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Catch per unit of fishing effort (CPUE) is often used as an indicator of tuna abundance, where it is assumed that the two are proportional to each
other. Tuna catch is therefore typically simplified in tuna population dynamics models and depends linearly on their abundance. In this paper, we
use an individual-based model of tuna and their interactions with drifting Fish Aggregating Devices (dFADs) to identify which behavioural, ocean
flow, and fishing strategy scenarios lead to an emergent, non-linear dependency between catch, and both tuna and dFAD density at the ∼1◦
grid scale. We apply a series of catch response equations to evaluate their ability to model associated catch rate, using tuna and dFAD density
as terms. Our results indicate that, regardless of ocean flow, behavioural, or fisher strategy scenario, simulated catch is best modelled with a
non-linear dependence on both tuna and dFAD abundance. We discuss how estimators of CPUE at the population scale are potentially biased
when assuming a linear catch response.
Keywords: fish aggregating devices, tuna, catch response, hyperstability, trophic function, individual-based model.
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ntroduction

asin-scale models are often used to determine the distribu-
ion and population dynamics of exploited fish species. Below
heir explicit spatio-temporal scales, such models assume ho-
ogeneity in the density of animals and the processes that af-

ect them, with the aim of replicating dynamics only at those
cales important for management. In the case of commercially
mportant tropical tuna species, these models operate at coarse
esolutions, from large oceanic regions to 1◦ grids (Hampton
nd Fournier, 2001; Senina et al., 2020).

In reality, both fish and their catch events are heteroge-
eously distributed at the subgrid scale, due to heterogeneity
n environmental drivers, fish habitats, and interactions be-
ween tuna and their prey. While these local-scale effects on
he spatial distribution of tuna are not incorporated into these
asin-scale models, in the context of management, density-
ependency and other feedbacks may cause the relationship
etween catch and density of tuna at the grid scale to be non-
inear. This relationship may be represented through equa-
ions that incorporate factors such as environment, fishing
ear, or seasonality, allowing it to vary in response in linear
r non-linear ways. However, current basin-scale models used
n Western and Central Pacific Ocean (WCPO) tropical tuna
anagement assume that catch is proportional to tuna den-

ity within a region (Lehodey et al., 2008; Kleiber et al., 2018).
on-linearity in catch response, and how it may be incorpo-

ated in such management models, may thus have substan-
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ial implications for the management of this critical marine
esource (Ellis and Wang, 2006; Xiao, 2006; Liu and Heino,
014).
The catch response to a given fish abundance can be in-

erpreted as an equation describing the relationship between
atch and the density of that population, the effort exerted by
he fisher or fleet in some standard unit, and potentially other
ovariates that influence the catch. If the catch per unit effort
CPUE) of an exploited population declines more slowly than
he population size, it is referred to as hyperstability (Figure 1).
uch dynamics can mask a declining fish stock when the pop-
lation status is determined using catch data and assuming a

inear catch rate response.
Similar equations between a predator and its prey that de-

cribe consumption rate are traditionally referred to as trophic
unctions or functional responses in ecology, and provide the
asis of mathematical models that are used in many studies of
eneral predator-prey dynamics (Holling, 1959a; Arditi and
kçakaya, 1990; Tyutyunov and Titova, 2020). These trophic

unctions describe the average number of predations over time
nd per predator, given a predator and prey density, and have
een used for species as diverse as predatory plants, birds,
nd carnivorous worms (Englund and Harms, 2001; DeAn-
elis et al., 2021).

Trophic functions are often defined as analytical functions,
ased on theoretical assumptions such as predator searching
ehaviour, but they can also be derived from individual-based
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Figure 1. Illustration of hyperstability and hyperdepletion, as described by the power curve (PC; Equation 2) and Holling type 2 (H2; Equation 4)
functions. Hyperstability occurs when CPUE reduces slower compared to the population size (0 < β < 1 for the power curve). Hyperdepletion occurs
when CPUE reduces quicker compared to tuna population size (β > 1 for the power curve). H2 can describe hyperstability and no hyperdepletion since h
≥ 0. We used values of a and q such that CPUE=5 d−1 at N = 160.
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model (IBM) simulations (Tyutyunov et al., 2008). In the con-
text of tuna fisheries, a fisher can be thought of as a preda-
tor, tuna represent their prey, and a trophic function therefor
gives the average tuna catch per fisher. As is shown for general
predator-prey systems, heterogeneous distributions of preda-
tors and prey can result in trophic functional responses that
have non-linear dependence on the prey and even the predator
abundance (Arditi et al., 2001).

In the case of purse seine fisheries targeting tropical tuna,
the heterogeneity of tuna distributions and their catch events
is amplified by drifting Fish Aggregating Devices (dFADs)
(Dagorn et al., 2001; Fonteneau et al., 2013). These free-
drifting objects are deployed by fishers because they attract
and aggregate pelagic species like tuna, concentrating both
the biomass of target species and the fishing effort (Moreno
et al., 2007; Leroy et al., 2013). This fishing mode developed
in the 1990s, prior to which purse seiners targeting only ’free
school’ tuna or those that were aggregated around naturally
floating objects such as logs (Hampton and Bailey, 1993). The
following two decades saw large-scale increases in the num-
ber of human-made dFADs being deployed (Maufroy et al.,
2017), which now accounts for almost 50% of the catch in
the WCPO, around 0.8–1 million tonnes annually (Williams
and Ruaia, 2021). The drivers behind this attraction and ag-
gregation of tuna to floating objects are not clear, but have
been hypothesized to be driven by the social need to form large
schools (Fréon and Dagorn, 2000; Capello et al., 2022), and
that FADs may be indicative of productive areas for foraging
(Leroy et al., 2013). In the presence of local depletion through
fishing, such mechanisms may lead to both positive and neg-
ative feedbacks in the attractiveness of dFADs to tuna, and
hence, such non-linear functional responses could in particu-
lar be present and provide a test case for the linearity assump-
tion of the catch equation.
In this paper, we investigate the potential for non-linearity
f tuna catch responses at the sub-grid scale (i.e. ≤∼ 1◦) of
cean basin-scale tuna models. We investigate the catch re-
ponse of dFAD-associated tuna, which provides a test case
here a non-linear response is likely due to the heterogeneous
istribution of both tuna and their catch events. We test how
he catch response can be described analytically, by compar-
ng catch responses in IBM simulations with analytical trophic
unctions under varying configurations of ocean flow, tuna be-
aviour, and fishing strategy, and across a range of tuna and
FAD density scenarios. We describe how these subgrid-scale
actors influence the catch response, and the ability of linear
nd non-linear functional responses to appropriately describe
he emergent catch rate at the 1◦ grid-scale.

ethods

atch per unit effort and local hyperstability

atch Per Unit Effort (CPUE), also called catch rate, is often
sed as a proxy of the tuna population size, by assuming a

inear functional response:

C
E

= qN, (1)

here C is the catch and E is fishing effort, q is the so-called
atchability, which is a scalar representing the susceptibility
f the fish stock to fishing. Although catchability is assumed
o be a constant in this equation, in reality it may depend on
he population size N (Rose and Kulka, 1999; Erisman et al.,
011; Ward et al., 2013; Hamilton et al., 2016). Alternative
on-linear models have been proposed to describe the CPUE
esponse (Harley et al., 2001; Maunder et al., 2006):

C
E

= qNβ, (2)
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here coefficient q is independent of N, thus assuming that
he true catchability is given by q

′ = qNβ − 1. If β < 1, CPUE
eclines slower than tuna abundance, and the population is
yperstable. If β > 1, CPUE declines faster than the popula-
ion size, which is referred to as hyperdepletion (Figure 1).

