∈ A

can be modified to search for a y given x as input. As we added the search for
sequences t ∈ <ωω to Algorithm 4.2 to obtain Algorithm 4.4, we may also add
another search for s ∈ <ωω with (s, t, u) ∈ Sx. An argument analogous to Lem-
mas 4.3 and 4.5 proves that the lexicographically least branch (y, z, v) through
Sx is found. This corresponds to the lexicographically least branch through
Sx,y, therefore (x, y) ∈ A. For any Π1

1 binary relation, a similar modification of
Algorithm 4.2 yields an algorithm semi-deciding a uniformization such that for
any pair (x, y) in the uniformizing function, the algorithm halts before the least
(x, y)-admissible ordinal ωx,y1 above ω. Hence the uniformization is Π1

1 by the
Spector-Gandy theorem.

This immediately implies:

Corollary 4.10 (Schlicht-Seyfferth). Every nonempty Σ1
2 set of reals has a Σ1

2

member, i.e. some x such that {x} is a Σ1
2 set, and every nonempty Π1

1 set of
reals has a Π1

1 member.

Remark 4.11. The proof of Corollary 4.9 shows that any function from the reals
to the reals with OTM semi-decidable graph is OTM computable. This is false
in general, e.g. when we consider OTM programs P such that P (x) halts before
ωx1 for all x with P (x) ↓. Let us consider a Π1

1 function f , obtained via Π1
1

uniformization, mapping a real x to a code for a wellfounded countable model
containing x of the theory T , where T is the extension of KP requiring that
there is an admissible ordinal. Although its graph is semi-decidable by such a
program, it is easy to see that f is not OTM computable by a program of this
type.

Corollary 4.12 (Schlicht-Seyfferth). Every Σ1
2 set is the union of ω1 many

Borel sets.

Proof. Given a Σ1
2 set A, let P be an OTM which terminates on input x if and

only if x ∈ A. Let Aβ denote the set of reals x such that P (x) terminates before
stage β. Then A is the union of the sets Aβ . To see that each Aβ is Borel, let
aβ be a real coding the supremum γβ over the halting times of the algorithm if
restricted to at most β stages.2 Then a real x is an element of Aβ if and only
if for some (for every) real c coding a computation along aβ , this computation
halts. This shows that Aβ is ∆1

1 and hence Borel by Suslin’s theorem.

Corollary 4.13 (Schlicht-Seyfferth). Every Σ1
2 set has a Σ1

2 norm.

Proof. Let A be a Σ1
2 set and let P be an algorithm semi-deciding A. The

desired norm is given by the map φ where P halts at time φ(x) on input x. Let
x ≤ y (x < y) if P (x) halts (strictly) before P (y), or P (x) halts and P (y) does
not halt. Then y ∈ A and x ≤ y imply x ∈ A. Using the algorithm, it is easy
to see that the relations ≤ and < are OTM semi-decidable, hence Σ1

2. We can
define a Π1

2 relation ≤′ by x ≤′ y ↔ ¬y < x which coincides with ≤ on A and
again y ∈ A and x ≤′ y implies x ∈ A . Hence φ is a Σ1

2 norm on A.

2If the algorithm terminates in stage β, the machine halts after at most (ωω ·βω) ·β many
steps.
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Note that we cannot obtain a Σ1
2 norm whose initial segments are uniformly

Borel. This would imply the existence of an uncountable sequence of distinct
Borel sets of bounded rank, but it is known that this does not follow from ZF
[Har78, Theorem 4.5].

In order to describe the supremum of the ordinals appearing as the halting
time of some OTM program, let δ1

2 denote the supremum of lengths of ∆1
2

wellorders on sets of natural numbers. Let δ1
2(x) denote the supremum of the

length of ∆1
2 wellorders in the parameter x on sets of natural numbers. Note

that a real x is ∆1
2 if and only if {x} is ∆1

2 or even just Σ1
2.

Corollary 4.14 (Schlicht-Seyfferth). The supremum of halting times of OTMs
with input x is δ1

2(x).

Proof. Suppose y codes a ∆1
2 wellorder in the parameter x of type γ. Since

y is OTM computable, we consider the algorithm which searches through the
well-order given by y. The algorithm halts at a time at least γ.

Conversely, let us consider the Π1
1 set in the parameter x of pairs (y, z) such

that y codes a wellorder w with a maximal element l and domain the natural
numbers and z codes a halting computation along w on input x which halts at
l. This set contains a Π1

1 singleton (y, z) in the parameter x by Corollary 4.9.
Then y codes a ∆1

2 wellorder in the parameter x whose order type is the length
of the computation.

4.3 Tree representations from computations

In this section, we construct a tree representation for an OTM semi-decidable
set of reals from finite fragments of OTM computations. The tape content over
an entire halting OTM computation on countable input by a program P can be
viewed as an ω1 × ω1 matrix filled with zeroes and ones. Every row represents
the tape content at a given time. If we add a state and a head position per row,
the computation is entirely captured in the resulting diagram:

tape →

time ↓

state head 0 1 2 3 4 5 6 7 8 9 · · · ω · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
1 1 1 1 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
2 0 2 1 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
3 1 3 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
4 0 4 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
5 1 5 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
6 0 6 1 0 1 0 1 0 0 0 0 0 · · · 0 · · ·
7 1 7 1 0 1 0 1 0 0 0 0 0 · · · 0 · · ·
8 0 8 1 0 1 0 1 0 1 0 0 0 · · · 0 · · ·
9 1 9 1 0 1 0 1 0 1 0 0 0 · · · 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
ω 0 ω 1 0 1 0 1 0 1 0 1 0 · · · 0 · · ·

ω + 1 1 ω + 1 1 0 1 0 1 0 1 0 1 0 · · · 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
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We will approximate similar diagrams by adding single bits of information.
A tape bit (α, β, c, λ) will consist of:

1. a coordinate (α, β) in the ω1 × ω1 matrix representing time α and tape
cell β

2. the cell content c ∈ {0, 1}

3. a countable limit ordinal (or zero) λ – this number will be used to control
the limit behavior.

Per row we also need a machine bit [α, s, γ, λ] containing the following in-
formation:

1. some time α, corresponding to the row in the matrix

2. a machine state s of P

3. a head position γ ∈ ω1

4. a countable limit ordinal (or zero) λ – this number will be used to control
the limit behavior.

We will use the symbol ‘·’ if we do not want to specify a certain component
of a tape or machine bit in the argument at hand (i.e. (0, n, c, ·)). A finite set of
tape and machine bits can be coded into a countable ordinal; fix such a coding.
We will now define the tree T , depending on the program P , on ω× ω1: A pair
(t, u) ∈ kω × kω1 is in T if and only if

1. The set coded by uj contains the bits coded by ui for 0 ≤ i ≤ j < n.

2. Every ui contains at most one machine bit for each α and at most one
tape bit for every pair of α and β.

3. For every tape bit (0, n, c, ·) of ui with n < k, we have that t = sk, i.e.
t serves as the initial segment of the initial tape contents of the partial
computation.

4. u0 contains a machine bit of the form [0, 0, ·, ·] and a tape bit of the form
(0, 0, 0, ·). Also it contains a machine bit [α, s, γ, ·] plus a tape bit (α, γ, c, ·)
where P does not contain an instruction for machine state s and currently
read symbol c, i.e. α is a halting time. So the beginning and the end of
the partial computation are fixed.

5. As soon as we have information about a tape cell at time α, we also know
the machine state and head position: If ui contains a tape bit (α, ·, ·, ·), it
also contains a machine bit [α, ·, ·, ·].

6. We always know the tape cell to be read by the read-write head: If ui
contains a machine bit [α, ·, γ, ·], it contains a tape bit (α, γ, ·, ·).

