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Clinical oncology relies increasingly on biomedical imaging, with anatomical imaging, 

especially using CT and 1H-MRI, forming the mainstay of patient assessment, from diagnosis 

to treatment monitoring. However, the need for further improvements in specificity and 

sensitivity, coupled with imaging techniques that are reaching their limit of clinically 

attainable spatial resolution, has resulted in the emergence and growing use of imaging 

techniques with additional functional read-outs, such as 18FDG-PET and multi-parametric 

MRI. These techniques add a new dimension to our understanding of the biological behavior 

of tumors, allowing a more personalized approach to patient management. 

 

An important functional imaging target in cancer is metabolism.  PET measurements of 

18Fluorodeoxyglucose uptake, a 18F labeled glucose analog, (18FDG-PET), and 1H-MRS 

measurements, have both been used to investigate tumor metabolism for diagnostic purposes. 

However, clinical applications of MRS have been hampered by low sensitivity and 

consequently low spatial and temporal resolution (Glunde and Bhujwalla, 2011). Nuclear 

spin hyperpolarization of 13C-labelled substrates, using dynamic nuclear polarization (DNP), 

which radically increases the sensitivity of these substrates to detection by 13C MRS 

(Ardenkjaer-Larsen et al., 2003), has created a renewed interest in MRS measurements of 

tissue metabolism. Successful translation of this technique to the clinic was achieved recently 

with measurements of  [1-13C]pyruvate metabolism in prostate cancer (Nelson et al., 2013) 

(see Figure 1). We explore here the potential clinical roles for metabolic imaging with 

hyperpolarized [1-13C]pyruvate. 

 

Dynamic nuclear polarization 

DNP, which can increase the signal-to-noise ratio in the solution-state 13C MR experiment by 

104 - 105 fold (Brindle et al., 2011) has enabled in vivo imaging of various metabolites and 
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their enzymatic conversion into other species, as well as metabolic fluxes in central metabolic 

pathways, such as glycolysis (Meier et al., 2011;Harris et al., 2013;Rodrigues et al., 2014) 

and the tricarboxylic acid cycle (Schroeder et al., 2009;Merritt et al., 2011;Chen et al., 2012). 

The principle limitation of the technique is the short half-life of the polarization; for [1-

13C]pyruvate in vivo this is typically between 30 – 40 s, which means that the hyperpolarized 

signal will last for 2 – 3 minutes. Therefore the substrate, whose metabolism is to be imaged, 

must be transferred promptly from the polarizer, injected intravenously and then transit 

quickly via the circulation to the tissue of interest, where it should be taken up and 

metabolized rapidly (Gallagher et al., 2011;Brindle, 2015). To date numerous molecules, in 

addition to 13C-labelled pyruvate, have been successfully hyperpolarized and their 

metabolism imaged, including [1,4-13C2]fumarate, as a marker of cell necrosis (Gallagher et 

al., 2009;Clatworthy et al., 2012); [U-2H, U-13C]glucose for assessment of glycolytic and 

pentose phosphate pathway activities and for detecting early treatment response (Rodrigues et 

al., 2014); 13C-labelled bicarbonate for in vivo mapping of pH (Gallagher et al., 2008a); and 

13C-labelled urea as a marker of perfusion (Wilson et al., 2010), amongst others (Day et al., 

2007;Gallagher et al., 2009;Wilson et al., 2010;Kurhanewicz et al., 2011). Despite initial 

interest in vascular imaging (Golman et al., 2002;Svensson et al., 2003;Mansson et al., 2006), 

the main focus has been on imaging metabolism in tumors (Chen et al., 2007;Day et al., 

2007;Gallagher et al., 2009) and cardiac tissue (Merritt et al., 2007;Golman et al., 

2008;Merritt et al., 2008;Schroeder et al., 2008;Dodd et al., 2014).  

