784 research outputs found

    Potential Clinical Roles for Metabolic Imaging with Hyperpolarized [1-(13)C]Pyruvate.

    Get PDF
    Work in KMB’s laboratory is supported by a Cancer Research UK Programme grant (17242) and the CRUK-EPSRC Imaging Centre in Cambridge and Manchester (16465). Clinical studies are funded by a Strategic Award from the Wellcome Trust (095962). E.M.S. was a recipient of a fellowship from the European Union Seventh Framework Programme (FP7/2007-2013) under the Marie Curie Initial Training Network METAFLUX (project number 264780). E.M.S. also acknowledges the educational support of the Programme for Advanced Medical Education from Calouste Gulbenkian Foundation, Champalimaud Foundation, Ministerio de Saude and Fundacao para a Ciencia e Tecnologia, Portugal.This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fonc.2016.0005

    A Road Taken: A Cataloging Team Becomes a Metadata Team

    Get PDF
    This chapter describes the issues confronted along the “road taken” by a technical services team as it transitioned from traditional monographic cataloging to metadata for digital collections. To serve changing user needs, the team shifted focus to providing quality metadata. Along this road, the team confronted and welcomed a number of changes. These included a unit merger, off-site relocation, shedding the cataloging role, learning how to produce metadata, identifying areas for growth with a library-wide Metadata Summit, working with new stakeholders, and managing new staff and faculty. The chapter concludes with the lessons the team learned and its prospects

    Got Metadata in Your Future? Lessons Learned from Describing a Unique Image Collection

    Get PDF
    This practical session covers how Clemson University Libraries’ metadata team describes their largest digital collection of historical images. It focuses on what the team has learned from the project, including developing workflows and strategies for describing images, creating a local heading controlled vocabulary, and leveraging expertise to streamline metadata creation. The team explains the metadata management tool CollectiveAccess, shares examples from the collection, and discusses benefits of documentation. The session concludes with continued metadata challenges

    kinematic and neurophysiological models future applications in neurorehabilitation

    Get PDF
    This paper emphasizes the importance of developing kinematic and neurophysiological methods for evaluating motor and functional recovery in the field of neurorehabilitation. From a review of the literature, it is concluded that optoelectronic motion analysis and neurophysiological techniques, such as the study of nociceptive withdrawal reflex, might constitute useful applications for future research

    Evolutionary and Ecological Trees and Networks

    Get PDF
    Evolutionary relationships between species are usually represented in phylogenies, i.e. evolutionary trees, which are a type of networks. The terminal nodes of these trees represent species, which are made of individuals and populations among which gene flow occurs. This flow can also be represented as a network. In this paper we briefly show some properties of these complex networks of evolutionary and ecological relationships. First, we characterize large scale evolutionary relationships in the Tree of Life by a degree distribution. Second, we represent genetic relationships between individuals of a Mediterranean marine plant, Posidonia oceanica, in terms of a Minimum Spanning Tree. Finally, relationships among plant shoots inside populations are represented as networks of genetic similarity.Comment: 6 pages, 5 figures. To appear in Proceedings of the Medyfinol06 Conferenc

    Sex-dependent and-independent transcriptional changes during haploid phase gametogenesis in the sugar kelp Saccharina latissima

    Get PDF
    In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic gametogenesis has been little studied at the molecular level. We addressed this by generating an annotated reference transcriptome for the gametophytic phase of the sugar kelp, Saccharina latissima. Transcriptional profiles of microscopic male and female gametophytes were analysed at four time points during the transition from vegetative growth to gametogenesis. Gametogenic signals resulting from a switch in culture irradiance from red to white light activated a core set of genes in a sex-independent manner, involving rapid activation of ribosome biogenesis, transcription and translation related pathways, with several acting at the post-transcriptional or post-translational level. Additional genes regulating nutrient acquisition and key carbohydrate-energy pathways were also identified. Candidate sex-biased genes under gametogenic conditions had potentially key roles in controlling female- and male-specific gametogenesis. Among these were several sex-biased or -specific E3 ubiquitin-protein ligases that may have important regulatory roles. Females specifically expressed several genes that coordinate gene expression and/or protein degradation, and the synthesis of inositol-containing compounds. Other female-biased genes supported parallels with oogenesis in divergent multicellular lineages, in particular reactive oxygen signalling via an NADPH-oxidase. Males specifically expressed the hypothesised brown algal sex-determining factor. Male-biased expression mainly involved upregulation of genes that control mitotic cell proliferation and spermatogenesis in other systems, as well as multiple flagella-related genes. Our data and results enhance genome-level understanding of gametogenesis in this ecologically and economically important multicellular lineage.FCTprograms UID/Multi/04326/2019, GENEKELP-PTDC/MAR-EST/6053/2014,MARFOR-Biodiversa/0004/2015, FRH/BPD/122567/2016. Swedish Research Council Formas, Naturvardsverket French National Research Agency (ANR) Spanish Government, FRCT, German Research Foundation (DFG), Pew Marine Fellowship, STSM Grant from the COST Action "Phycomorph" FA1406info:eu-repo/semantics/publishedVersio