7. If ui contains a tape bit (α, β, c, ·), ui+1 contains bits immediately above
(only if α is a successor ordinal) and below along the time axis: Let
[α, s, γ, ·] be the corresponding machine bit given by rule 5. If β = γ
we require ui+1 to contain a tape bit (α + 1, γ, ·, ·) and a machine bit
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[α + 1, ·, ·, ·] as required by the program P . If α is a successor, we also
similarly require the tape and machine bit of the form [α − 1, ·, ·, ·] that
P implies. Except for those tape bits, all the other tape cells should not
change their content, so we add tape bits (α + 1, β, c, ·) if β 6= γ. Again,
if α is a successor, we add such tape bits (α − 1, β, c, ·) for all β but the
one for which we already added such a bit according to P .

8. For tape bits of limit times we have to ensure that the tape contents are
inferior limits over earlier times: If λ is a limit ordinal, and (λ, β, c, ·) is
a tape bit of ui. Suppose c = 0. Then there is a tape bit (α, β, 0, ·) with
α < λ in ui+1 and α > α′ for all bits (α′, β, ·, ·) in ui with α′ < λ. If
c = 1 then there is a tape bit (α, β, 1, λ) in ui+1 with α < λ and where
α is larger than any time of a similar bit in ui. Let α′ be minimal such
that ui+1 contains a tape bit of the form (α′, β, 1, λ). Then every tape bit
for tape cell β and time ᾱ between α and λ in ui+1 must be of the form
(ᾱ, β, 1, ·).

9. We also want the machine state at limit times to be a lim inf: If λ is a limit
ordinal and ui contains a machine bit [λ, s, ·, ·], ui+1 contains a machine
bit [α, s, ·, λ] where α < λ and where α is larger than any time of a similar
bit in ui. Let α′ be minimal such that ui+1 contains a machine bit of the
form [α′, s, ·, λ]. Then every machine bit for time ᾱ between α and λ in
ui+1 must be of the form [ᾱ, s′, ·, ·] where s′ ≥ s.

10. Finally, we want to make the head position at limit times a lim inf as in
the definition of OTMs. If λ is a limit ordinal, then for every machine
bit [λ, s, γ, ·] of ui one of the following conditions hold: Either there is
a machine bit [α, s, γ, λ] in ui+1 with α < λ where α is larger than any
time of a similar bit in ui and for every machine bit in ui+1 of the form
[α′, s, γ′, ·] where α′ is between α and γ we have γ′ ≥ γ. Or, alternatively,
ui+1 does not contain a bit of the form [α, s, γ, λ], then we require that
there is a bit [α, s, γ′, λ] in ui+1 that is not in ui where γ′ < γ and γ′ is
greater or equal to any γ′′ < γ in any bit of ui+1.

This means that every entry of the matrix given by ui is extended both up-
and downwards along the time axis in ui+1 while respecting the behavior of the
program P and the limit rules involved in the definition of OTMs.

Let us, in the following, write dom(ui) for the set of α such that ui contains
a bit of the form (α, ·, ·, ·). Moreover, let dom(u) =

⋃
i∈ω dom(ui).

Lemma 4.15 (Schlicht-Seyfferth). T projects to the set of reals semi-decided
by P .

Proof. First let x be semi-decidable by P , i.e. P (x) ↓. We will show how to use
the halting computation C to find a branch of Tx. Let (λi)i∈ω be an enumeration
of the limit times involved in C. Let [λi, si, γi, ·] be the corresponding machine
bits, and (λi, γi, ci, ·) the corresponding tape bits according to C, for i ∈ ω. We
can make sure that ui contains both [λi, si, γi, ·] and (λi, γi, ci, ·) and tape and
machine bits [α, ·, γ, ·], (α, γ, ·, ·) with λm < α < λn for any m < n < i. Let us
close (ui)i<ω under above rules using bits compatible with C. It is clear that
for any two consecutive limits λk and λl, there is some ui which contains bits
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(α, ·, γ, ·), [α, γ, ·, ·] with λk < α < λl. Since all bits are chosen form C, the gaps
between the λi can be filled and (ui)i<ω forms a branch in Tx.

Now let (ui)i∈ω be a branch of Tx. We need to prove that the computation
C by P on input x halts. Let (λi)i∈ω be an enumeration of the limits in dom(u).

Claim 4.16. The ordinals in dom(u) are exactly the ordinals λj +n for j, n ∈ ω.

Proof of Claim. By the rules above it is clear that every ordinal of the form
λj + n is in dom(u). Suppose that µ is a limit and µ + n ∈ dom(ui) where
µ 6= λj for all j ∈ ω. Then it follows from the rules that µ ∈ dom(ui+n), a
contradiction.

The set of bits in (ui)i∈ω induce a partial matrix U of the type pictured
above. We call a submatrix according to P , if the machine state, head position,
and tape contents change only as dictated by P .

Claim 4.17. For λ ∈ (λi)i∈ω the submatrix of U induced by the rows λ+ n for
all n ∈ ω is according to P .

Proof of Claim. Let n ∈ ω and choose i minimal such that ∃mλ+m ∈ dom(ui).
The rules dictate that, for anym ∈ ω, ui+|n−m| contains unique machine bits for
all rows between λ+m and λ+n. Those machine bits and also the tape contents
covered by bits present in ui are changed only according to P . Of course, new
tape cells might have been introduced by tape bits in uj , j > i. But for any
such given tape cell β, its content is kept constant except for actions of P . If at
any stage a new bit would have been required to be added that conflicts with
bits already present in u, the branch would not have been extended further.

It remains to show that at limit times, machine state, head positions, and
tape contents are inferior limits.

Claim 4.18. Let λ be in (λi)i∈ω. Let (αj)j<ν be an increasing enumeration of
dom(u) ∩ λ. Then:

(i) For every tape bit (λ, β, c, ·), c is the inferior limit over the d in tape bits
of the form (αj , β, d, ·) in

⋃
i∈ω ui.

(ii) For every machine bit [λ, s, ·, ·], s is the inferior limit over the r in machine
bits of the form [αj , r, ·, ·] in

⋃
i∈ω ui.

(iii) For every machine bit [λ, s, γ, ·], γ is the inferior limit over the δ in machine
bits of the form [αj , s, δ, ·] in

⋃
i∈ω ui, if this lim inf is a head position

occurring in
⋃
i∈ω ui, or γ is the least head position occurring in

⋃
i∈ω ui

that is greater than the lim inf.

Proof of Claim. (i) Choose ui such that (λ, β, c, ·) is in ui. Let ((αk, β, dk, ·))k∈µ
be an increasing (in αk) enumeration of the tape bits in (uj)i<j<ω where
αj < λ. First consider c = 0. The rules imply that (dk)k∈µ contains an
unbounded sequence of 0s, hence c is in fact the inferior limit. Now sup-
pose c = 1. In ui+1 a tape bit of the form (α, β, 1, λ) is added and all dk
where αk > α are ≥ 1.
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(ii) Choose ui such that [λ, s, ·, ·] is in ui. Let ([αk, sk, ·, ·])k∈µ be an increasing
(in αk) enumeration of the machine bits in (uj)i<j<ω where αj < λ. In
ui+1 a machine bit of the form [α, s, ·, λ] is added, where α is greater than
any time of a similar bit in ui+1. Indeed in every uj where j > i such a bit
is added, so (sk)k<µ contains s unboundedly often. Also, the rules imply
that every sk ≥ s for for all αk ≥ α.

(iii) Choose ui such that [λ, s, γ, ·] is in ui. Let ([αk, s, γk, ·])k∈µ be an increasing
(in αk) enumeration of the machine bits in (uj)i<j<ω where αj < λ (note
that we only consider bits with machine state s).
Case 1. In ui+1 a machine bit of the form [α, s, γ, λ] is added, where α is
greater than any time of a similar bit in ui+1. Indeed in every uj where
j > i such a bit is added, so (γk)k<µ contains γ unboundedly often. Also,
the rules imply that every γk ≥ γ for for all αk ≥ α.
Case 2. No such bit is added in any uj , i < j. Then by the rules, (γk)k∈µ is
strictly increasing below γ. Note that by the rules there is no head position
in u that is between supk∈µ(γk) and γ. So even if lim infk<µ(γk) < γ, the
partial computation behaves as if γ was indeed the lim inf.