Here, we study the relationship between the catch rate and
una density as a result of the fished aggregations that emerge
rom local-scale interactions between tuna, the prey that they
orage upon, and dFADs. Focusing on ∼1◦ scales, we use
he terms hyperstability and hyperdepletion to describe the
on-linear catch rate response at these local scales only. Non-
inearity at these scales does not necessarily indicate the hy-
erstability or hyperdepletion of the tuna population, which
ypically occupies much larger areas. Identifying this would
equire applying such an IBM at larger spatiotemporal scales,
onsidering the full population, which is not the aim of our
tudy.

BM and configurations

e use the individual-based tuna model (IBM) from Noote-
oom et al. (2023), from which the general dynamics com-
are well with several types of observations (see Supporting
nformation Figure S1 for a summary of the processes in this
BM). In this model, both dFADs and tuna are modelled as
articles, and the prey of tuna is a Eulerian field (from now
n referred to as the forage field). Each tuna particle does
ot represent an individual tuna organism, but a school of
una that interacts with both dFAD particles and the forage
eld (Becher et al., 2014; Meyer et al., 2017). While dFADs
re only passively advected by ocean flow, tuna also swim to-
ards dFADs if those are close enough (<10km), making a
reference for dFADs with already associated tuna. Another
river of tuna movement is forage density. Tuna movement
n the model is driven more towards areas of high prey abun-
ance, with increasing stomach emptiness. Swimming towards
reas with high prey abundance, they deplete the forage field
nd fill their stomach (see Nooteboom et al. 2023 for more
etails on stomach fullness modelling). We switched off the
una-tuna interactions from Nooteboom et al. (2023), which
enerally did not have a substantial effect on the dynamics, to
eep the number of required simulations in this paper com-
utationally feasible. The model broadly replicates a number
f observations from studies on tuna around drifting FADs,
uch as residence times of fish at FADs (Scutt Phillips et al.,
017), differences in relative stomach fullness between asso-
iated and unassociated tuna (Machful et al., 2021), and the
ggregation of fish at FADs prior to targeting by purse sein-
rs (Escalle et al., 2021b). A full description of these feed-
acks and their emergent effects is given in Nooteboom et al.
2023).

Specific behavioural parameters in the model (κF and κP;
ooteboom et al., 2023) determine how strongly tuna are at-

racted towards dFADs and their prey. Overall, we distinguish
etween (i) dFAD dominant (κF = 1.5, κP = 0.5), (ii) forage
ominant (κF = 0.5, κP = 1.5) and (iii) equal dFAD, forage (κF

κP = 1) behaviours, which determine the relative strength
f swimming direction determined more by dFAD attraction,
unger-induced foraging, or both equally. These cases could
pply to different tuna species or size classes, as smaller tuna
pecies (e.g. skipjack tuna) generally show stronger dFAD as-
ociative behaviour compared to larger tuna species such as
igeye and yellowfin (Fonteneau et al., 2013).
We apply the IBM in idealized scenarios. Similarly to
ooteboom et al. (2023), we release N ∈ [5, 160] tuna parti-

les and F ∈ [2, 40] dFAD particles at random locations in a
ectangular domain [0, 140 km] × [0, 70 km], which is similar
o a 1◦ × 1◦ scale. Note that we exclude lower numbers of tuna
articles in Lagrangian simulations as it does not allow study-

ng the catch rate functional response, and one dFAD particle
oes not allow random selection of dFADs by fisherman. Also,
iven the small domain size, it can be reasonably assumed that
he habitat is suitable for the tuna in terms of abiotic environ-
ental factors. We ran simulations for 100 days and skip the
rst 15 days before applying any further analysis of the catch
ates (see Supporting Information Figure S2).

Three idealized ocean flow dynamics are modelled in sepa-
ate settings, representing different oceanographic conditions.
n the first, flow is assumed to be zero, and so all parti-
les undertake a random walk, representing non-directional,
iffusion-type movement (RWalk). The other two scenarios
epresent two idealized ocean flows, either Bickley Jet (BJet)
Bickley, 1937) or the Double Gyre (here denoted as the Dou-
le Eddy; DEddy) (Shadden et al., 2005). The BJet flow cre-
tes directional movement with ocean currents. The DEddy
ow represents two meso-scale eddies, which accumulate pas-
ive particles in the middle through converging currents. These
ow dynamics drive particle movement alongside the active,
una behaviours described above. Similar to Nooteboom et al.
2023), we use zonally periodic boundary conditions for the
articles in the BJet flow and reflective boundaries in all other
ases, which is consistent with the flow in these configurations
nd assures that the particle densities (N and F) are conserved
hroughout the domain. See Nooteboom et al. (2023) for an
verview of these configurations.
The interactive forage fields imply that once the forage den-

ity is initialized, it gets depleted by tuna and further redis-
ributed, leading to dynamic and patchy fields. To be consis-
ent with the flow, the redistribution of the forage field is sim-
lated differently in each configuration. In case of BJet con-
guration, forage density is assumed to be lower in the North
nd South of the domain and higher in the middle of the jet;
or the DEddy, it is higher in one of the two eddies compared
o other parts of the domain; see Nooteboom et al. (2023).

A fishing event occurs every day at a single dFAD, where
very dFAD-associated tuna particle is caught with a proba-
ility p = 0.5, which matches with observed biomass reduc-
ion near dFADs after a fishing event (Escalle et al., 2021b).
ence, fishing effort is kept constant across all simulations in

his paper, which simplifies our consideration of CPUE. Tuna
re released at a random location after their catch, assuming
hat other tuna enter the domain, so tuna density is kept con-
tant during a simulation with a given number of particles.

Two different fishing strategies are tested in this paper,
aken from Nooteboom et al. (2023). In the first fishing strat-
gy (FSrandom), a fishing event occurs at a random dFAD, rep-
esenting a situation in which fishers have only information
n the location of dFADs and not the amount of associated
iomass present. In the second fishing strategy (FSinfo), fish-
rs are assumed to have information on the amount of tuna
ssociated with a dFAD, and a fishing event is likely to oc-
ur at the dFAD that has most associated tuna particles (see
shing strategy FS3 in Nooteboom et al. (2023) for more de-
ails). Although FSinfo may appear more realistic compared to
Srandom, both are idealizations. FSrandom could be closer
o reality in some cases. When there are many other float-
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ing objects, and dFADs are not equipped with echosounders,
this information is hidden from the fisher, or the biomass
estimate from the echosounder is unreliable (Baidai et al.,
2020).

Simulations may be sensitive to the initialisation of the
dFAD and tuna particles in the domain. Therefore, we apply
21 Monte Carlo simulations with different initial conditions,
such that the average dynamics among the Monte Carlo sim-
ulations was insensitive to the addition of more simulations
and allows investigating the spread among these simulations.
Each simulation is initialized with different number of tuna
particles from N = 5, ···, 160 in steps of 5, where each tuna
particle represents a group of tuna individuals, and dFAD den-
sities F = 2, 3, 4, 5, 7, ···, 40 in steps of 3. This corresponds
to ∼0.002 to 0.04 FADs per 10km2, which lies within typi-
cal range observed in equatorial waters fished by purse sein-
ers in the WCPO (Escalle et al., 2021a). As the tuna particles
do not represent individual tuna, but rather ‘super-individual’
minimal schools of tuna (Nooteboom et al., 2023), the cal-
culation of tuna density represented in our simulations is less
straightforward. Scutt Phillips et al. (2018) calculated the ap-
proximate minimal number of skipjack tuna of size prior to
entry into the purse seine fishery, by converting weight and
length of catch estimates from fishery observer records into
numbers of fish, and using the smallest 5th percentile of school
sizes indicated around 1000 fish. Taking this as an appropri-
ate super-individual size, our examined tuna densities therefor
lie between 5000 and 160 000 fish per square degree. These
values are within typical densities predicted for floating ob-
ject associated size-classes of both skipjack and bigeye tuna
(Senina et al., 2018, 2020). For each combination of tuna and
dFAD density, the particle movement is simulated in RWalk,
BJet and DEddy configurations. The FSrandom fishing strat-
egy is applied in the equal forage and dFAD tuna behaviour
configuration, to reduce computational cost, while FSinfo fish-
ing strategy was tested with all three movement behaviours.
Hence, we ran 3 × 4 × 21 × 16 × 32 = 129, 024 simulations
in total.