 

Pyruvate 

Pyruvate is an important intermediate in many biochemical pathways (Denton and Halestrap, 

1979). As an end product of glycolysis, pyruvate can be reduced by NADH to generate 

lactate, in the readily reversible reaction catalyzed by lactate dehydrogenase, or 
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transaminated by glutamate, in the reversible reaction catalyzed by alanine aminotransferase 

(ALT), to form alanine. In tissues with high levels of mitochondrial activity, such as heart 

muscle, pyruvate may be irreversibly decarboxylated to form carbon dioxide in the reaction 

catalyzed by the mitochondrial pyruvate dehydrogenase (PDH) complex (Schroeder et al., 

2008). Since increased aerobic glycolysis is a well-recognized hallmark of cancer (Gatenby 

and Gillies, 2004;Hanahan and Weinberg, 2011) this has made it an attractive pathway to 

probe for diagnostic and treatment monitoring purposes (Golman et al., 2006;Day et al., 

2007;Nelson et al., 2013). 

 

Potential clinical roles 

Preclinical studies have demonstrated that hyperpolarized [1-13C]pyruvate is a promising 

probe for oncological imaging, with increased lactate labeling observed in tumors as 

compared to normal tissues (Golman et al., 2006;Park et al., 2010). The substrate has the 

potential to be used in many steps of patient management. A recent study demonstrated the 

potential of hyperpolarized [1-13C]pyruvate as an imaging biomarker for early detection and 

secondary screening of pancreatic cancer, where a decrease in the hyperpolarized [1-

13C]alanine/[1-13C]lactate ratio was observed in the progression from precursor lesions to 

adenocarcinoma (Serrao et al., 2015). In another study, [1-13C]pyruvate detected metabolic 

changes prior to tumor formation (Hu et al., 2011). Additionally, in the first reported clinical 

trial in prostate cancer, increased lactate labeling was observed in histologically confirmed 

areas of disease that were not identifiable by conventional 1H-MRI measurements (Nelson et 

al., 2013) (Figure 1). The few studies that have explored the role of [1-13C]pyruvate in 

grading and prognosis, which were in the transgenic mouse model of prostate 

adenocarcinoma (TRAMP), have also produced promising results (Albers et al., 2008;Chen 

AP, 2008).  Tumor grading by biopsy can sometimes be difficult depending on the 
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accessibility of the organ of interest. Translation of the DNP technique to the clinic may 

allow more accurate targeting of biopsy procedures. Since lactate labeling is increased in 

regions of hypoxia the technique also has the potential to be used for treatment planning in 

radiotherapy (Krishna et al., 2013;Bluff et al., 2015).  Clinical assessments of tumor 

responses to treatment are still based largely on observed changes in tumor size (Eisenhauer 

et al., 2009). However, this might not always be appropriate, particularly for detection of 

early responses or if the drug does not result in tumor shrinkage, for example in the case of 

anti-angiogenic drugs (Brindle, 2008;Bohndiek et al., 2012). Additionally, treatment 

assessment using 18FDG-PET is difficult in some organs, e.g. prostate and brain, due to both 

low tumor uptake and increased background uptake respectively (Brindle, 2008). Evaluation 

of treatment response is likely to be the clinical scenario where hyperpolarized [1-

13C]pyruvate will have the most impact, as it could lead to immediate changes in clinical 

management, allowing the clinician to change a non-responding patient to a more effective 

drug at an early stage (Brindle, 2008). Early assessment of treatment response could also be 

used to accelerate the introduction of new drugs into the clinic by providing an indication of 

drug efficacy in early stage clinical trials.  In support of this are numerous studies showing 

early decreases in hyperpolarized 13C label exchange between injected [1-13C]pyruvate and 

the endogenous lactate pool in a range of cancer models following treatment with cytotoxic 

chemotherapy (Day et al., 2007;Witney et al., 2010), targeted drugs (Bohndiek et al., 

2010;Dafni et al., 2010;Ward et al., 2010), and radiotherapy (Day et al., 2011;Bohndiek et al., 

2012;Saito et al., 2015).  

There is as yet no direct evidence to support the suggestion that residual disease/recurrence 

can be identified by increased lactate labeling. However, observations of increased lactate 

labeling in areas of disease and following disease progression (Nelson et al., 2013;Serrao et 

al., 2015) make this likely.  There is, however, evidence that hyperpolarized [1-13C]pyruvate 
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can be used to assess normal tissue toxicity, with an increase in the [1-13C]lactate/[1-

13C]pyruvate ratio occurring in radiation-induced lung injury (Thind et al., 2013;Thind et al., 

2014). 