We can alter rule 1 in the definition of the tree of partial computations to
have the nodes ui contain information about when which bits where added,
allowing ui to be decoded into (uj)j<i. Let us assume this extra requirement
for the next lemma. We consider the lexicographical well-order <lex between
bits. If d = {di : i ≤ m} and e = {ei : i ≤ n} are finite sets of bits with
d0 <lex ... <lex dm and e0 <lex ... <lex en, we define d <lex e if |d| < |e|, or
|d| = |e| and di <lex ei for the least i with di 6= ei. If u, v both satisfy the
properties of the sequence u in the definition of T , we can decode sequences
u0, u1, ..., um = u and v0, v1, ..., vn = v from u and v such that for all i < m, ui
extends to ui+1 by a set of additional bits, which we call u+

i+1, as stated by the
rules for T , and similarly vj for j < n. Let us define u <tree v by m < n, or
m = n and u+

i <lex v
+
i for the least i with ui 6= vi.

Lemma 4.19 (Schlicht-Seyfferth). T has pointwise leftmost branches with re-
spect to <tree, i.e. that for every input x on which the computation halts, the
tree Tx has a branch b so that bn ≤tree cn for every branch c of Tx and for every
n..

Proof. Let us consider the computation with input x. Let

b0 = {[0, 0, 0, 0], (0, 0, 0, 0), [α, s, γ, 0], (α, γ, c, 0)},

where α is the halting time, s is the machine state at time α, γ is the head
position at time α, and c is the content of cell γ at time α. Let b+n+1 be
≤lex-least such that the extension bn+1 of bn by b+n+1 describes a fragment of
the given computation and is in T . Suppose towards a contradiction that c
is a branch in Tx and n is minimal with cn <tree bn. We can recover the
predecessors b0, ..., bn−1 of bn and c0, ..., cn−1 of cn. If bi <tree ci for some i < n,
then bn <tree cn, contradicting the choice of n. Hence bi = ci for all i < n
by minimality of n. This implies b+n ≤lex c+n by the definition of b and thus
bn ≤tree cn, contradicting the assumption.
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Remark 4.20 (Schlicht-Seyfferth). A stricter variation of T would only allow
extensions by a minimal number of bits necessary to fulfill the conditions, and
require the bits to be chosen <lex-minimal in the sense that an extension of a
node may not add <lex-smaller bits which satisfy the same requirement as a
given bit. If we consider this variation and change the definition of T so that
ui consists only of the additional bits relative to

⋃
j<i uj , it is not hard to see

that T has pointwise leftmost branches with respect to <lex.

Remark 4.21 (Schlicht-Seyfferth). The tree T induces a Σ1
2 scale on the set of

reals semi-decided by P . Let x ≤n y if both P (x) and P (y) halt and bx(n) ≤tree
by(n), for the leftmost branches bx ∈ Tx and by ∈ Ty, respectively, or P (x) halts
and P (y) does not halt. The relation x <n y has an analogous definition with
≤tree replaced by <tree. To prove that T is the tree from a scale, it is sufficient
to show that the relations ≤n and <n induced by T are OTM semi-decidable.
We semi-decide x ≤n y by simulating P on the inputs x and y, as in Corollary
4.13. If P (x) halts before P (y), we halt the program. If P (x), P (y) halt at the
same step, we run an OTM computation to determine whether bx(n) ≤n by(n)
and halt the program, if this is the case. Otherwise we let the program diverge.
The argument for <n is similar.

Remark 4.22 (Schlicht). As a natural extension of the scale property, we might
ask for a tree T projecting to a Σ1

2 universal set A such that Tx has a unique
infinite branch for every x ∈ A. Let us argue that the existence of such a tree
is not provable in ZF. Assuming such a tree T exists, let S = {(s, ((s0, t0), ...,
(sn−1, tn−1))) : n ∈ ω, (s, t) ∈ T}. Then A = p[T ] = p[S] and there is a
unique bx ∈ Sx for every x ∈ A, and bx 6= by for all x 6= y. Since for each
α < ω1 the projection of S restricted to ordinals below α is an injective image
of a closed set and hence Borel, there is an n such that the set B of values
of bx(n) for x ∈ A is unbounded in ω1. Let us choose the leftmost branch
(xα, bα) in S with bα(n) = α for each α ∈ B. We have defined an uncountable
sequence (xα : α ∈ B) of distinct reals. However, there is no such sequence in
the symmetric model for the Levy collapse Col(ω,< ℵω), as was pointed out to
the authors by Daisuke Ikegami.

It is possible to prove Shoenfield absoluteness without referring to tree rep-
resentations from descriptive set theory, using only computational means:

Remark 4.23 (Schlicht-Seyfferth). The tree of partial computations may be used
instead of the Shoenfield tree to show that every Σ1

2 set is OTM semi-decidable.
We can see that Σ1

1(x) sets are ordinal semi-decidable via a depth-first search for
a witness for the Σ1

1(x) statement. The length of this search is bounded by the
least α such that Lα[x] is a model of KP and Σ1-separation (see [Bar75, Theorem
9.6]), and this ordinal α is computable on input x by recursively writing codes
for Lβ [x] for increasing β while checking the axioms. Hence Σ1

1 and Π1
1 sets are

OTM decidable. To semi-decide a Σ1
2 set A = p[B] with B in Π1

1, we now search
on input x for a real y and a branch in the tree of partial computations for B
on input (x, y).

4.4 Applications
In [Koe05, Definition 1] the programs that steer the computations of OTMs
are defined with the following condition: If the machine is currently in state s
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and the machine’s read-write head currently reads symbol c, then the program
contains at most one command for that situation. This way, when Koepke
defines the ordinal computation by a program P , he can refer to the unique
command in a given situation. Instead, for the present section, we shall drop
the above restriction on programs and define ordinal computations in a way
that, in successor steps, the lexicographically least instruction (if there is one
that suits the current situation) is chosen to determine the next machine step.
This allows us to define non-deterministic ordinal computations as follows.

Definition 4.24 (Seyfferth). Given program P and an input (i.e. an initial
tape configuration), the non-deterministic ordinal Turing computation (NOTM
computation) by P is defined like the ordinal computation by P ([Koe05, Defi-
nition 2]), except that in successor steps any suitable command may define the
machine’s next step.

NOTM computations may be used to define sets of reals.

Definition 4.25 (Seyfferth). A set of reals A ⊆ ωω is NOTM semi-decidable if
there is a program P such that

x ∈ A↔ there is a halting NOTM computation by P on input x

Consider a countable substructure of a transitive set containing such a com-
putation as an element. Then the image of the computation under the collapsing
map is a countable halting NOTM computation by P on input x.

As in the case of classical Turing decidability, given a coding of the “choices”
that a NOTM computation makes, NOTM decidability can be verified deter-
ministically:

Lemma 4.26 (Seyfferth). There is a program Q such that for every program
P and every real input x, there is a real z such that the OTM computation by
Q on inputs P , x, and z halts if and only if some NOTM computation by P on
input x halts.

Proof. Let us define z to code two reals z1 and z2. Let z1 code a well-order on ω
of order type the (countable) length of the NOTM computation by P on input
x. Let z2 be such that in machine step otpz1(i), the OTM computation by P on
input x selects the z2(i)-th least command P contains for that situation. Note
that both otpz1 and otp−1

z1 are OTM computable functions. Now the program
Q is essentially a universal OTM which selects the z2(i)-th command in P in
the otpz1(i)-th simulation step.

This settles the question of whether NOTMs compute more sets of reals than
OTMs:

Proposition 4.27 (Seyfferth). Every NOTM (semi-)decidable set of reals is
already OTM (semi-)decidable.

Proof. Let A ⊆ ωω and suppose that Q is the program from Lemma 4.26.
Then A is NOTM semi-decidable if and only if there is a program P so that
for every input x there is a real z such that the OTM computation by Q on
inputs P , x, and z halts. Since this is a Σ1

2 statement, A is Σ1
2 and hence OTM

semi-decidable.



