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This paper emphasizes the importance of developing kine-
matic and neurophysiological methods for evaluating motor 
and functional recovery in the field of neurorehabilitation. 
From a review of the literature, it is concluded that optoelec-
tronic motion analysis and neurophysiological techniques, 
such as the study of nociceptive withdrawal reflex, might 
constitute useful applications for future research.
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INTRODUCTION

A systematic review of 123 randomized clinical trials (1) dem-
onstrated that there is strong evidence that treatment intensity 
and task specificity are the main drivers of an effective treatment 
programme after stroke. In addition, training should be repeti-
tive, functional, meaningful, and challenging for the patient (1, 
2). In the past, several studies have been unable to prove the 
superiority of one type of conventional rehabilitation treatment 
over another (3, 4), but there is strong evidence that highly re-
petitive movement training can improve recovery (2, 4). 

The use, in clinical practice, of robotic-aided rehabilitation 
(5, 6) is a promising new development. Robots allow patients 
to train independently, without the need for direct assistance 
from the therapist, and to improve their own functional per-
formance. In particular, there is strong evidence that robot-
assisted therapy improves treatment compliance and increases 
exercise intensity (7). 

LITERATURE REVIEW

A search of the scientific literature showed that, while many 
rehabilitation treatments, including robotic therapy, have been 
used (1, 4, 7), there is great difficulty in measuring motor recov-
ery, functional recovery, and social participation, also because 

they concern different levels of complexity for the analysis 
(form neurophysiological basis to environmental interactions). 
Hence, research into the effects of robot-assisted therapy should 
focus on methods (e.g. kinematic analysis, neurophysiological 
techniques) for differentiating between recovery due to neural re-
organization and recovery attributable to adaptive strategies. 

In the evolution of neurorehabilitation techniques, trunk 
stability was considered an essential component of balance and 
coordinated use of the extremities in daily functional activities. 
Trunk muscles work together, and modulation of their strength, 
by means of appropriate neural control is important in trunk sta-
bility and limb movements (8–10). There is ample evidence that 
the trunk is part of the prehension system, regardless of whether 
upper arm and trunk motor programmes are dependent or inde-
pendent of each other (11). Recent studies of dynamic reaching 
showed that trunk bending and shoulder flexion-extension are 
involved in motor action earlier than previously believed. The 
importance of trunk control in functional rehabilitation has long 
been emphasized by many authors (12), and trunk control also 
emerges as an important factor in evaluation scales, such as 
the activities of daily living (ADL) or the Sitting Balance Test, 
where it has repeatedly been identified as a major predictor of 
motor and functional recovery after stroke (13–15). 

MOVEMENT ANALYSIS

Motion analysis has become a tool commonly used to assess 
the neurophysiological and biomechanical features of human 
posture and movement, as technical advances and procedural 
improvements have made it possible to reduce errors due to the 
recording system and to soft tissue artefacts (16–19). It is impor-
tant to consider that even though the spine has a multi-segmental 
structure, its function in whole-body motor and postural tasks 
is a global one. Moreover, structurally, the trunk musculature is 
characterized mainly by its linking of non-adjacent vertebrae, 
a feature that explains its diffuse rather than local control of 
posture and motion. Movement analysis may be particularly 
useful for assessing postural and motor abnormalities involving 
the whole spine, because it provides quantitative data relating 
to features such as trunk curvatures and flexibility, instead of 
only angles and ranges of motion (ROM).
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For this reason, the development of global models for assessing 
the whole spine regarded as a deformable body should be inte-
grated with ones used for the lower (20) and upper (21) limbs. 

NOCICEPTIVE WITHDRAWAL REFLEx

Kinematic methods and neurophysiological techniques, such as 
the nociceptive withdrawal reflex (NWR) could be employed 
to evaluate aspects of motor and functional recovery after 
rehabilitative intervention. 

The NWR is a defensive response by which a limb is with-
drawn from a painful stimulus by activating a complex neural 
network located in the spinal cord, which involves different 
muscles (22). The study of NWR has been used for examining 
changes in spinal cord function during rhythmic lower limb 
movements in humans (22). The NWR is easily recorded in 
several limb muscles as a clear and stable electromyography 
(EMG) response after painful electrical stimulation of sev-
eral nerves. Although the flexion synergy evoked by painful 
stimuli serves a primarily protective function, various studies 
have shown that the NWR also fulfils a more complex motor 
function. Hand motor function is particularly important in 
humans for reaching and grasping, as well as for exploring and 
manipulating objects, and arm and hand movements are under 
more complex neural control than leg and foot movements.

Because the inter-neural network mediating NWR responses 
is included in the descending motor pathways, it could be 
hypo thesized that studying the NWR during movement in hemi-
paretic patients might furnish pathophysiological information 
possibly useful for the planning of rehabilitation treatment. 
Although the flexion synergy evoked by painful stimuli serves 
a primarily protective function, various studies have shown 
that the NWR also fulfils a more complex motor function. 
The few studies that have investigated spinal reflexes during 
rhythmic upper limb movements have shown, in some muscles, 
a phase-dependent modulation of the kind observed in the 
lower limbs during walking. However, these studies considered 
cutaneous-muscular reflexes evoked by moderate, non-painful 
stimulation and evaluated during active or passive rhythmic 
cyclical movements constrained by a hydraulic ergometer (22). 
Therefore, data on the modulation of spinal reflexes after painful 
stimulation during arm movements are currently lacking. Study 
of the modulation of the NWR during voluntary movements 
of the upper limb (e.g. reaching and grasping, exploring and 
manipulating objects) may broaden understanding of the spinal 
mechanism involved in this complex motor function.

CONCLUSION

Kinematic and neurophysiological techniques, such as the 
study of NWR for the upper limb, represent methods to produce 
repeatable measurements. As already reported by a number 
of scientific papers (7, 23), these methods could be useful for 
evaluating the effects and efficacy of rehabilitation treatments, 
particularly robotic rehabilitation programmes, and should 
constitute useful applications for future research.
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