Trophic functions

In the framework of the classical predation theory (Lotka,
1925; Holling, 1959a; Arditi and Akçakaya, 1990; Tyutyunov
and Titova, 2021), the fisher is a predator and tuna are prey.
However, since fishers use dFADs as a tool to catch tuna, the
interactions occur between tuna and dFADs, and the fishing
event occurs at dFADs in our conceptual model. We may thus
consider the dFAD as a proxy for the predator. The impor-
tant difference between dFADs and the true predator is that
not all tuna aggregations around dFADs lead to predation
events, but the number of dFADs in the domain may impact
the catch rates at “predatory” dFADs. Thus the relationship
between time-averaged catch-per-unit-of-effort and tuna den-
sity in our simulations can be considered the functional re-
sponse and modelled by the trophic function g, describing the
average consumption of one predator per unit of time, or av-
erage catch per dFAD per day.

The simplest Lotka–Volterra trophic function (Lotka, 1925;
Volterra, 1926) assumes a linear relationship of g and the prey
density, modelling opportunistic predation and ignoring inter-
actions between predators and prey:

g = g(N) = aN, (3)
here a > 0 is the predator searching efficiency and N the
rey density. This LV trophic function is equivalent to a linear
PUE response (Equation 1) and likely not suitable as it does
ot allow us to account for a dFAD density effect or the effect
f tuna-dFAD interactions.
Holling (1959a, b) assumed that predators need time h to

onsume a prey once it is found, and described a functional
esponse by the equation

g = g(N) = aN
1 + ahN

. (4)

his is called the Holling type 2 functional response (H2).
ith both a, h > 0, H2 describes a linear increase of con-

umption at low prey density and a decrease in efficiency of
redation for higher prey densities. In contrast to the LV func-
ion, H2 allows including the effects of predator-prey interfer-
nce, existing in our modelled system via local depletion of
una forage when tuna density becomes too high around a
FAD.
However, these two classical functions do not account for

redator (i.e., the dFAD) interference. Beddington (1975) and
eAngelis et al. (1975) assumed that mutual predator interfer-

nce reduces predation efficiency and proposed the following
unctional response (BDA) including the term with the preda-
or density to H2:

g = g(N, F) = aN
1 + ahN + wF

, (5)

here w > 0 measures the effect of the predator interference
n the average consumption of predators.
Other forms of functional responses were proposed to de-

cribe specific predator-prey dynamics (Tyutyunov and Titova,
020), as was shown by comparisons with empirical data for,
.g., mammals and sawflies (Holling, 1959a), microplankton
Harrison, 1995) or birds and fish in a wetland landscape
DeAngelis et al., 2021). However, no general functional re-
ponse exists for all datasets, so to capture the specific dynam-
cs emerging from the tuna-dFAD interactions in our model,
e propose new functional forms adapted to our modelled

ystem. By fitting these as well as the classical trophic func-
ions Equations 3–5 to our IBM simulation data, we can es-
ablish the most suited functional forms describing the catch
ates dependent on tuna-dFAD interactions within considered
ow, movement and fishing strategy settings.
First, the catch rate functional response should include the

ositive effect of dFAD interference, i.e., account for observed
henomenon when the presence of other dFADs in the do-
ain may stimulate the associative behaviour of tunas (Robert

t al., 2013) and hence increase the catch rates. Such an ef-
ect, however, is expected only at low dFAD densities F. When
FAD densities increase further, they are more likely to ‘steal’
una from each other than when they are located closely to-
ether (i.e. their distance <10 km). Under information-poor
shing strategies, e.g. where random dFADs are targeted (FS-
andom), this mechanism leads to a reduction of catch rates
s the probability of targeting a dFAD with many associ-
ted tuna reduces. Under an efficient fishing strategy, where
he dFADs with most associated tuna are targeted (FSinfo),
his mechanism may still allow an increase of the catch rates
ith increased dFAD density, F, although this increase is ex-
ected to slowdown with F. Hence, we propose modifying
he BDA function by including an additional term with the
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FAD density:

g1 = g(N, F) = aN
1 + ahN + w1F + w2F−m

. (6)

his function has five parameters with m > 0, w1 > 0 and
2 > 0 and allows accounting for all above-described mech-

nisms: the opportunistic consumption, the tuna interference,
nd the dFAD interference increasing or decreasing catch
ates. Let us consider particular cases of this function, includ-
ng only one or several of these mechanisms. Selection of one
f these simpler functions will allow emphasizing a particu-

ar mechanism that governs the tuna-dFAD interactions and
onsequently the catch rates.

First, if the catch rate response does not change with the
ensity of tuna, then Equation 6 becomes simply

g2 = g(N, F) = aN
1 + w1F + w2F−m

. (7)

Aiming at capturing the hyperdepletion in the catch rate
esponse, we also introduce to Equation 7 the power function
ype response with respect to the tuna density N:

g3 = g(N, F) = aNβ

1 + w1F + w2F−m
, (8)

ith parameter β as in Equation 2 (Figure 1). Compared to
quation 2, this function accounts for the dFAD interference

mpacting the tuna catch rates. It can be simplified further for
he specific case when w1 = 0, i.e., when increasing dFAD den-
ity can only improve the catch rates:

g4 = g(N, F) = aNβ

1 + wF−m
, (9)

ith constant w > 0, scaling the positive dFAD effect on tuna
atch rates. Although such a functional response is expected
nly in case of selective (FSinfo) fishing strategy, this strategy is
ne of the most realistic corresponding to the modern dFADs
quipped with echo-sounders and providing fishers with infor-
ation about the dFAD associated potential catch. Another

daptation of the BDA function is to consider only positive
FAD impact on catch rates and the effect of tuna-dFAD in-
eractions on the catch rates. Such a functional response is
ormalized by the following function:

g5 = g(N, F) = aN
1 + ahN + wF−m

. (10)

Finally, the tuna-dFAD interactions may consist not only in
decrease of the fisher’s efficiency due to local forage deple-

ion and consequent dFAD abandonment by tuna, but also
hen the tuna cannot associate with a dFAD due to other
echanisms, i.e., dominant flow dynamics, limiting tuna-
FAD encounter at small F. Such a functional response can be
ormalized using the term N/F instead of N in Equation 10:

g6 = g(N, F) = aN

1 + ah N
F + wF−m

. (11)

tatistical analyses

e compared the output of the IBM simulations with the
nalytical trophic functions using the bootstrapping method
f Tyutyunov et al. (2008). Since the IBM simulations vary
mong Monte Carlo simulations, the bootstrapping method
an be used to obtain an uncertainty interval of parameter
alues when the trophic functions are fitted to the IBM simu-
ation results. In this approach, we apply 2000 bootstrapping
terations where a random time-mean catch rate is drawn from
he 21 Monte Carlo simulations, for every value of N = 5, ···,
60 and F = 2, 3, 4, 5, 7, ···, 40. The result is a two-dimensional
atrix Y of size m = 17 × 32 = 544 with Y(F, N) the time-
ean catch rate (number of individuals per fished day) for F

nd N. The trophic function is fitted to these data using non-
inear least squares.