4.4. APPLICATIONS 67

Note now that the existence of certificates z established in Lemma 4.26 is
absolute. Thus, if there are any certificates, there is one in L. Using Shoenfield
absoluteness we could search for such a z through L, using the OTM computable
recursive truth predicate from [Koe05]. Instead, let us search for a certificate
via the tree of partial computations:

Lemma 4.28 (Seyfferth). Given a program P and an element (s, u) of the full
tree on ω × ω1, we can OTM decide the question of whether or not (s, u) is an
element of the tree of partial computations according to P .

Proof. We first have the OTM check whether u codes a set of tape and machine
bits. If yes, we can easily check the finitely many conditions (rules 1-10) if u is
a partial computation by P on some input that is compatible with s.

With the preceding lemma, we can use a variant of Algorithm 4.4 to find
branches in the tree of partial computations. Since Propositions 1 and 2 hold
also for our algorithm operating on the tree of partial computations, we get:

Proposition 4.29 (Seyfferth). There is an algorithm such that, if A is NOTM
semi-decidable by the program P , then, given x as an input, the algorithm will
find a real z ∈ ωω such that the OTM computation by Q (cf. Lemma 4.26) on
inputs P , x, and z halts if x ∈ A and diverges otherwise.

Proof. If x is in A, there is a z in L such that the OTM computation by Q on
inputs P , x, and z halts. An argument analogous to Propositions 4.3 and 4.5
shows that given a real x, a straighforward adaptation of Algorithm 4.4 will find
a branch of the form (x, c) in the tree T of partial computations by P , if any
exists. From c the desired z can be easily decoded.

The tree representation allows us to generalize the results in Section 4.2 to
sets of reals semi-decided by ordinal machines with upper bounds on the halting
times.

Definition 4.30 (Schlicht-Seyfferth). Suppose f is a function from the reals to
the ordinals. Let us say that a set of reals A is f -semi-decidable or Γf if there
is a OTM program P semi-deciding A such that P halts before time f(x) on
input x if it halts at all.

For our purpose, we are interested in functions of the following form:

Definition 4.31 (Schlicht-Seyfferth). Suppose f is a function from the reals to
the ordinals. We call f multiplicatively closed if f(x) ≤ f(〈x, y〉) for all reals x
and y and f(x) as an ordinal is closed under ordinal multiplication. Let us call
f admissible if furthermore f(x) is x-admissible for all reals x.

The classes Γf for admissible f with values strictly above ω range from Π1
1

to Σ1
2. Recall the definition of δ1

2 from the paragraph before Corollary 4.14.

Lemma 4.32 (Schlicht-Seyfferth). Let f(x) = ωx1 and g(x) = δ1
2(x). Then Γf

is the class of Π1
1 sets and Γg is the class of Σ1

2 sets.

Proof. Suppose that A is f -semi-decidable via P and x is a real. Then x ∈ A if
and only if in every countable model of KP, every computation by P with input
x halts. Since such models can be coded into reals, A is Π1

1. Suppose A is Π1
1
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and x ∈ A if and only if Tx is wellfounded. Then rank(Tx) < ωx1 and hence the
algorithm searching for a branch in the Shoenfield tree halts before ωx1 . The
statement for Σ1

2 sets follows from Corollary 4.14.

Corollary 4.33 (Schlicht-Seyfferth). Suppose f is multiplicatively closed. Then
every Γf set has a Γf norm.

Proof. Suppose a set in Γf is semi-decidable by a program P with halting time
bounded by f . Let φ(x) be the halting time of P on input x. Since f is
multiplicatively closed, φ is a Γf -norm as in the proof of Corollary 4.13.

Corollary 4.34 (Schlicht-Seyfferth). Suppose f is admissible. Then every Γf
binary relation has a uniformization with graph in Γf .

Proof. Suppose a relation in Γf is semi-decidable by a program P with halting
time bounded by f . We apply the algorithm for searching through the Shoenfield
tree to the tree of partial computations. Let us consider a program R for the
variant of Algorithm 4.4 which on input (x, y) searches for a real z and a branch
in the tree of halting computations of P with input (x, z). We claim that if the
program finds such a pair, then this happens before the time α = f(〈x, z〉). Let
us assume towards a contradiction that z and the corresponding computation of
P are found at a time γ ≥ α. If γ = α, we map each n ∈ ω to the time at which
z � n appears first in the search, and thus obtain a Σ

Lα[x,y]
1 definable cofinal

map h : ω → α. If γ > α, there is a t ∈ <ωω which appears first at the time α,
and we obtain a Σ

Lα[x,y]
1 definable cofinal map h : {s ∈ <ωω : s <lex t} → α by

mapping s to the time at which it first appears in the search. This contradicts
the 〈x, z〉-admissibility of α.

At this point, we let R halt if y = z and let R diverge otherwise. For any real
x in the domain of the relation, let (g(x), b(x)) be ≤lex-least such that b(x) is a
branch in the tree of partial computations with input (x, g(x)). Then R(x, g(x))
halts and R(x, z) diverges for all z 6= g(x). Hence the graph of g is in Γf .

Let us now consider ordinal machines with a set of reals as oracle as in [HL00].
In a query state in a computation, the program asks whether the sequence on
the initial segment of length ω of the tape is an element of the set. Let us write
PA(x) for the OTM computation by the program P with oracle A on input x.
Let us also fix a computable enumeration (Pn | n ∈ ω) of all programs.

Definition 4.35 (Schlicht-Seyfferth). The halting problem relative to a set of
reals A or jump of A is defined as AH = {(n, x) | PAn (x) ↓}.

The halting problem 0H is a Σ1
2 set, in fact we have:

Proposition 4.36 (Schlicht-Seyfferth). The halting problem 0H is Σ1
2 universal.

If n ≥ 1 and V = L, then the nth iterated jump 0Hn is Σ1
n+1 universal.

Proof. Every halting computation with countable input halts at a countable
time (see Remark 4.6). Hence (m,x) ∈ 0Hn is described by a Σ1

n+1 formula
stating the existence of a wellorder w on the natural numbers with largest ele-
ment l together with a sequence indexed by w, coding a computation of Pm with
input x and oracle 0H(n−1) halting at l. Let us suppose that A is defined by the
formula ∃xϕ(x, y), where ϕ is Π1

n. We consider a program searching through
L for a witness for ϕ as in [Koe05], using the oracle 0H(n−1) to verify ϕ(x) for
reals x. This program identifies A as a section of 0Hn.
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In particular, the Σ1
n+1 sets are exactly the OTM semi-decidable sets in a

Σ1
n oracle for n ≥ 1, if V = L. Let us show that this remains true when κ ≥ ω1

many Cohen reals are added to L by the forcing Add(ω, κ).

Lemma 4.37 (Schlicht). Suppose that V = L[G], where G is Add(ω, κ)-generic
over L, and κ ≥ ω1. Then 0Hn is Σ1

n+1 universal for all n ≥ 1.

Proof. Suppose that x is a real in L[G]. There are an Add(ω, 1)-generic filter
g0 with L[x] = L[g0] and an Add(ω, κ)-generic filter g1 over L[g0] with L[G] =
L[g0][g1]. Let us consider the case n = 2 and suppose ϕ is a binary Π1

2-formula.
Then ∃yϕ(x, y) holds in L[G] if and only if ∃σ ∈ N Add(ω,1) ϕ(y, σ) holds in
L[x], where N is the set of nice Add(ω, 1)-names for reals in L[x]. Since nice
names for reals are coded by reals, this is a Σ1

3 statement in L[x]. We can
now express any Σ1

n+1 statement about x in L[G] by a Σ1
n+1 statement in L[x]

uniformly in x for all n ≥ 1 in a similar fashion. This is proved by induction on
n. Every such set is a section of 0Hn by the proof of the previous proposition.

It is also consistent with ZFC that the iterated jumps have a lower complexity.
Note that the assumption that ωL[x]

1 < ω1 for every real x may be obtained by
forcing with the Levy collapse Col(ω,< κ) below an inaccessible cardinal κ.

