74 research outputs found

    INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and Prognosis

    Full text link
    Synthesizing information from multiple data sources plays a crucial role in the practice of modern medicine. Current applications of artificial intelligence in medicine often focus on single-modality data due to a lack of publicly available, multimodal medical datasets. To address this limitation, we introduce INSPECT, which contains de-identified longitudinal records from a large cohort of patients at risk for pulmonary embolism (PE), along with ground truth labels for multiple outcomes. INSPECT contains data from 19,402 patients, including CT images, radiology report impression sections, and structured electronic health record (EHR) data (i.e. demographics, diagnoses, procedures, vitals, and medications). Using INSPECT, we develop and release a benchmark for evaluating several baseline modeling approaches on a variety of important PE related tasks. We evaluate image-only, EHR-only, and multimodal fusion models. Trained models and the de-identified dataset are made available for non-commercial use under a data use agreement. To the best of our knowledge, INSPECT is the largest multimodal dataset integrating 3D medical imaging and EHR for reproducible methods evaluation and research

    Decreased Level of Nurr1 in Heterozygous Young Adult Mice Leads to Exacerbated Acute and Long-Term Toxicity after Repeated Methamphetamine Exposure

    Get PDF
    The abuse of psychostimulants, such as methamphetamine (METH), is prevalent in young adults and could lead to long-term adaptations in the midbrain dopamine system in abstinent human METH abusers. Nurr1 is a gene that is critical for the survival and maintenance of dopaminergic neurons and has been implicated in dopaminergic neuron related disorders. In this study, we examined the synergistic effects of repeated early exposure to methamphetamine in adolescence and reduction in Nurr1 gene levels. METH binge exposure in adolescence led to greater damage in the nigrostrial dopaminergic system when mice were exposed to METH binge later in life, suggesting a long-term adverse effect on the dopaminergic system. Compared to naïve mice that received METH binge treatment for the first time, mice pretreated with METH in adolescence showed a greater loss of tyrosine hydroxylase (TH) immunoreactivity in striatum, loss of THir fibers in the substantia nigra reticulata (SNr) as well as decreased dopamine transporter (DAT) level and compromised DA clearance in striatum. These effects were further exacerbated in Nurr1 heterozygous mice. Our data suggest that a prolonged adverse effect exists following adolescent METH binge exposure which may lead to greater damage to the dopaminergic system when exposed to repeated METH later in life. Furthermore, our data support that Nurr1 mutations or deficiency could be a potential genetic predisposition which may lead to higher vulnerability in some individuals

    Plasmodium falciparum Clearance Is Rapid and Pitting Independent in Immune Malian Children Treated With Artesunate for Malaria

    Get PDF
    Background. In Plasmodium falciparum-infected patients treated with artemisinins, parasitemia declines through so-called pitting, an innate splenic process that transforms infected red blood cells (iRBCs) into onceinfected RBCs (O-iRBCs). Methods. We measured pitting in 83 French travelers and 42 Malian children treated for malaria with artesunate. Results. In travelers, O-iRBCs peaked at 107.7% initial parasitemia. In Malian children aged 1.5-4 years, OiRBCs peaked at higher concentrations than in children aged 9-13 years (91.60% vs 31.95%; P = .0097). The parasite clearance time in older children was shorter than in younger children (P = .0001), and the decline in parasitemia in children aged 1.5-4 years often started 6 hours after treatment initiation, a lag phase generally absent in infants and older children. A 6-hour lag phase in artificial pitting of artesunate-exposed iRBCs was also observed in vitro. The proportion of iRBCs recognized by autologous immunoglobulin G (IgG) correlated with the parasite clearance time (r = −0.501; P = .0006) and peak O-iRBC concentration (r = −0.420; P = .0033). Conclusions. Antimalarial immunity correlates with fast artemisinin-induced parasite clearance and low pitting rates. In nonimmune populations, artemisinin-induced P. falciparum clearance is related to pitting and starts after a 6-hour lag phase. In immune populations, passively and naturally acquired immune mechanisms operating faster than pitting may exist. This mechanism may mitigate the emergence of artemisinin-resistant P. falciparum in Africa

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Nurr1 +/− mice exhibit greater reduction of striatal TH-immunoreactivity following METH exposure.

    No full text
    <p>(A) METH injection reduced THir in +/+ and +/− mice following one time binge METH exposure (1X METH) and repeated binge METH exposure (2XMETH). Calibration = 2 mm. (B) Quantitative THir fiber density analysis indicated that binge METH treatment significantly reduces THir in striatum and 2XMETH induced a further reduction of the THir in both +/+ and +/− mice. There is a significant difference between saline and 1XMETH group (p<0.001, Two-way ANOVA) and between 1XMETH and 2XMETH group (p<0.001, Two-way ANOVA) in striatal THir. In addition, there is also a significant difference (p<0.001) between +/+ and +/− mice after 1XMETH injection.</p

    Nurr1 +/− mice exhibit decreased TH-immunoreactivity in SNpr following methamphetamine exposure.

    No full text
    <p>(A) TH immunostaining indicates that METH administration augments the reduction in THir in the SNpr of Nurr1 +/−, compared to +/+ mice following repeated METH binge treatment. Calibration bar = 500 um. (B) THir fiber density analysis indicated METH treatment (1xMETH) reduced THir fiber density in SNpr in +/+ and +/− mice (p<0.001, Two-way ANOVA) and repeated METH binge treatment (2XMETH) further reduced THir fiber density in SNpr (p<0.001, Two-way ANOVA). A trend of greater reduction in TH immunoreactivity was found in the Nurr1 +/− mice following 1XMETH (p = 0.058, Two-way ANOVA, post hoc Newman-Keuls test) and a significant decrease in THir in SNpr was found in Nurr1 +/− mice following repeated METH treatment (2XMETH). (p<0.05, Two-way ANOVA, post hoc Newman-Keuls test).</p

    Further reduction of DA clearance in the striatum after repeated METH binge in Nurr-1 +/− mice.

    No full text
    <p>Extracellular DA concentration was measured using chronoamperometry after local application of low doses (10.2+/−0.6 pmole/site) of DA through micropipettes in mouse striatum after saline, 1xMETH or 2XMETH treatment. Amplitude of DA signals was normalized by comparison to the log of dose used. Extracellular DA concentration was significantly enhanced in Nurr1 +/−, compared to +/+ mice, after 2XMETH treatment (*, p<0.05, Two-way ANOVA, post hoc Newman-Keuls test).</p
    corecore