65 research outputs found

    Operational real-time and forecast modelling of Atlantic albacore tuna

    Get PDF
    The model SEAPODYM (Spatial Ecosystem And Population Dynamics) has now reached a degree of maturity allowing to use it for testing management scenarios and to implement operational monitoring. It is proposed to implement an operational forecast system for the Atlantic albacore tuna. The system will use physical field (temperature, currents and primary production) from Copernicus CMEMS. The sensitivity to improved physical variables with data assimilation will be analysed and the interest of this operational production of tuna stock distributions evaluated in collaboration with colleagues involved in the management of tuna fisheries at ICCAT and FAO, and the AtlantOS fitness for this modelling analysed [D8.9

    Individual based model simulations indicate a non-linear catch equation of drifting Fish Aggregating Device-associated tuna

    Get PDF
    Catch per unit of fishing effort (CPUE) is often used as an indicator of tuna abundance, where it is assumed that the two are proportional to each other. Tuna catch is therefore typically simplified in tuna population dynamics models and depends linearly on their abundance. In this paper, we use an individual-based model of tuna and their interactions with drifting Fish Aggregating Devices (dFADs) to identify which behavioural, ocean flow, and fishing strategy scenarios lead to an emergent, non-linear dependency between catch, and both tuna and dFAD density at the ∌1○ grid scale. We apply a series of catch response equations to evaluate their ability to model associated catch rate, using tuna and dFAD density as terms. Our results indicate that, regardless of ocean flow, behavioural, or fisher strategy scenario, simulated catch is best modelled with a non-linear dependence on both tuna and dFAD abundance. We discuss how estimators of CPUE at the population scale are potentially biased when assuming a linear catch response

    Ocean Futures for the World’s Largest Yellowfin Tuna Population Under the Combined Effects of Ocean Warming and Acidification

    Get PDF
    The impacts of climate change are expected to have profound effects on the fisheries of the Pacific Ocean, including its tuna fisheries, the largest globally. This study examined the combined effects of climate change on the yellowfin tuna population using the ecosystem model SEAPODYM. Yellowfin tuna fisheries in the Pacific contribute significantly to the economies and food security of Pacific Island Countries and Territories and Oceania. We use an ensemble of earth climate models to project yellowfin populations under a high greenhouse gas emissions (IPCC RCP8.5) scenario, which includes, the combined effects of a warming ocean, increasing acidification and changing ocean chemistry. Our results suggest that the acidification impact will be smaller in comparison to the ocean warming impact, even in the most extreme ensemble member scenario explored, but will have additional influences on yellowfin tuna population dynamics. An eastward shift in the distribution of yellowfin tuna was observed in the projections in the model ensemble in the absence of explicitly accounting for changes in acidification. The extent of this shift did not substantially differ when the three-acidification induced larval mortality scenarios were included in the ensemble; however, acidification was projected to weaken the magnitude of the increase in abundance in the eastern Pacific. Together with intensive fishing, these potential changes are likely to challenge the global fishing industry as well as the economies and food systems of many small Pacific Island Countries and Territories. The modelling framework applied in this study provides a tool for evaluating such effects and informing policy development

    Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to Fish and Coasts to Ocean

    Get PDF
    It has long been recognized that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling work package of the EURO-BASIN programme

    Integrating biogeochemistry and ecology into ocean data assimilation systems

    Get PDF
    Monitoring and predicting the biogeochemical state of the ocean and marine ecosystems is an important application of operational oceanography that needs to be expanded. The accurate depiction of the ocean's physical environment enabled by Global Ocean Data Assimilation Experiment (GODAE) systems, in both real-time and reanalysis modes, is already valuable for various for various applications, such as the fishing industry and fisheries management. However, most of these applications require accurate estimates of both physical and biogeochemical ocean conditions over a wide range of spatial and temporal scales. In this paper, we discuss recent developments that enable coupling new biogeochemical models and assimilation components with the existing GODAE systems, and we examine the potential of such systems in several areas of interest: phytoplankton biomass monitoring in the open ocean, ocean carbon cycle monitoring and assessment, marine ecosystem management at seasonal and longer time scales, and downscaling in coastal areas. A number of key requirements and research priorities are then identified for the future, GODAE systems will need to improve their representation of physical variables that are not yet considered essential, such as upper-ocean vertical fluxes that are critically important to biological activity. Further, the observing systems will need to be expanded in terms of in situ platforms (with intensified deployments of sensors for O-2 and chlorophyll, and inclusion of new sensors for nutrients, zooplankton, micronekton biomass, and others), satellite missions (e.g., hyperspectral instruments for ocean color, lidar systems for mixed-layer depths, and wide-swath altimeters for coastal sea level), and improved methods to assimilate these new measurements