Lemma 4.38 (Schlicht). Suppose that ωL[x]
1 < ω1 for every real x. Then 0Hn

is a ∆1
3 set for all n ≥ 1.

Proof. Let us consider the Π1
2 set A of pairs (x, y) such that y codes Lγ [x] and

γ is the least x-admissible ordinal above ωL[x]
1 . We can compute the truth value

of x ∈ 0Hn in Lγ [x] using an algorithm which has access to n distinct tapes of
length ω

L[x]
1 + 1. The original program runs on tape n. Whenever the oracle

0Hi is called on tape i for 1 < i ≤ n, the oracle is computed on tape i− 1 by a
subroutine of length ωL[x]

1 + 1. The Π1
2 description of A yields a ∆1

3 description
of the set of pairs (x, n) with x ∈ 0Hn.

The two previous lemmas imply that the complexity of 0Hn is independent
of the size of the continuum for n ≥ 2.

4.5 Further questions
A set of reals A is said to be Σ1

2 in a countable ordinal α if there is a Σ1
2 formula

ϕ(x, y) such that for all reals y coding α and all reals x, x ∈ A if and only if
ϕ(x, y) holds, i.e. the Σ1

2 definition is independent of the coding of α. We leave
open whether the sets of reals with a Σ1

2 definition in an ordinal α, evaluated in
V Col(ω,α), are exactly the OTM semi-decidable sets of reals with parameter α,
and whether sets in these classes can be uniformized by functions with graphs
in these classes.
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5.1 Blum-Shub-Smale machines
Computation on reals is a lesser known-branch of computability theory. Differ-
ent approaches rival, one taking approximation as in numerical analysis as the
defining concept [Wei00], the other taking points on the real line R as elemen-
tary. The latter concept, introduced in [BSS89] by Lenore Blum, Mike Shub,
and Stephen Smale, lacks the capability for definition via limits. We set out to
equip these machines with such a feature in Chapter 6.

We give a short account of the definition of a finite dimensional BSS machine
on R as in [BSS89]. A function Rm → Rn is called polynomial / rational if every
projection fi : Rm → R is given by some polynomial in m variables / given by
the fraction of two polynomials in m variables. The finite dimensional Blum-
Shub-Smale programs for computations on R are usually presented as a flow
chart, i.e., a connected digraph with node set N = {1, 2, . . . , n} and edge set
E ⊆ N × N . Let us fix Rp as the input space, Rm as the state space, and Rn
as the output space. Such a digraph is a BSS program if there is an assignment
f : N → {φ | φ : Rk

rational−−−−−→ Rl ∧ k, l ∈ {p,m, n, 1}} × {0, 1, 2, 3} such that

• There is exactly one i ∈ N such that f(i) = (φ, 0).

• If f(i) = (φ, 0) then φ is linear and maps the input space to the state
space and i has only one outgoing edge and no incoming edges. We call i
the input node.

• If f(i) = (φ, 1) then φ is linear and maps the state space to the output
space and i has no outgoing edges. We call i an output node.

• If f(i) = (φ, 2) then φ maps the state space to the state space and i has
precisely one outgoing edge. We call i a computation node.

• If f(i) = (φ, 3) then φ maps the state space into R and i has two outgoing
edges. We call i a branch node.

Computations are carried out by following the data through the flowchart, start-
ing from the unique input node. At input, computation, and output nodes, the
data is transformed according to the respective functions and transferred along
the unique edges to the next nodes. At branch nodes, the data is unchanged.
However, depending on the node’s function’s value on the data, the data is
passed on to the edge leading to the node with lower index if the value is less
than zero, and to the one with greater index otherwise. Without changing the
result of valid computations, we insert new branch nodes before every computa-
tion and branch nodes to intercept denominators becoming zero and directing
the data to a specific new output node that will be interpreted as ‘no valid
computation exists’.

In the original paper, an infinite dimensional case is also studied, for which
the distinction between input, output, and state space becomes important. For
the purpose of this thesis, the finite dimensional case is sufficient, hence we be
omitting input and output space in the sequel without any loss of generality.
In the next chapter, we will give a presentation of the definition more akin to
register machines with n registers in cases where the state space is Rn.

In the following, we shall give a brief summary of Chapter 6 published as
[KS12].
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5.2 Summary of the next chapter

The idea of a strict-limit-based BSS model of ordinal computation has been
floating around in the ordinal computability community for some time. Koepke
and the author decided it was both worth fleshing out and a suitable aspect for
the present thesis.

The paper is built around a definition made rigorous by the author. The
definition itself is based on a modified BSS definition that does away with the
nonstandard flow-chart intuition of the original definition [BSS89] and intro-
duces a more register machine-like notation. The author is quite certain that
such a presentation has been given before, but it seemed sensible to use a no-
tation that ties in neatly with previous work on ORMs and ITRMs by Koepke
et al. A noteworthy aspect of this is to leave out arbitrary real coefficients and
restrict the atomic functions used in the BSS computations to rational functions
with only rational coefficients: In the classical BSS context, this would appear as
an arbitrary limitation and somewhat goes against the idea of using the reals R
in their algebraic sense. However, once generalized to transfinite computations,
the difference between real and rational parameters becomes drastic: The binary
expansion of a real can code set theoretically very powerful objects. This would
lead to the computations being heavily dependent on the underlying model of
set theory. The general direction of ordinal computability, however, is to base
considerations on very absolute notions of computability and only then, and in
a hopefully controlled manner, adjoin parameters that may introduce behavior
of higher set theoretical impact.

The modified BSS definition is then expanded to give the notion of infinite
time Blum-Shub-Smale machines (ITBMs) by adding as a limit rule the require-
ment that, at limit time, all register contents need to converge and are set to
their respective limits. Note that strict limits in R (as opposed to lim inf’s) are
used for the real register contents. The set of program instructions is finite, so,
in this case, the lim inf is the appropriate choice for the program instruction
called at the limit time.

The paper goes on to give some examples of elementary functions that are
not BSS but ITBM computable (exponential, sine, and cosine). It is noted that,
in all examples, some work is necessary to make registers containing scratch work
converge in the limit. The question of a general procedure to make auxiliary
registers converge uniformly is raised but not answered. Such a technique has
been developed in the mean time in, as of yet, unpublished work by Peter Koepke
and Andrey Morozov. The examples then given, showing that all ordinals below
ωω can appear as halting times of ITBMs, prepare for the main result of the
paper that every ITBM computation halts before ωω many steps or diverges.
This conjecture is due to the author. The theorem was then proved using
a lemma by Koepke after in-depth discussion with the author and can thus be
attributed to them jointly. The following discussion of the strength of the ITBM
model, incorporating comparisons with classical Turing machines and ITTMs
is due to the author. Koepke provided a constructibility theoretic argument to
show that ITBM computations can be carried out in the first ωω-many levels
of the constructible hierarchy. The first open question given at the end of the
paper has been answered in the aforementioned unpublished work by Koepke
and Morozov: Every real in Lωω is in fact ITBM computable. The proof works
by showing that the iterated Turing jumps ∅α for α < ωω are ITBM computable.
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All reals in Lωω are computable in some ∅α and consequently ITBM computable.
As was pointed out to the author by Philip Welch (cf. [Wel]), Lωω is in also the
least set that contains ω and is closed under the safe set recursion studied in
[BBF12].



Chapter 6

Towards a theory of infinite
time Blum-Shub-Smale
machines [KS12] 1

1in contrast to the published version, the version printed here includes authorship tags for
theorems, definitions, etc.
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6.1 Introduction
In the spirit of ordinal computability — the study of classical models of com-
putations generalized to transfinite ordinal numbers — we study a variation of
the Blum-Shub-Smale (BSS) machine introduced in [BSS89]. In contrast to es-
tablished models of ordinal computability, such as Hamkins’ and Lewis’ infinite
time Turing machines (ITTMs) [HL00] and Koepke’s ordinal Turing machines
(OTMs) [Koe05], these machines employ real numbers in the classical contin-
uum R as opposed to elements of Baire space ωω or Cantor space ω2. The
topological differences matter as soon as we consider limits (see below). Varia-
tions thereof, be it in allowing infinitely many registers or changes in the limit
behavior, might very well change the computational strength. In this paper, we
aim for the “weakest” possible generalization of BSS machines into ordinal time.
We believe that already this restricted model shows interesting properties.