 

Advantages of metabolic imaging with [1-13C]pyruvate 

Advantages compared to 18FDG-PET 

Metabolic imaging of cancer in the clinic has principally been with 18FDG-PET, which has 

been used to stage tumors and to assess treatment response. Despite its high sensitivity and 

capability to provide whole-body images the use of ionizing radiation is a drawback, limiting 

its application in children and women of reproductive age, and when multiple investigations 

are needed, for example as might be required for guiding treatment in an individual patient.  

A similar clinical role can be envisaged for [1-13C]pyruvate as has been established for 

18FDG-PET. Both techniques can be used to detect increased glycolytic flux (Menzel et al., 

2013) and have been shown to be comparably sensitive in detecting tumor response to 

treatment (Witney et al., 2009). However, since hyperpolarized [1-13C]pyruvate effectively 

detects lactate accumulation (Gallagher et al., 2011), a defining feature of cancer metabolism, 

i.e. the failure to oxidize pyruvate in the presence of oxygen and reduce it instead to lactate 

(the “Warburg Effect”), this means that hyperpolarized [1-13C]pyruvate may be more specific 

for detecting cancer than 18FDG-PET. The latter detects only elevated levels of glucose 

uptake, which is a feature of many normal tissues as well as cancer, for example the brain.  

The specificity of cancer detection by hyperpolarized [1-13C]pyruvate may be confounded, 

however, by the presence of hypoxia, which will also lead to lactate accumulation and 

increased lactate labeling (Bluff et al.). Another drawback of imaging with hyperpolarized [1-

13C]pyruvate is that the short half-life of the polarization precludes whole-body imaging. 
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Advantages compared to 1H MRS 

1H-MR spectroscopy and spectroscopic imaging measurements of tissue metabolite profiles 

are label free and have found some applications, for example in identifying different types of 

brain tumor (Horska and Barker, 2010). A notable example is the detection of 2-

hydroxyglutarate, which can be used to identify glioblastomas with isocitrate dehydrogenase 

mutations (IDH) (Choi et al., 2012). 1H MRSI has also proved to be important in the prostate, 

where it can improve the specificity of detection and determination of tumor extent when 

combined with other MR imaging sequences (Johnson et al., 2014). However, detectable 

metabolites are present in only millimolar concentrations, as compared to tissue water 

protons, which are present at ~80 M, which results in long data acquisition times and limited 

spatial resolution.  In addition data processing can be more complex and the biochemical 

information provided may be unfamiliar to many clinicians, which has limited routine clinical 

application. Moreover, 1H MR spectroscopy and spectroscopic images of metabolite profiles 

provide a static picture of tumor metabolism. Imaging with hyperpolarized 13C-labeled 

substrates, on the other hand, provides dynamic metabolic flux information in the form of 

images that can be acquired at relatively high spatial and temporal resolutions and therefore 

should provide an improved assessment of tumor behavior. Additionally co-injection of 

different hyperpolarized substrates could also provide additional functional information in the 

same acquisition, e.g. pyruvate for assessing glycolytic activity and urea for assessing tumor 

perfusion (von Morze et al., 2012). 

 

Combining metabolic imaging with hyperpolarized [1-13C]pyruvate with new 

technologies 

PET-MRI 

This is an emerging combined imaging modality with significant potential for clinical 
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assessment of cancer patients (Rosenkrantz et al., 2015). Simultaneous PET-MR 

measurements with hyperpolarized 13C and 18F labeled substrates would allow a multi-

parametric assessment of the primary lesion and its metastases in a single imaging session, 

which potentially could be used to identify imaging-based phenotypes that have prognostic 

value and which may give a more specific readout of treatment response.  For example, PET 

measurements of 18FDG uptake assess just the first three steps in tumor glucose metabolism, 

that is delivery via the bloodstream, uptake on the glucose transporters and phosphorylation 