In order to determine how well the fitted analytical trophic
unctions compare with the IBM simulation results, we used
wo measures for the goodness of fit. First, we used the nor-
alized root-mean-squared error (NRMSE), which directly

ompares the average differences between the IBM simulation
esult and its fitted trophic function:

NRMSE (Y, ĝ) = 1
max (Y ) − min (Y )

(12)

×
√∑

N

∑
F (yN,F − ĝ(N, F))2

m
,

(12)

here Y,N, F is the catch rate from the IBM simulation for a
iven N and F value, ĝ is the trophic function fitted to matrix
. We use the normalized version here, because it allows us

o make comparisons between configurations. Second, we use
kaike’s information criterion (AIC) (Akaike, 1974), which
oes not only compare the direct difference between the IBM
imulations and the trophic functions, but also penalizes the
t for the number of included parameters in trophic functions,
nd hence the complexity of the trophic function. We will
ompare the IBM simulation results to all trophic functions
escribed in Table 1, to test which trophic function agrees
ost with the catch rate dynamics in the IBM in terms of
RMSE and AIC under different configurations.

esults

ere, we examine the catch rate response from our sim-
lations across values of tuna particle abundance N and
umber of dFADs F. We then describe the best fitting func-
ional responses listed in Table 1, using AIC model selection
riteria.

Figure 2 shows the median catch rate across N and F, and all
una behavioural configurations, flow and fishing scenarios.
s expected, catch rate increased with increasing tuna abun-
ance N for all scenarios, but this was not always the case
or increasing F. Fishing strategy had the greatest influence
n catch rate, with FSinfo resulting in higher catch rates. At
he same time, the tuna behaviour influences the non-linearity
ith respect to tuna abundance N. Thus, when tuna behaviour
as forage-dominant under the RWalk scenario (no flow, only

ctive movements to associate with dFADs or to forage), sim-
lations showed the most non-linear response of catch rate
ith respect to N. This response can be explained by increased

ocal depletion of the forage field around the dFAD, so tunas
ave to leave it to search for food, thus reducing catch rate.
Non-linearity in catch rate over F was present in all simu-

ations, with catch rate increasing sharply from 2 to 7 dFADs.
owever, catch rate also fell with higher numbers of dFADs

nder some scenarios, most notably under the RWalk and BJet
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Table 1. Overview of the trophic functions that are compared to the catch rate responses from the IBM simulations in this paper.

Name Function Reference

Lotka–Volterra (LV) g(N) = aN Lotka (1925); Volterra (1926)
Holling type 2 (H2) g(N) = aN

1+ahN Holling (1959a, b)
Beddington–DeAngelis (BDA) g(N, F) = aN

1+ahN+wF Beddington (1975); DeAngelis et al. (1975)
g1 g(N, F) = aN

1+ahN+w1F+w2F−m This paper (Equation 6)
g2 g(N, F) = aN

1+w1F+w2F−m This paper (Equation 7)
g3 g(N, F) = aNβ

1+w1F+w2F−m This paper (Equation 8)
g4 g(N, F) = aNβ

1+wF−m This paper (Equation 9)
g5 g(N, F) = aN

1+ahN+wF−m This paper (Equation 10)
g6 g(N, F) = aN

1+ah N
F +wF−m This paper (Equation 11)

Figure 2. Median catch rate profiles, across ocean flow scenarios (rows) and fishing strategy-tuna behaviour configurations (columns). Median catch rate
is plotted by number of dFAD particles F, across tuna particles N (top rows), and by number of tuna particles N, across number of dFADs F (bottom
rows). The highest and lowest values of F (top) and N (bottom) are coloured in red and black, respectively.
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flow scenarios and FSrandom fishing strategy, i.e., when ran-
dom dFADs were chosen for fishing.

To explore which scenarios led to hyperstability or hyperde-
pletion, we quantify the non-linearity in catch rate with tuna
density N by estimating the β parameter from equation 2 for
each value of F. Values of β > 1 indicate a hyperdepletion-
like, and β < 1 a hyperstable-like response. Figure 3 shows
the estimated values of β across dFAD density F, for the
three ocean flow configurations, for three tuna behavioural
scenarios, and for the fishing strategy used in the respective
scenario.
In general, non-linearity in catch rates with respect to tuna
ensity N was weak under all scenarios. A hyperstable-like
atch response was apparent only under forage dominant tuna
ehaviour, regardless of the ocean flow configuration of the
imulations. First, in the IBM simulations with forage-driven
ndividual behaviour, catch at dFADs is lower compared to
cenarios with a stronger dFAD association behaviour of tu-
as (Nooteboom et al., 2023). Second, with increasing tuna
ensity N, the local forage field depletion near dFADs neg-
tively impacts the size of dFAD aggregations. Such a non-
inear catch rate response was stronger under the RWalk con-
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Figure 3. Non-linear catch rate response in the IBM simulations as expressed by the β value of the power curve for different tuna behaviours in the (a)
RWalk, (b) BJet and (c) DEddy flow configurations. The power curve is fitted to the bootstrapped catch rates for every value of F. A value of β > 1
indicates a hyperdepletion-like response, a value of β < 1 indicates a hyperstable-like response. β = 1 indicates a linear catch response (horizontal
dashed line). The shaded areas indicate the spread among bootstrapping iterations.
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guration compared to other configurations (Figure 3). This
s due to the prevalence of individual behaviour and conse-
uent active movements in search for food over the passive
ransport by a flow.

Conversely, the DEddy flow configuration consistently ex-
ibited the least non-linear catch rate, regardless of the tuna
ehaviour, fishing strategy, or dFAD density we examined.
his is due to the converging eddy flows concentrating all
FADs, tuna particles, and fishing pressure into a very small
rea of the domain. At low dFAD densities, the stochastic na-
ure of the Monte Carlo simulations results in increased vari-
bility in catch rate response, through the increased chance
f many dFAD particles drifting into the centre of only one
f the two eddies. This can focus fishing events in either the
rey-rich or prey-poor eddies, depending on initial conditions,
esulting in either a hyperstable or hyperdepletive catch rate
or individual simulations.

Non-linearity in catch rate response was always weaker
or fishing strategy FSrandom compared to FSinfo (Figure 3).
ince an uninformed fisher does not necessarily find the largest
ggregations, it interferes more rarely with the effects of tuna-
AD interactions, which lead to a non-linear response with
espect to tuna density.

Finally, non-linearity also varied with dFAD density F, most
otably under the RWalk flow configuration (Figure 3a). Un-
er this configuration, the domain tends to have a more
atchy forage field over time and a more hyperstable-like
atch rate when compared to equivalent scenarios in the other
cean flow simulations. However, as F increases, fishing events
ore evenly sample the domain, reducing the degree of non-

inearity in catch rate.
To establish the relationship between the time-averaged

atch rate and density of tuna associating with dFADs, we
tted all analytical trophic functions listed in Table 1 to the
imulated catch rates. We used AIC and NRMSE scores to
elect the trophic function that best describes the functional
esponse emergent from tuna-FAD interactions within differ-
nt flows and fishing strategies (Figure 4 and Supplementary
nformation Figure S3).