Our machines have a finite number n of registers, each containing a real
number. Generalizations to other fields and rings are possible but shall not
be of concern to this paper. The computation is steered by a finite program
P ⊆ ω × {f | f : Rn rational−−−−−→ Rn} × {0, 1} × ω × ω, containing commands of the
form (i, φ, j, k, l), where i is the index of the command at hand, φ is a rational
map (with rational coefficients), and j tells us if the command represents a
computation node or a branch node. In case j = 0, we are at a computation
node, the register content x ∈ Rn is replaced by φ(x) and the next command
(index i + 1) is carried out next. The values of k and l are ignored in this
case. Otherwise, j = 1 and we are at a branching node. This means that the
register content is left unchanged and, depending on whether φ(x) > 0, the next
command will be the one with index k. If on the other hand φ(x) ≤ 0, command
number l is carried out next. We can assume the indices of a given program’s
commands to form an initial segment of the natural numbers and that no index
appears twice. In case a command index is called for which no command in the
program exists, the computation halts.

Note 6.1. As a minor technical detail we would like to note that, as in the origi-
nal paper [BSS89], we avoid discontinuity points of rational functions by putting
decision nodes before each computation or decision node to check whether the
denominator of the rational function to be evaluated is 0. If not, we continue
as planned, if yes, an infinite loop is entered and the computation diverges.

So far, we have outlined a standard BSS machine with the additional restric-
tion that the rational functions present in computation and branching nodes do
not allow for arbitrary real coefficients. We add irrational coefficients in form
of parameters later on. We now make our machines access the transfinite: In
order for the machine to run for infinitely many steps, we have to define the
register content at limit times. In the established theories of infinite time or
ordinal Turing and register machines, often an inferior or superior limit is used
for this purpose. Instead, we want to restrict ourselves here to ordinary limits
of sequences of real numbers. This immediately implies that there will be situ-
ations where an infinite time BSS machine will, e.g., be properly defined at any
finite time but not at the first limit time ω because the register contents do not
converge. We can imagine the machine to “crash” in such a case and say that
for such a combination of program and input no valid computations exists. In
case of converging register contents we also have to come up with a command
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that is carried out at a limit time. For this we will indeed use the inferior limit,
i.e., the command with the least index that was used cofinally often below the
limit. Note that we do not introduce a dedicated limit state.

Let us put things together in the following definition.

Definition 6.2 (Seyfferth). Let n ∈ ω be a number of registers. Let k < n and
let P be a n + k-register BSS program. The infinite time BSS machine com-
putation (ITBM computation) with parameters p1, p2, . . . , pk ∈ R by P on some
input x ∈ Rn is defined as the transfinite sequence (Ct)t∈θ = (R(t), I(t))t∈θ ∈
θ(Rn+k × ω) where:

(a) θ ∈ Ord or θ = Ord

(b) R(0) = (x, p1, p2, . . . , pk) and I(0) = 0

(c) (computation node) If t < θ and I(t) = i let (i, φ, 0, k, l) be the command
of P with index i. Then R(t+ 1) = φ(R(t)) and I(t+ 1) = i+ 1.

(d) (branching node) If t < θ and I(t) = i let (i, φ, 1, k, l) be the command of
P with index i. Then R(t+ 1) = R(t) and if furthermore φ(R(t)) > 0 then
I(t+ 1) = k; if on the other hand φ(R(t)) ≤ 0, then I(t+ 1) = l.

(e) If t < θ is a limit and y = lims→tR(s), then R(t) = y and I(t) =
lim infs→t I(s).

(f) If θ < Ord, then θ is a successor ordinal and I(θ−1) calls a command index
that is not in P (the machine halts (in θ-many steps)).

We define ITBM computable functions on the reals:

Definition 6.3 (Seyfferth). A function f : dom f → Y where dom f, Y ⊆ R
is called ITBM computable in parameters p1, p2, . . . , pk if there is an at least
k + 1-register ITBM program P s.t. for every x ∈ dom f the computation by
P on input (x, 0, 0, . . . , 0, p1, p2, . . . , pk) halts and the final register content is
of the form (f(x), ·, ·, . . . , ·). On input x /∈ dom f the computation is required
to diverge. We call such a function ITBM computable if k = 0, i.e., no real
parameters are necessary.

The use of one limit step enables us to compute the classical elementary
functions that are defined by power series as illustrated by the following ex-
amples. While such functions as the exponential function can be computed in
classical recursive analysis, they are not computable in the standard BSS model
[Bra03].

Example 6.4 (Seyfferth). The exponential function e : R → R, x 7→ ex =∑ω
k=0

xk

k! is ITBM computable: Define a 5-register program that computes the
desired function if |x| < 1. Later we shall describe the modifications necessary
to work for any x.

Algorithm 6.5 (Seyfferth).

input R1 = x;
set R2 := R3 := R4 := R5 := 1; (initialize)
call loop;
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loop:
if R2 = 0 then set R1 := R5 and halt, else continue;
set R4 := R4

R4+1; (store 1
i , where i is the current iteration)

set R3 := R3 ∗R4; (store 1
i!)

set R2 := R2 ∗R1; (store xi)

set R5 := R5 +
1
R2

R3
; (store i!

xi )
call loop;

If |x| < 1, all register contents converge and R5 contains the desired output
at time ω, which is correctly recognized when R2 = 0. We can adapt the
algorithm for |x| ≥ 1 by adding a case distinction in the beginning and, in
case |x| ≥ 1, save 1

xi in register three. Then register three converges also at
limit times. Of course, the command that updates R5 inside the loop has to be
changed accordingly.

Example 6.6 (Seyfferth). The sine function sin : R→ R, x 7→
∑ω
k=0(−1)k x

(2k+1)

(2k+1)!

and the cosine function cos : R → R, x 7→
∑ω
k=0(−1)k x2k

(2k)! are ITBM com-
putable. This is proven by the previous example and the fact that (−1)k can
be recovered from (− 1

2 )k and ( 1
2 )k, both of the latter which can be convergently

stored and updated in separate registers.

Note 6.7. Common to this type of examples is that some tricks are necessary
to make all registers converge at limits. Auxiliary registers used for scratch work
often do not contain converging content. If their content is bounded, however,
one can simply divide the register content cofinally often by a fixed number and
keep track of how often this division has occurred. Unbounded contents are
best stored as their multiplicative inverse. Both approaches can be imagined as
pushing the relevant data contained in a register into increasingly later places
in their decimal/binary expansion. Compound limits like ω ·ω are an additional
problem, as scratch registers cannot be set to arbitrary values after limit times
without sacrificing convergence at the compound limit. However, in every limit
stage towards a compound limit the register content will be bounded if treated
like above. So, in order to ensure convergence at the compound limit, these
bounds themselves need to converge. See the next chapter for an example.

6.2 Clockable ordinals
Since Hamkins’ and Lewis’ paper on ITTMs [HL00], determining those ordinals
that appear as halting times on empty inputs has proved to be important for
the study of machine models. Since our machines do not halt at limit times, we
are interested in machines that run for some limit number α many steps and
halt in the next step:

Definition 6.8 (Seyfferth). An ordinal α is called ITBM clockable if there is an
n ∈ ω and an n-register ITBM program that halts on input 0 ∈ Rn in exactly
α+ 1 many steps.

The algorithms above prove that ω is clockable, but let us establish this
anew with an algorithm that uses only one register.
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Lemma 6.9 (Seyfferth). The first limit ordinal ω is ITBM clockable.

Proof. By algorithm.

