1,108 research outputs found

    Fission induced by nucleons at intermediate energies

    Full text link
    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.Comment: 36 pages, 18 figures, to appear in Nuclear Physics

    Optical imaging of Tc-99m-based tracers: in vitro and in vivo results.

    Get PDF
    It has been recently shown that optical imaging (OI) methods can be used to image the in vivo biodistribution of several radiopharmaceuticals labeled with beta or alpha emitters. In this work particular attention has been focused on investigating the weaker optical signal induced by an almost pure gamma emitter like Tc-99m. Visible light emission measurements of a water solution containing Tc-99m were performed using a small animal OI system. A sequence of images was acquired for 24 h in order to study the decay of the luminescence signal. The difference between the luminescence decay half life and well-known Tc-99m half life was equal to 1%. in vivo imaging was performed by injecting one control nude mice with Tc-99m-MDP. Optical images obtained with equipment designed for bioluminescence imaging showed that a visible light emission was distinguishable and correctly localized in the bladder region where a higher concentration of Tc-99m-MDP was expected. The bladder to background ratio was always greater than 1. We conclude that the experimental data presented in this paper show that it is possible to detect in vivo luminescence optical photons induced by Tc-99m. This is important especially considering the large number of Tc-99m-based radiopharmaceutical currently available

    On the role of secondary pions in spallation targets

    Full text link
    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20 GeV/c protons, neutral pions are involved in the production of ~90% of the high-energy photons; charged pions participate in ~40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.Comment: 17 pages, 14 figures. Submitted to Eur. Phys. J.

    Neutron detection devices with 6LiF converter layers

    Get PDF
    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites

    Innovative LuYAP:Ce array for PET imaging

    Get PDF
    We present an imaging characterization of a 10 x 10 LuYAP array (2 x 2 x 10 mm3 pixels) with an innovative dielectric coating insulation (0.015 mm thick), in view of its possible use in a gamma camera for imaging positron emission tomography (PET) or in similar applications, e.g. as γ-prompt detector in hadron therapy. The particular assembly of this array was realized in order to obtain a packing fraction of 98%, improving detection efficiency and light collection. For imaging purpose, the array has been coupled with a selected Hamamatsu H10966-100 Multi Anode Photomultiplier read out by a customized 64 independent channels electronics. This tube presents a superbialkali photocathode with 38% of quantum efficiency, permitting to enhance energy resolution and consequently image quality. A pixel identification of about 0.5 mm at 662 keV was obtained, highlighting the potentiality of this detector in PET application

    On the role of secondary pions in spallation targets

    Full text link
    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from a thick spallation target. Considering the spallation target of the n-TOF Facility at CERN, we see that photon and neutron yields are relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.
    corecore