In general, the inclusion of dFAD density with both pos-
tive and negative, effects of dFAD interference on average
atch rates greatly improves the fit to the simulated data com-
ared to the classical trophic functions (LV, H, and BDA). In
ddition, under the FSInfo scenario, a positive effect of the
FADs interference on catch rates is predominant, as can be
een from AIC values for g4 and g5 functions (which account
or a positive effect only) being close to those of g1 or g3. On
he contrary, the negative effect of increasing dFAD density on
una catch rates is more important for the uninformed fishing
trategy FSRandom in the RWalk or BJet flow scenarios. Ex-
lusion of the w1F term makes functions g4 to g6 unsuitable
o describe the catch rate response to tuna-FAD interactions
s LV or H functions, which do not include terms for dFAD
ensity. The exception is the DEddy flow configuration, which
esults in qualitatively different relationships with N and F
ensities, whatever the fishing scenario (see Figure 2). Here,
he negative effect of dFAD density is weak and positive effect
f dFAD density is predominant in all cases, as functions g1

o g3 show similar scores to g4 and g5.
Let us now consider each flow separately and overview

he functional responses depending on tuna movement be-
aviour and fishing strategy. In the RWalk flow scenario, catch
ates from uninformed fishing with equal forage and dFAD
ehaviour and catch rates from informed fishing with dFAD
ominant behaviour or tunas can be well described by func-
ions g1 to g3. First, such similarity indicates that the contribu-
ion of tuna interference is minimal to these catch rates—the
unction g2 is linear with respect to N. Second, in both cases,
ncreasing the number of dFADs negatively impacts the catch
ates (Figure 2), meaning that dFADs may ‘steal’ tuna from
ach other, although the negative effect is less pronounced in
n informed fishing strategy where fishers target the dFADs
ith the most associated tuna. In these two configurations,

unction g3 is only slightly better than others having best AIC
nd NRMSE scores.

Equal forage and dFAD behaviour of tunas with the RWalk
ow and informed fishing result in catch rates that are well
escribed by functions g3 and g4, with the latter being the par-
icular case of the former function, and having the best scores.
he forage-dominant behaviour in this configuration showed
ifferent relationships between catch rates and tuna and dFAD
ensities. Although functions g3 and g4 have good scores, the
on-linear response to N is better described by a Holling type
unctional response, i.e. functions g1 and g5, among which g5
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Figure 4. Average AIC between the median of the Monte Carlo IBM simulations and fitted analytical trophic functions (from Table 1), for every tested
configuration (i.e. flow, fishing strategy and tuna behaviour). The lowest AIC is shown from 500 different initialisations before fitting. FSrandom refers to
the fishing strategy where fishing events occur at a random dFAD and FSinfo where fishing events are likely to occur at the dFAD with most associated
tuna. Lighter colors indicate lower AIC values. Notice that the AIC cannot be used to compare between columns, because AIC depends on the absolute
catch values of the IBM simulations and hence such a comparison will not only represent a goodness of fit. See Supporting Information Figure S3 for the
same figure but with the NRMSE. Dark boxes indicate a higher AIC and these colors are normalized for every column.
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is selected due to its smaller number of parameters. The neg-
ative effect of dFAD interference is excluded from this func-
tional response. As explained above, the non-linear response
to N in the forage dominant behaviour, when there is no exter-
nal flow, is attributed to faster local depletion of forage fields
by increased densities of tunas, which are subsequently leaving
dFADs in search for food.

In the BJet flow configuration, the uninformed fishing and
equal forage and dFAD behaviour of tuna are best described
by function g2 with the LV type response to tuna density and
both effects of dFAD density, indicating a negligible contribu-
tion of tuna interference to the average catch rates. However,
as g3 has the best fit to all other cases, and g2 is the particular
case of g3, the latter can be selected as the most general trophic
function describing the functional responses for all behaviours
and fishing strategies in the BJet flow configuration. A minor
non-linearity with respect to N is therefore best captured by
the power function, with coefficient β ranging between 0.83
(forage-dominant behaviour) and 0.92 (equal forage and FAD
behaviour).

Qualitative differences between the DEddy flow configu-
ration and two other flow scenarios (Figure 2) indicate that
the average catch rates in this configuration do not respond
the same way to the dFAD density. Obviously, the flow domi-
nates over tuna movements as behavioural response to exter-
nal stimuli, as seen from very similar catch rate functional re-
sponses in all scenarios regardless of tuna behaviour or fishing
strategy. Besides, at low dFAD density and high tuna density,
the catch rates can be low, as tuna and dFADs can be advected
to different eddies. The positive effect of dFADs on tuna ag-
gregations and consequently catch rates is strong as well, but
it is likely attributed to the flow and not to tuna behaviours.
It is not surprising that function g6, allowing to account for
reduced catch rates at low F and having only a positive ef-
fect of F density, fits the catch rates best in all scenarios. The
best fit to the trophic function that was selected by the lowest
AIC and NRMSE scores for each configuration, is shown in
Figure 5.
 a
iscussion and outlook

n this study, we have presented IBM simulations of tuna and
heir interaction with drifting FADs across several idealized
onfigurations of flow, forage fields, and fishing scenarios, at
he 1◦ and ∼100-day scale. We have modelled the changes in
atch rate across varying tuna and dFAD densities and exam-
ned how this catch response depends on different model con-
gurations. The IBM contains several interacting components
hat can induce feedbacks that impact the simulated catch and
how that a hyperstable-like catch rate (i.e. a non-linear in-
rease with respect to tuna density) can occur at the 1◦ scale
nder certain configurations.
However, our results indicate that under the majority of

he scenarios tested in this study, the degree of non-linearity
n catch rate with respect to tuna density is very low. When
resent, it appears that it is the feedback mechanisms and het-
rogeneity between effort and spatial distribution of tuna in
ur model that cause the non-linear catch response that can be
escribed as hyper stable. For example, in the RWalk scenario,
e consider a system that is near-homogeneous in the absence
f dFADs, with no flow, and with a homogeneous tuna-forage
eld. The introduction of dFADs into this domain leads to spa-
ial heterogeneity and a non-linear catch rate response with re-
pect to tuna density, which arise from tuna-FAD interference
ith a strength that depends on the behavioural configuration
f both the tuna and fisher. This is due, under the assumptions
f our simulation model, to the spatial concentration of tuna
t the location of all fishing efforts, which is different from
he otherwise homogeneous distribution of the population
hroughout the domain. In contrast, under the DEddy flow
onfiguration, in which the flow concentrates both dFADs and
una in the centre of eddies, we see a weaker non-linear catch
esponse with respect to tuna density. While this scenario re-
ults in much higher catches, there is less disparity between
he spatial concentration of fishing effort, and how the popu-
ation is distributed throughout the domain. Compared to the
Walk scenario, the catch samples the true population more
ccurately in the DEddy flow.
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Figure 5. Median catch per day fishing (color scale) simulated by three conceptual models of the ocean flow (by row)–—zero flow (RWalk, top row), with
Bickley Jet flow (BJet, middle row) and with Double Gyre flow (DEddy, bottom row), and three conceptual models of tuna movement behaviours
combined with fishing strategy (by column)—equal forage and dFAD preferences with random selection of dFAD for fishing (FSRandom, first column),
equal forage and dFAD with informed fishing (FSinfo, second column) and either forage dominant or dFAD dominant movement with informed fishing
(FSinfo, third and fourth columns respectively). White isolines show the catch rate values computed by the trophic function (indicated for each panel)
that fits best the simulated dataset. A lower NRMSE indicates a better fit between the simulations and the analytical function.
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More interestingly, however, we have also shown that the
atch rate response of dFAD-associated tuna depends non-
inearly on dFAD density. In all configurations, our simula-
ions show that there exists a positive relationship between
FAD density and catch rates. Within a limited range of dFAD
ensity, its increase leads to higher catch rates, whatever the
shing strategy. With further increase in dFAD density in the
Walk and BJet flows, the positive effect at low dFAD den-
ities switches to negative in all scenarios of behaviours and
shing strategies, although in the RWalk simulations with in-
ormed fishing strategies, this effect is very weak through the
odelled range of dFAD densities (Figure 2). These relation-

hips demonstrate a quantitative link between the fishing ef-
ort in a region, which is fixed in all our scenarios, and the
umber of dFADs available to fishers in that region.
Our results imply the possibility that tuna catch rate re-

ponse may become non-linear at the 1◦ scale under some cir-
umstances, in contrast to the linear catch rate response that
s often used by basin-scale tuna models. Taking inspiration
rom classical trophic ecology, and testing the effectiveness of
suite of trophic functional responses, we have shown that