    Enhancing cooperative responses by regional fisheries management organisations to climate-driven redistribution of tropical Pacific tuna stocks

    Get PDF
    Climate change is predicted to alter the distributions of tropical tuna stocks in the Pacific Ocean. Recent modelling projects significant future shifts in tuna biomass from west to east, and from national jurisdictions to high seas areas. As the distributions of these stocks change, the relevant regional fisheries management organisations (RFMOs)—the Western and Central Pacific Fisheries Commission (WCPFC) and the Inter-American Tropical Tuna Commission (IATTC)—will need to develop an expanded framework for cooperation and collaboration to fulfil their conservation and management responsibilities under international law. The key elements of a possible expanded framework for cooperation can be developed, and fundamental areas for collaboration identified, by applying and adapting principles established in the United Nations Convention on the Law of the Sea, the United Nations Fish Stocks Agreement, and the constituent instruments of the RFMOs themselves. Our analysis reveals a wide range of important issues requiring cooperation, and three clear priorities. First, a formal mechanism for cooperation is needed to enable effective and efficient decision-making and action by the two RFMOs on key issues. Second, further cooperation is required in scientific research and modelling to better understand the biology and distributions of Pacific tuna stocks and how they will respond to climate change, and to inform stock assessments and harvest strategies. Third, the RFMOs must cooperate to define appropriate limits on fishing for each stock in a way that ensures they are compatible across the two organisations, taking into account their different members and management regimes

    AN UPDATE OF RECENT DEVELOPMENTS AND APPLICATIONS OF THE SEAPODYM MODEL

    No full text
    An update of recent developments and applications of the SEAPODYM mode

    Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups

    Get PDF
    International audienceThe modeling of mid-trophic organisms of the pelagic ecosystem is a critical step in linking the coupled physical–biogeochemical models to population dynamics of large pelagic predators. Here, we provide an example of a modeling approach with definitions of several pelagic mid-trophic functional groups. This application includes six different groups characterized by their vertical behavior, i.e., occurrence of diel migration between epipelagic, mesopelagic and bathypelagic layers. Parameterization of the dynamics of these components is based on a temperature-linked time development relationship. Estimated parameters of this relationship are close to those predicted by a model based on a theoretical description of the allocation of metabolic energy at the cellular level, and that predicts a species metabolic rate in terms of its body mass and temperature. Then, a simple energy transfer from primary production is used, justified by the existence of constant slopes in log–log biomass size spectrum relationships. Recruitment, ageing, mortality and passive transport with horizontal currents, taking into account vertical behavior of organisms, are modeled by a system of advection–diffusion-reaction equations. Temperature and currents averaged in each vertical layer are provided independently by an Ocean General Circulation Model and used to drive the mid-trophic level (MTL) model. Simulation outputs are presented for the tropical Pacific Ocean to illustrate how different temperature and oceanic circulation conditions result in spatial and temporal lags between regions of high primary production and regions of aggregation of mid-trophic biomass. Predicted biomasses are compared against available data. Data requirements to evaluate outputs of these types of models are discussed, as well as the prospects that they offer both for ecosystem models of lower and upper trophic levels

    Standardized geo-referenced catch, fishing effort and length-frequency data for the Indian Ocean Bigeye Tuna, Thunnus obesus (1952-2014)

    No full text
    Geo-referenced catch and fishing effort data of the bigeye tuna fisheries in the Indian Ocean over 1952-2014 were analysed and standardized to facilitate population dynamics modelling studies. During this sixty-two years historical period of exploitation, many changes occurred both in the fishing techniques and the monitoring of activity. This study includes a series of processing steps used for standardization of spatial resolution, conversion and standardization of catch and effort units, raising of geo-referenced catch into nominal catch level, screening and correction of outliers, and detection of major catchability changes over long time series of fishing data, i.e., the Japanese longline fleet operating in the tropical Indian Ocean. A total of thirty fisheries were finally determined from longline, purse seine and other-gears data sets, from which 10 longline and four purse seine fisheries represented 96% of the whole historical catch. The geo-referenced records consists of catch, fishing effort and associated length frequency samples of all fisheries
    • 

    corecore