Algorithm 6.10 (Seyfferth).

set R1 := 1;
call loop;
loop :
if R1 = 0 then halt else continue;
set R1 := R1

2 ;
call loop;

We can clock ω · n by having n loops in separate lines of code, where loop1
calls loop2 and loop i calls loop i+1 instead of the halting command, each time
resetting R1 to 1. Instead, we could also use a separate register to perform a
countdown from n. When trying to extend this approach trivially to clock ω ·ω,
we run into a problem that is connected to the fact that ω · ω is a compound
limit, i.e., a limit of limits: At time ω · ω, R1 will have cofinally often been
set from 0 to 1, so convergence or R1 fails. While this is easily fixed as seen
below, it hints at the limitations imposed by the strict limit rule and why the
supremum of ITBM clockable ordinals might be quite low in the ordinals.

Lemma 6.11 (Seyfferth). The first compound limit ordinal ω · ω is ITBM
clockable.

Proof. By algorithm.

Algorithm 6.12 (Seyfferth).

set R1 := 1;
set R2 := 1;
call loop;
loop:
if R2 = 0 then halt else continue;
if R1 = 0 then set R2 := R2

2 and set R1 := R2 and continue,
else continue;
set R1 := R1

2 ;
call loop;

In this algorithm, R1 is halved repeatedly to detect limits. Once a limit time
is reached (R1 = 0), R2 is halved and R1 is reset not to 1 but to the current
value of R2. Once R2 hits 0, we have found the compound limit ω ·ω. At every
limit, every register content converges.

As before, it is easy to clock finite multiples of the form ω ·ω ·n. Also, if we
extend the algorithm to use extra registers R3, R4, . . . , Rn in the same manner
as we extended the ω-algorithm with R2, we can in fact clock any finite power
ωn. However, this is as far as we can get, as ωω turns out to be the supremum
of the ITBM clockable ordinals.
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First observe that at any limit time, the register contents are a fixed point for
every command that has been carried out cofinally often:

Lemma 6.13 (Koepke). Let (Ct)t<θ be an ITBM computation by some program
P and let α < θ be a limit ordinal. Then the first command in the computation
that alters the register contents after time α has not been carried out cofinally
often below α.

Proof. Let (c, φ, 0, ·, ·) ∈ P be a computation node which is called cofinally often
below α. Let c be called at some time β > α, where for all α < γ < β the register
content has not been changed yet, i.e., R(α) = R(γ) = R(β). Since φ may be
assumed as locally continuous (cf. Note 6.1), we get:

R(β + 1) = φ(R(β))

= φ(R(α))

= φ( lim
t→α

R(t))

= lim
t→α∧I(t)=c

φ(R(t)

= lim
t→α∧I(t)=c

R(t+ 1)

= R(α)

So the first computation node that changes the register content after time α
cannot have been called cofinally below α.

Theorem 6.14 (Koepke-Seyfferth). Let P be a program with k computation
nodes. Then in any computation (Ct)t<θ according to P , the register contents
stabilize before ωk+1.

Proof. If k = 0 then the computation halts after finitely many steps or diverges
since the program contains only finitely many branch nodes: The computation
may run through these nodes in a finite sequence or in an infinite loop. Every
branch node may trigger halting depending on its rational function evaluated
on the unchanged input. After finitely many steps, every node in the sequence
or loop has been visited once. If the computation didn’t halt up to this point,
the program will go on forever as the register content is never changed.

So let the hypothesis hold for k. Let P be a program with (k + 1)-many
computation nodes. Suppose the register contents change after ωk+2. The first
computation node c responsible for a new register content is not used cofinally
often below ωk+2. Let α be the supremum over the times < ωk+2 when c
was carried out nontrivially. We can view (Ct)α≤t<ωk+2 as the computation by
P \ {c} on input R(α). Inductively, the register content of this computation
stabilizes in ωk+1-many steps. Since α + ωk+1 < ωk+2 this means that the
original computation stabilizes before ωk+2. But a computation that stabilizes
before a limit can never change its register content again.

Once the register contents have stabilized, an ITBM computation diverges
or may run for an additional finitely many steps before halting. So we get:

Theorem 6.15 (Koepke-Seyfferth). The supremum of ITBM clockable ordinals
is ωω.
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The above argument is in fact independent of the input:

Corollary 6.16 (Koepke-Seyfferth). Every ITBM computation halts before ωω-
many steps or diverges.

Corollary 6.17 (Koepke-Seyfferth). If an ITBM computation diverges, the
register content at time ωω is not changed any more and can be considered the
pseudo-output of the diverging computation.

6.3 Connections to other models of computation
From a computability perspective, reals provide ample possibilities as codes
for complex objects. We can code and decode into reals with our ITBMs by
interpreting the binary expansion of a real in the interval [0, 1] as an element
of the Cantor space ω2, i.e., an ω-long sequence of 0’s and 1’s. The binary
expansion of a real is not necessarily unique, so two binary strings representing
the same real will appear to our machines as equivalent.

Let us give an algorithm to retrieve the n-th binary digit bn of an x =
0.b0b1b2 · · · ∈ [0, 1).

Algorithm 6.18 (Seyfferth).

input R1 = x;
input R2 = n;
set R3 = 1

2; ( = 20)
set R4 = 0; (the current approximation to x)
call loop;
loop:
if R2 := 0 then call lastloop else continue; if R4 + R3 >
R1 then continue (do not add R3 to the approximation R4 if
the result would exceed x)
else set R4 := R4+R3 and continue; (add R3 to the approximation)
set R3 := R3

2 ;
set R2 := R2 − 1; (= #remaining_iterations)
call loop;
lastloop:
if R4 + R3 > x then set R1 := 0 and halt else set R1 := 1
and halt;

With this algorithm we can also do local changes to the binary bits of x in
the fashion of a Turing machine. So finite Turing computations can obviously
be implemented on BSS/ITBMs. Also, the halting problem for Turing machines
becomes ITBM computable:

Lemma 6.19 (Seyfferth). The classical halting problem is ITBM computable.

Proof. Since standard Turing computations are ITBM computable, we can gen-
erate Turing programs successively. So, in iteration n carry out the first n
Turing programs for n many steps on empty input, using a dedicated simula-
tion register. In step n, use only the n-th and later binary digits for the Turing
simulation, so at time ω, this register will have converged to 0 (cf. Note 6.7).
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Once the algorithm finds that some program (say, the i-th) halts on its input,
change the i-th binary digit of an initially zero output register to 1. Since there
is a finite time when all halting computations of programs with index < n will
have halted, this register converges to the halting problem.

So our machines have more computing strength than Turing machines or
classical BSS machines. Also, the type-2 Turing machines of computable analy-
sis (see [Wei00]) can easily be simulated by ITBMs: The output tape of a type-2
Turing machine, when modeled as an ITBM register, converges by definition.
Input tapes do not change their content and the finitely many work tapes can
be made convergent like in Note 6.7.

Using the above coding, ITBMs can also operate on functions. A continuous
function f : R→ R may be input to an ITBM as its restriction to the rationals
fQ = f � Q : Q → R coded into a real pf ∈ [0, 1]. This requires a fixed
enumeration of rational numbers q : ω → Q which may be chosen as ITBM
computable and an ITBM computable bijective pairing function 〈·, ·〉 : ω×ω →
ω. Then fQ(x) = y may be expressed as “the 〈q−1(x), i〉-th binary digit of pf is
exactly the i-th digit of y”. By computing a convergent sequence of rationals for
a given real (nested intervals) we can compute the function value at this real.
This takes ω-many steps: Produce, for all n < ω, the approximations of x up
to n binary digits in a similar way to Algorithm 6.18 as a sequence of rationals
converging to x. For every such approximation, decode from pf the function
value up to n digits. This defines a sequence of rationals that converge to f(x).

Example 6.20 (Seyfferth). The derivative of a differentiable function is ITBM
computable.

Proof. Given a point x, have an ITBM evaluate the differential quotient in x
using only f(x) itself and rational approximations to f(x) .