he catch rate response of a single dFAD fisher is best rep-
esented by a non-linear function, with terms for both tuna
nd dFAD density. While different configurations can result
n highly varied catch rate responses, our model selection ex-
rcise has revealed the four key dynamics emerging from the
imulation, which are discussed below.
First, tuna interference may negatively affect catch rates,
hus decreasing efficiency of fishers at higher tuna densities,
nd this effect is stronger when behaviour is forage-dominant.
he mechanism behind this dynamics is local prey depletion
ear dFADs and consequent dFAD abandoning in search for
ood. Due to very weak observed non-linearity, such dynamics
an be successfully described by a power function, although
Holling-type functional response is more suitable when the

predator–prey’ interactions are not influenced by a flow and
he non-linearity is more pronounced. In our simulations, such
dynamic is realized in only in one configuration (RWalk with

orage-dominant behaviour), demonstrating the degree that
orage-dominant behaviour of tuna can alter the effectiveness
f dFADs.
Second, at low dFAD densities (less than seven in our model

omain), their increase always influences catch rate through a
ositive effect of increased attraction to dFADs, where fishing
vents then take place. Such an effect is also observed in natu-
al systems and known as switching to associative behaviour
hen tuna swim to area with many dFADs (Robert et al.,
013). This requires an introduction of a dFAD density depen-
ent term wF−m. Leading to an ‘optimal’ number of dFADs
hat maximizes catch rates, this dynamic appears in all config-
rations of the ocean flow scenarios, and shows fastest catch
ate increase with number of dFADs in uninformed fishing
trategy and highest catch rates in the flow-dominant DEddy
imulations.
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Third, when dFADs density is high enough that they get
close to each other, their interference leads to the decrease
in catch rates with increasing dFAD density. This dynamic
is characterized by ‘fragmentation’ of aggregations with in-
creased dFAD density, and it is well described by a BDA-type
predator dependent term, with dFADs representing the proxy
in our modelled system for a predator. As noted above, this
dynamic was observed in configurations with RWalk and BJet
flows, although this effect was very weak in RWalk simula-
tions with the informed, FSInfo fishing strategy. Thus, trophic
functions not accounting for this effect and there having one
less parameter get an improved AIC score for equal and
forage-dominant behaviours in this flow configuration.

Finally, the fourth dynamic is observed only in the flow
dominant simulations (BEddy), where tuna and dFADs are
transported by the flow to the centre of eddies, which re-
sults in decreased fisher’s efficiency at low dFAD densities.
Such mechanism is described by a ratio-dependent term in
function g6.

At present, linear relationships between catch and tuna
abundance are assumed in the population dynamics models
used to provide scientific advice in the WCPO (Hampton and
Fournier, 2001; Senina et al., 2020). Although we find a no-
table, non-linear catch response with respect to tuna density at
the 1◦ scale only under certain circumstances in this paper, this
does not necessarily imply the presence or not of hyperstabil-
ity or hyperdepletion at the population scale. For example, it
has been shown that even when local consumption of prey by
predators (e.g. tuna caught by fishers) follows a linear function
with respect to prey density, at larger spatial scales highly non-
linear trophic relationship can emerge (Arditi et al., 2001). A
non-linear catch response has been identified at the population
level in many fisheries in which effort is spatially and tempo-
rally concentrated (Rose and Kulka, 1999; Hamilton et al.,
2016; Feiner et al., 2020), and in some cases has been impli-
cated in the collapse of a population of fish (Erisman et al.,
2011). In particular for WCPO skipjack tuna, the stable, high
catches of this species have caused speculation about potential
hyperstability of the population (Vidal et al., 2020). Our ideal-
ized models presented here demonstrate that when fishing ef-
fort is concentrated at dFADs with the largest aggregations of
tuna, particularly when other processes such as flow or forage
field structure do not dominate tuna movement, such a non-
linear catch response can emerge at the 1◦ scale. This has clear
parallels to the apparent increase in efficacy of purse seine ves-
sels for finding tuna aggregations through echosounder buoys
and other technology, although more complex than our ideal-
ized fishing strategies.

In our model, a catch event either occurs at a random dFAD
(FSrandom) or more likely at the dFAD with most associated
tuna (FSinfo). In reality, fishing strategies may be more so-
phisticated, with only some proportion of drifting dFADs in a
particular region available to a particular fisher operating in
that area. However, over the past decade, the instrumenting of
dFADs with buoys that provide information on accumulated
biomass has grown considerably, likely influencing the catch
of fleets using them (Lopez et al., 2014; Maufroy et al.,
2017; Kaplan et al., 2021). Fishing effort, and the resulting
feedback on catch response that our model suggest, are also
likely to change over time as communication of areas in
which tuna density is high occurs between vessels. As more
informed targeting of FAD-aggregated fish has increased, our
results show the relationship between catch and abundance
ay have also changed over time, and in ways not normally
aptured by increases in catchability alone (Kaplan et al.,
021). Given the value of WCPO skipjack tuna as the largest
una fishery in the world, with ∼2M tonnes landed annually
Williams and Ruaia, 2021), identifying and appropriately
odelling the processes that may cause bias in estimations
f tuna distributions and their abundance is necessary. Using
nformation on dFAD density in the analysis of CPUE data
or purse seine tuna fisheries has been discussed in several
egional fisheries management organisations (Moniz and Her-
era, 2019; Vidal et al., 2020). While the trophic functions we
ave explored in this paper may be too complex to be applied
irectly to the analysis of catch data, their response across
ifferent ocean flow and fishing strategy conditions should be
onsidered in such work. For example, in areas where fishers
ave no, or less accurate, information on accumulated dFAD
iomass, or where fishing occurs more opportunistically on
oating objects, both positive and negative effects of dFAD
ensity may influence catch rate. Future work should test the
ensitivity of catch and tuna distributions to these trophic
unctions in ocean basin-scale models with more realistic
sheries. It may be that simply the addition of the dFAD
ensity-dependent effect to the catch response is enough to
btain considerably different modelled tuna distributions,
hile the inclusion of hyperstability does not.
To test this, the IBM should be coupled to a more real-

stic hydrodynamic model and simulated at the ocean basin
cale in order to investigate the relationship between catch and
oth tuna and dFAD density at the population scale. Here,
e have considered idealized configurations that isolate the

ffects of diffusion (RWalk), strong directional flow (BJet),
nd strong particle accumulation (DEddy). Coupling of the
BM to a realistic hydrodynamic model also allows to test the
unctional response of tuna catch under more realistic flow
cenarios.

Furthermore, although a major part of the total tuna catch
onsists of tuna that is associated with a drifting dFAD or
ther floating object (Leroy et al., 2013), it also consists of
atch from free schools and anchored FADs. For instance,
urse seine vessels may set gears on tuna near a dFAD at
awn, but also catch free-schooling fish opportunistically
uring the day. Using more types of fishing strategies may

nfluence the catch response, and could be tested in future
ork. Moreover, assumptions other than the fishing strategy

ould be varied to test their influence on the catch response,
uch as differing boundary conditions and tuna-tuna inter-
ction. While we have not explicitly explored this here, the
ocial aspect of aggregation is implicit through the dFAD
ttraction movement vector, being function of the currently
ggregating fish in our IBM. Nooteboom et al. (2023) also
ncluded tuna-tuna interaction terms operating throughout
he model domain, which did have a small, typically negative,
nfluence on simulated catch when included. Whether school
ragmentation occurs, and has a subsequent impact on catch
Marsac et al., 2017), it is likely to be highly influenced by
he interplay between the need to forage, social interaction,
nd depletion through fishing.