and trapping in the reaction catalyzed by hexokinase. 13C MRSI measurements of the 

exchange of hyperpolarized 13C label between injected [1-13C]pyruvate and the endogenous 

lactate pool again assess delivery via the bloodstream and effectively the last two steps in the 

glycolytic pathway, that is the steps catalyzed by lactate dehydrogenase and the plasma 

membrane monocarboxylate transporters. Therefore by combining 18FDG-PET and 

hyperpolarized [1-13C]pyruvate measurements we may be able to assess flux in the entire 

glycolytic pathway, for example increased mitochondrial oxidation of pyruvate may have no 

effect on 18FDG uptake but could decrease 13C labeling of lactate. There are other PET 

probes of tumour metabolism that could also be used alongside hyperpolarized [1-

13C]pyruvate, and which could provide complementary information. These include 11C-

acetate, as a marker of fatty acid synthesis, and labelled glutamine, which can be used to 

assess glutaminolysis; both of which are up-regulated in tumour cells (Hensley et al., 2013) 

(Hosios and Vander Heiden, 2014). These PET probes may be especially useful in tumours 

where 18FDG is ineffective, e.g. in prostate tumours (Grassi et al., 2012) and in gliomas 

(Venneti et al., 2015), and where the corresponding hyperpolarized 13C-labelled probes are 

limited. For example the metabolism of hyperpolarized [1-13C]acetate has been detected in 

vivo (Bastiaansen et al., 2013), however the short lifetime of the hyperpolarization means that 

it could not be used to monitor fatty acid synthesis, where PET studies with [1-11C]acetate in  
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animal tumour models have shown that it can take over 60 minutes before there is substantial 

incorporation into the fatty acid pool (Lewis et al., 2014). In the case of [5-13C]glutamine a 

relatively short hyperpolarization lifetime and slow metabolism (Gallagher et al., 2008b) has 

precluded imaging in vivo (Cabella et al., 2013). 

 

Liquid biopsies 

Blood and urine biomarkers, obtained from “liquid biopsies”, are also evolving, providing 

information in a non-invasive way allied to the advantages of collection simplicity and 

relatively low cost. Many body fluid biomarkers have been reported for different types of 

cancer however few have become established in the clinic, usually because they lack 

specificity. A recent promising example is a panel of three urine biomarkers for early 

detection of pancreatic cancer (Radon et al., 2015).  Rapid advances in DNA sequencing 

technology have allowed somatic mutations present in tumor cells to be detected and tracked 

in blood-borne circulating tumor DNA (ctDNA). These fragments of DNA, which have been 

detected with most types of cancer, have been demonstrated to have potential roles in early 

detection, staging, and in detecting response to therapy and acquired resistance to treatment 

(Murtaza et al., 2013;Bettegowda et al., 2014).  Although measurements with hyperpolarized 

13C-labelled cell substrates and these new circulating biomarkers are still their infancy it 

seems likely that they will provide complementary information, for example in the 

assessment of tumor heterogeneity. 

 

Conclusion and Future Directions 

Imaging with hyperpolarized 13C-labelled cell substrates has the potential to become a 

powerful tool in many steps of clinical evaluation, allowing a more personalized approach to 

treatment. The first clinical trial established the feasibility of imaging human tumors with 
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hyperpolarized [1-13C]pyruvate. Since this substrate can be used to assess glycolysis, which 

is up regulated in many tumors, then this should make it a very general tool for oncological 

imaging in the clinic. Despite the biological insights that imaging with hyperpolarized 13C-

labelled substrates promises to deliver in the clinic, it will nevertheless have to prove itself 

against established and emerging clinical techniques, demonstrating that it can provide 

unique information that changes clinical practice. 
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Figure 1 – Imaging prostate cancer with hyperpolarized [1-13C]pyruvate. The T2-weighted 

image of a patient with biopsy-proven bilateral prostate cancer showed only a unilateral 

decrease in signal intensity.  However, the metabolic image ([1-13C]lactate/[1-13C]pyruvate 

ratio) detected disease on both the right and left sides of the prostate. Reproduced from 

(Nelson et al., 2013) with permission. 
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