    Major expansion of marine forests in a warmer Arctic

    Get PDF
    Accelerating warming and associated loss of sea ice are expected to promote the expansion of coastal marine forests (macrophytes) along the massive Arctic coastlines. Yet, this region has received much less attention compared to other global oceans. The available future projections of Arctic macrophytes are still limited to few species and regions, and mostly focused at lower latitude ranges, thus precluding well-informed IPCC impact assessments, conservation and management. Here we aim to quantify potential distributional changes of Arctic intertidal and subtidal brown macroalgae and eelgrass by the year 2100, relative to present. We estimate habitat suitability by means of species distribution modeling, considering changes in seawater temperature, salinity, nutrients and sea ice cover under two greenhouse gas emission scenarios, one consistent with the Paris Agreement (RCP 2.6) and the other representing limited mitigation strategies (RCP 8.5). As data on substrate conditions do not exist, the models were restricted to the depth range supporting Arctic macrophytes (down to 5 m for eelgrass and 30 m for brown macroalgae). Models projected major expansions of Arctic macrophytes between 69,940 and 123,360 km2, depending on the climate scenario, with polar distribution limits shifting northwards by up to 1.5 latitude degrees at 21.81 km per decade. Such expansions in response to changing climate will likely elicit major changes in biodiversity and ecosystem functions in the future Arctic. Expansions are, however, less intense than those already realized over the past century, indicating an overall slowing down despite accelerated warming as habitats become increasingly occupied..This study was supported by the Independent Research Fund Denmark through the project “CARMA” (8021- 00222B) and the European Union through the project “FACE-IT” to DK-J, the Foundation for Science and Technology (FCT) through projects UID/Multi/04326/2020 to CCMAR and PTDC/BIA-CBI/6515/2020, the transitional norm DL57/2016/CP1361/CT0035 to JA and the fellowship SFRH/BD/144878/2019 to EF, and a Pew Marine Fellowship to ES.info:eu-repo/semantics/publishedVersio

    Marine forests of the Mediterranean-Atlantic Cystoseira tamariscifolia complex show a southern Iberian genetic hotspot and no reproductive isolation in parapatry

    Get PDF
    Climate-driven range-shifts create evolutionary opportunities for allopatric divergence and subsequent contact, leading to genetic structuration and hybrid zones. We investigate how these processes influenced the evolution of a complex of three closely related Cystoseira spp., which are a key component of the Mediterranean-Atlantic seaweed forests that are undergoing population declines. The C. tamariscifolia complex, composed of C. tamariscifolia s.s., C. amentacea and C. mediterranea, have indistinct boundaries and natural hybridization is suspected. Our aims are to (1) infer the genetic structure and diversity of these species throughout their distribution ranges using microsatellite markers to identify ancient versus recent geographical populations, contact zones and reproductive barriers, and (2) hindcast past distributions using niche models to investigate the influence of past range shifts on genetic divergence at multiple spatial scales. Results supported a single, morphologically plastic species the genetic structure of which was incongruent with a priori species assignments. The low diversity and low singularity in northern European populations suggest recent colonization after the LGM. The southern Iberian genetic hotspot most likely results from the role of this area as a climatic refugium or a secondary contact zone between differentiated populations or both. We hypothesize that life-history traits (selfing, low dispersal) and prior colonization effects, rather than reproductive barriers, might explain the observed genetic discontinuities.Pew Charitable Trusts (USA); MARINERA, Spain [CTM2008-04183-E/MAR]; FCT (Portugal) [FCT-BIODIVERSA/004/2015, CCMAR/Multi/04326/2013, SFRH/BPD/107878/2015, SFRH/BPD/85040/2012]; FPU fellowship of the Spanish Ministry of Education; European Community ASSEMBLE visiting grant [00399/2012]; University of Cadi
    • …
    corecore