Finally, the IBM simulation we have used in this study re-
ains a hypothesis-testing exercise, with many underlying as-

umptions that themselves should be tested where possible us-
ng real data or experiments (Kirby, 2001). The stark contrast
resent in the simulated catch response across ocean flow con-
gurations could potentially be examined using ocean current
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bservations alongside known dFAD density data. Analyses
nd standardisation of purse seine CPUE data should con-
ider incorporating non-linear dFAD density covariates, par-
icularly in regions where particles do not strongly accumu-
ate. Similarly, further experiments to capture the dynamics of
una around dFADs in the context of their biotic environment
nd local dFAD density may provide more information on the
alance between behavioural motivations for aggregation at
oating objects compared to that of foraging, to better inform
odels such as the one we have presented here (Dagorn et al.,
001; Perez et al., 2022).

cknowledgements

unding was provided by the Western and Central Pacific
isheries Commission (WCPFC Project 42) and the Eu-
opean Union “Pacific-European-Union-Marine-Partnership”
rogramme (agreement FED/2018/397-941). This publication
as produced with the financial support of the European
nion and Sweden. Its contents are the sole responsibility of

he authors and do not necessarily reflect the views of the Eu-
opean Union and Sweden.

upplementary material

upplementary material is available at the ICESJMS online
ersion of the manuscript.

onflict of interest statement

he authors declare that they have no conflicts of interest.

uthor contributions

eter D. Nooteboom: Conceptualization, Methodology, Soft-
are, Validation, Formal analysis, Investigation, Data cura-

ion, Writing – original draft, Writing – review & editing, Vi-
ualization.

Joe Scutt Phillips: Conceptualization, Methodology, Writ-
ng – original draft, Writing – review & editing.

Inna Senina: Conceptualization, Methodology, Formal
nalysis, Writing – review & editing, Visualization.

Erik van Sebille: Conceptualization, Methodology, Soft-
are, Resources, Writing – review & editing, Project admin-

stration.
Simon Nicol: Conceptualization, Methodology, Writing –

eview & editing, Project administration, Funding acquisition.

ata availability

he code and data underlying this article are available in Zen-
do, at https://zenodo.org/record/8024741.

eferences

kaike, H. 1974. A new look at the statistical model identification. IEEE
Transactions Automatic Control, 19: 716–723.

rditi, R., and Akçakaya, H. R. 1990. Underestimation of mutual inter-
ference of predators. Oecologia, 83: 358–361.

rditi, R., Tyutyunov, Y., Morgulis, A., Govorukhin, V., and Senina,
I. 2001. Directed movement of predators and the emergence of
density-dependence in predator–prey models. Theoretical Popula-
tion Biology, 59: 207–221.
aidai, Y., Dagorn, L., Armande, M., Gaertner, D., and Manuela, C.
2020. Machine learning for characterizing tropical tuna aggrega-
tions under Drifting Fish Aggregating Devices (DFADs) from com-
mercial echosounder buoys data. Fisheries Research, 229. 105613.

echer, M., Grimm, V., Thorbek, P., Horn, J., kennedy, P., and Osborne,
J. 2014. Beehave: a systems model of honeybee colony dynamics and
foraging to explore multifactorial causes of colony failure. Journal
of Applied Ecology, 51: 470–482.

eddington, J. 1975. Mutual interference between parasites or preda-
tors and its effect on searching efficiency. The Journal of Animal
Ecology, 44: 331–340.

ickley, W. 1937. LXXIII. The plane jet. London, Edinburgh, Dublin
Philosophical Magazine and Journal Of Science, 23: 727–731.

apello, M., Rault, J., Deneubourg, J., and Dagorn, L. 2022. School-
ing in habitats with aggregative sites: The case of tropical tuna and
floating objects. Journal of Theoretical Biology, 547. 111163.

agorn, L., Bertrand, A., Bach, P., Petit, M., and Josse, E. 2001. Im-
proving our understanding of tropical tuna movements from small
to large scales. In Electronic Tagging and Tracking in Marine Fish-
eries, pp. 385–405, Springer.

eAngelis, D. L., Yurek, S., Tennenbaum, S., and Lee, H. W. 2021. Hi-
erarchical functional response of a forager on a wetland landscape.
Frontiers Ecology Evolution, 9: 729236.

eAngelis, D., Goldstein, R., and O’Neill, R. 1975. A model for tropic
interaction. Ecology, 56: 881–892.

llis, N., and Wang, Y. 2006. Effects of fish density distribution and
effort distribution on catchability. ICES Journal of Marine Science,
64: 178–191.

nglund, G., and Harms, S. 2001. The functional response of a preda-
tory plant preying on swarming zooplankton. Oikos, 94: 175–181.

risman, B., L.G., A., Claisse, J., Pondella, D., Miller, E., and Murray, H.
2011. The illusion of plenty: hyperstability masks collapses in two
recreational fisheries that target fish spawning aggregations. Cana-
dian Journal of Fisheries and Aquatic Sciences, 68: 1705–1716.

scalle, L., Muller, B., Hare, S., and Hamer, P. 2021a. Report on analyses
of the 2016/2021 pna fad tracking programme. Technical Report,
WCPFC Scientific Committee WCPFC-SC17-2021.

scalle, L., Vidal, T., van den Heuvel, B., Clarke, R., Hare, S., Hamer,
P., and Pillig, G. 2021b. Project 88 final report: acoustic FAD analy-
ses. Technical Report, August: Western and Central Pacific Fisheries
Commission. https://meetings.wcpfc.int/node/12590.

einer, Z. S., Wolter, M. H., and Latzka, A. W. 2020. ‘I will look for
you, I will find you, and I will [harvest] you’: persistent hypersta-
bility in wisconsin’s recreational fishery. Fisheries Research, 230:
105679.

onteneau, A., Chassot, E., and Bodin, N. 2013. Global spatio-temporal
patterns in tropical tuna purse seine fisheries on drifting fish aggre-
gating devices (DFADs): taking a historical perspective to inform
current challenges. Aquatic Living Resources, 26: 37–48.

réon, P., and Dagorn, L. 2000. Review of fish associative behaviour:
Toward a generalisation of the meeting point hypothesis. Reviews
in Fish Biology and Fisheries, 10: 183–207.

amilton, R., Almany, G., Stevens, D., Bode, M., Pita, J., Peterson, N.,
and Choat, J. 2016. Hyperstability masks declines in bumphead par-
rotfish (Bolbometopon muricatum) populations. Coral Reefs, 35:
751–763.

ampton, J., and Bailey, K. 1993. Fishing for tunas associated with
floating objects. Technical Report, February 11–13, 1992.

ampton, J., and Fournier, D. A. 2001. A spatially disaggregated,
length-based, age-structured population model of yellowfin tuna
(Thunnus albacares) in the Western and Central Pacific ocean. Ma-
rine Freshwater Research, 52: 937–963.

arley, S. J., Myers, R. A., and Dunn, A. 2001. Is catch-per-unit-
effort proportional to abundance? Canadian Journal of Fisheries
and Aquatic Sciences, 58: 1760–1772.

arrison, G. 1995. Comparing predator-prey models to Luckinbill’s ex-
periment with didinium and paramecium. Ecology, 76: 357–374.

olling, C. S. 1959a. Some characteristics of simple types of predation
and parasitism. Canadian Entomologist, 91: 385–398.

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab105#supplementary-data
https://zenodo.org/record/8024741
https://meetings.wcpfc.int/node/12590


Individual-based model simulations indicate a non-linear catch equation of drifting Fish Aggregating Device-associated tuna 1757

P

R

R

S

S

S

S

S

T

T

T

V

V

W

W

X

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/6/1746/7220136 by guest on 05 Septem
ber 2023
Holling, C. S. 1959b. The components of predation as revealed by a
study of small mammal predation of the European sawfly. Canadian
Entomologist, 91: 293–320.