An upper bound on strength of ITBMs is given by the strength of ITTMs:

Lemma 6.21 (Seyfferth). Let P be an n-register BSS program. There is an
ITTM program Q and a map f : Rn → ω2 s.t. for every x ∈ R the ITTM
computation by Q on input f(x) halts and returns the information that either
no computation by P on x exists, or that P halts on x with output y ∈ ω2, or
that the P diverges on x with pseudo-output y ∈ ω2, where f−1(y) is the final
register content of the ITBM computation by P on x.

Proof. We assume that the ITTM we are working with has a finite number of
read-write tapes, which can be accomplished of interlacing these tapes onto the
single scratch tape in the definition of ITTMs in [HL00]. Due to Corollary 6.17,
we know that after time ωω also a diverging ITBM computation does not change
its register content anymore. Since it is easy for an ITTM to construct a well
order of ω of length ωω on one tape, it is possible for an ITTM to code the
complete ITBM computation (Rt, It)t<ωω up to time ωω on the output tape.

So let us begin with defining a map f ′ : R → ω2. First, imagine the value
f ′(x) to be contained in three elements of ω2 (i.e., three Turing tapes) where
the first tape contains only a 0 or 1 in the first cell to specify the sign of x, the
second contains the maximal exponent n s.t. 2n ≤ x, and the third contains
the binary expansion of x

2n , ignoring the decimal (binary) point and normalized
in the following way: Binary expansions that end on an infinite trail of 1s are
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replaced by the unique binary expansion of the same number that ends on a
trail of 0s. Then, use an ITTM computable pairing function to interlace these
three tapes into one. The function f ′ can easily be extended to a function
f : Rn → ω2.

It is easy to see that an ITTM is perfectly capable — albeit with an enormous
time consumption — of computing addition, subtraction, multiplication and
division on elements of ω2 and of normalizing the result in the way described
above. So, given the input, the program Q will start carrying out the sequence
of ITBM commands in P and writing the results (and the program instructions
used) one after another in the respective cells of the output tape. At limit times,
the output tape contains all the information of the previous times, so it is easy
for the Q to check whether everything converges and compute the limit if one
exists. If not, output that there is no valid computation by P on x. If yes, Q
will continue its simulation of P up to time ωω. At time ωω, it can replace the
output tape content with f(y) where y is P ’s output or pseudo-output.

It turns out that ITTMs are much stronger than needed, as will be clear from
the following. Gödel’s constructible model L of set theory is closely related to
infinite time computations. We shall use Ronald Jensen’s Jα-hierarchy to study
definability in L. The Jα[−→x ]-hierarchy relativized to the real parameters −→x
is defined by the following recursion on the ordinals: J0[−→x ] = ∅; Jα+1[−→x ] is
the closure of Jα[−→x ] ∪ {Jα[−→x ]} under all rudimentary functions, using also the
parameters −→x . The rudimentary functions are simple set theoretic functions
which include the formation of ordered pairs. Also first-order definitions over
structures can be computed rudimentarily. Note that the ordinal height of Jα[−→x ]
is Jα[−→x ] ∩Ord = ω · α. In the sequel, the level Jωω [−→x ] will play a special role.
It is also a member of the standard L-hierarchy, and indeed Jωω [−→x ] = Lωω [−→x ]
is the least level beyond ω where the two hierarchies coincide.

In the following we assume that real numbers are coded by their binary ex-
pansions. Then a real number a will be a function from ω into the set {0, 1, .,−},
where . denotes the binary dot and − is the minus sign. The real a can be con-
sidered a subset of Hω = J1[−→x ]. We show that an ITBM computation can be
uniformly defined along the Jα[−→x ]-hierarchy.

Lemma 6.22 (Koepke). Let (Ct)t∈θ be an ITBM computation according to a
program P on input −→x ∈ Rn. Then for all α > 0 the following hold:

(i) If t < ω · α then C � t+ 1 ∈ J1+α[−→x ].

(ii) C � ω ·α is uniformly Σ1(J1+α[−→x ]) definable in the parameters −→x and Hω.

Proof. By the set theoretic recursion theorem, Definition 1 yields a definition
of (Ct)t∈θ of the form

y = Ct ↔ ∃f : t+ 1→ V [f(0) = G0(−→x )

∧∀u < t(f(u+ 1) = G1(f(u), Hω))

∧∀u < t(limit(u)→ f(u) = G2(f � u,Hω))

∧y = f(t)].

The functions G0, G1, G2 are rudimentary: G0 produces the initial configu-
ration C0 from the input −→x . This amounts to assembling (R(0), I(0)) from the
components of −→x . This operation is certainly rudimentary.
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The function G1 is the transition function from the configuration at time u
to the configuration at time u+1. The transition involves some case distinctions
and the application of rational functions to register contents. The complexity
of real arithmetic is indeed arithmetical in the arguments: for reals a and b the
relations a = b, a < b and the reals a+ b, a · b, a− b, and a

b (in case b 6= 0) are
first-order definable over the structure (Hω, a, b). Since Hω = J1[−→x ] ∈ J2[−→x ],
real arithmetic is rudimentary, using the extra parameter Hω.

The function G2 performs the ITBM limit operation at limit times u < θ.
Given f � u, the ordinary limit in the binary reals can be obtained by first-
order quantification over the multisorted structure (Hω, u, f � u). So G2 is
rudimentary.

This means that definition (1) is a Σ1-definition of y = Ct whose kernel is
rudimentary. Rudimentary predicates are absolute with respect to any level of
the Jα[.]-hierarchy. Note that the unique witness for the existential quantifier
in (1) is C � (t+ 1).

We now show the lemma by simultaneous induction on α > 0. By our
considerations so far, (i) for α implies (ii) for α.

Case α = 1. If t < ω ·α = ω then C � t+1 is built from −→x and Hω by finitely
many applications of the rudimentary functions G0 and G1. Since J1+1[−→x ] is
closed under rudimentary functions, C � t+ 1 ∈ J1+1[−→x ].

Case α = β+1, where the lemma holds for β. Then C � ω ·β is Σ1(J1+β [−→x ])
definable in parameters, and hence C � β ∈ J1+α[−→x ]. For t ∈ [ω · β, ω · α),
C � t+1 can be built from C � β by finitely many applications of the rudimentary
functions G0 and G1. Hence C � t+ 1 ∈ J1+α[−→x ].

For α being a limit ordinal, property (i) for all β < α immediately implies
property (i) at α.

Corollary 6.23 (Koepke). Every ITBM computable real is an element of Lωω =
Jωω .

A set A ⊆ R is ITBM decidable if there is an ITBM program that outputs 0
on inputs x ∈ A and 1 otherwise. A set B ⊂ R is ITBM semi-decidable if there
is a program P that halts only on the x ∈ B.

Corollary 6.24 (Koepke). All ITBM (semi-)decidable sets of reals lie in Lωω [R].

6.4 Remarks and open questions

As with other models of ordinal computability, we have established a connection
between computability and Gödel’s constructibility. A natural conjecture is
that Corollary 3 can be reversed. Can the constructible hierarchy up to Lωn
be "simulated" by an ITBM? This will require ITBMs to be able to do simple
syntactic operations and inductions up to ωn, for every natural number n.

ITBMs form "pointwise" limits at every limit time. This should lead to
connections with the Baire hierarchy of functions.

Relaxing the limit rules by going to lim inf’s, e.g., will allow computations
to go on beyond time ωω and will lead to stronger notions of computability.
In [Koe06] resp. [KM08], [CFK+10] we studied machines with finitely many
registers that contain natural numbers. At limit times register contents are the
lim inf’s of previous register contents. The weaker machines in [Koe06] crash
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when one of these lim inf’s is ∞ whereas in [KM08], [CFK+10] that register
is reset to 0. One can use similar limit rules for infinite time generalizations
of Blum-Shub-Smale machines. Those generalizations obviously are able to
simulate the machines of [Koe06] resp. [KM08], [CFK+10] and should thus
allow to compute all hyperarithmetic reals resp. finitely iterated hyperjumps.
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