Kaplan, D. M., Báez, J. C., Alayon, P. J. P., and Vidal, T. 2021. Temporal
trends and variability in the spatial distribution of European tropical
tuna purse-seine fishing in the Atlantic and Indian oceans. Collective
Volume Science Paper ICCAT, 78: 523–549.

Kirby, D. S. 2001. On the integrated study of tuna behaviour and spa-
tial dynamics: tagging and modelling as complementary tools. In
Electronic tagging and tracking in marine fisheries, pp. 407–420.
Springer.

Kleiber, P., Fournier, D. A., Hampton, J., Davies, N., Bouye, F., and
Hoyle, S. 2018. MULTIFAN-CL User’s Guide. The Pacific Com-
munity SPC. https://mfcl.spc.int/index.php?option=com_jdownload
s&view=viewcategory&catid=3&Itemid=116.

Lehodey, P., Senina, I., and Murtugudde, R. 2008. A spatial ecosystem
and populations dynamics model (SEAPODYM)—Modeling of tuna
and tuna-like populations. Progress in Oceanography, 78: 304–318.

Leroy, B., Phillips, J. S., Nicol, S., Pilling, G. M., Harley, S., Bromhead, D.,
Hoyle, S. et al. 2013. A critique of the ecosystem impacts of drifting
and anchored FADs use by purse-seine tuna fisheries in the Western
and Central Pacific Ocean. Aquatic Living Resources, 26: 49–61.

Liu, X., and heino, M. 2014. Overlooked biological and economic im-
plications of within-season fishery dynamics. Canadian Journal of
Fisheries and Aquatic Sciences, 71: 181–188.

Lopez, J., Moreno, G., Sancristobal, I., and Murua, J. 2014. Evolution
and current state of the technology of echo-sounder buoys used by
Spanish tropical tuna purse seiners in the Atlantic, Indian and Pacific
oceans. Fisheries Research, 155: 127–137.

Lotka, A. J. 1925. Elements of physical biology. Nature, 116: 461.
Machful, P., Portal, A., Macdonald, J., Allain, V., Phillips, J. S., and Nicol,

S. 2021. Tuna stomachs: Is the glass half full, or half empty. SPC
Fisheries Newsletter, 166: 38–44.

Marsac, F., Fonteneau, A., Lucas, J., Báez, J.-C., and Floch, L. 2017.
Data-derived fishery and stocks status indicators for skipjack tuna
in the Indian ocean. Technical Report, The 19th meeting of the IOTC
Working Party on Tropical Tunas, Mahe, Seychelles.

Maufroy, A., Kaplan, D. M., Bez, N., De Molina, A. D., Murua, H.,
Floch, L., and Chassot, E. 2017. Massive increase in the use of drift-
ing Fish Aggregating Devices (dFADs) by tropical tuna purse seine
fisheries in the Atlantic and Indian oceans. ICES Journal of Marine
Science, 74: 215–225.

Maunder, M. N., Sibert, J. R., Fonteneau, A., Hampton, J., Kleiber, P.,
and Harley, S. J. 2006. Interpreting catch per unit effort data to assess
the status of individual stocks and communities. ICES Journal of
Marine Science, 63: 1373–1385.

Meyer, B., Freier, U., Grimm, V., Groeneveld, J., Hunt, B., Kerwath, S.,
King, R. et al. 2017. The winter pack-ice zone provides a sheltered
but food-poor habitat for larval Antarctic krill. Nature Ecology and
Evolution, 1: 1853–1861.

Moniz, I., and Herrera, M. 2019. Using fads to develop better abun-
dance indices for tropical tuna. Collective Volume of Scientific Pa-
pers, 75:2196–2201.

Moreno, G., Dagorn, L., Sancho, G., and Itano, D. 2007. Fish behaviour
from fishers’ knowledge: The case study of tropical tuna around
drifting fish aggregating devices (DFADs). Canadian Journal of Fish-
eries and Aquatic Sciences, 64: 1517–1528.

Nooteboom, P. D., Scutt Phillips, J., Kehl, C., Nicol, S., and van Sebille, E.
2023. Modelling of tuna around fish aggregating devices: the impor-
tance of ocean flow and prey. Ecological Modelling, 475: 110188.
Received: 9 November 2022; Revised: 11 May 2023; Accepted: 16 May 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of International Council for th

Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

is properly cited.
erez, G., Dupaix, A., Dagorn, L., Deneubourg, J., Holland, K., Bee-
harry, S., and Capello, M. 2022. Correlated random walk of tuna in
arrays of Fish Aggregating Devices: a field-based model from passive
acoustic tagging. Ecological Modelling, 470: 110006.

obert, M., Dagorn, L., Filmalter, J. D., Deneubourg, J. L., Itano, D., and
Holland, K. 2013. Intra-individual behavioral variability displayed
by tuna at fish aggregating devices (FADs). Marine Ecology Progress
Series, 484: 239–247.

ose, G., and Kulka, D. 1999. Hyperaggregation of fish and fisheries:
How catch-per-unit-effort increased as the northern cod (Gadus
morhua) declined. Canadian Journal of Fisheries and Aquatic Sci-
ences, 56: 118–127.

cutt Phillips, J., Pilling, G. M., Leroy, B., Evans, K., Usu, T., Lam, C. H.,
Schaefer, K. M. et al. 2017. Revisiting the vulnerability of juvenile
bigeye (Thunnus obesus) and yellowfin (T. albacares) tuna caught
by purse-seine fisheries while associating with surface waters and
floating objects. PloS one, 12: e0179045.

cutt Phillips, J., Sen Gupta, A., Senina, I., van Sebille, E., Lange, M.,
Lehodey, P., Hampton, J. et al. 2018. An individual-based model of
skipjack tuna (Katsuwonus pelamis) movement in the tropical Pa-
cific ocean. Progress in Oceanography, 164: 63–74.

enina, I., Lehodey, P., Calmettes, B., Dessert, M., Hampton, J., Smith,
N., Gorgues, T. et al. 2018. Impact of climate change on tropi-
cal Pacific tuna and their fisheries in Pacific Islands waters and
high seas areas. 14th Regular Session of the Scientific Committee
of the Western and Central Pacific Fisheries Commission, WCPFC-
SC14.

enina, I., Lehodey, P., Sibert, J., and Hampton, J. 2020. Integrating tag-
ging and fisheries data into a spatial population dynamics model
to improve its predictive skills. Canadian Journal of Fisheries and
Aquatic Sciences, 77: 576–593.

hadden, S. C., Lekien, F., and Marsden, J. E. 2005. Definition and prop-
erties of Lagrangian coherent structures from finite-time Lyapunov
exponents in two-dimensional aperiodic flows. Physics D Nonlinear
Phenomena, 212: 271–304.

yutyunov, Y., and Titova, L. I. 2020. From Lotka–Volterra to Arditi–
Ginzburg: 90 years of evolving trophic functions. Biological Bulletin
Review, 10: 167–185.

yutyunov, Y. V., and Titova, L. I. 2021. Ratio-dependence in predator–
prey systems as an edge and basic minimal model of predator inter-
ference. Frontiers Ecology Evolution, 9: 870.

yutyunov, Y., Titova, L., and Arditi, R. 2008. Predator interference
emerging from trophotaxis in predator–prey systems: An individual-
based approach. Ecological Complexity, 5: 48–58.

idal, T., Hamer, P., Escalle, L., and Pilling, G. 2020. Assessing trends in
skipjack tuna abundance from purse seine catch and effort data in
the wcpo. Technical Report, WCPFC-SC16–2020/SA-IP-09.

olterra, V. 1926. Fluctuations in the abundance of a species considered
mathematically. Nature, 118: 558–560.

ard, H., Ashkey, P., and Post, J. 2013. A mechanistic understanding of
hyperstability in catch per unit effort and density-dependent catcha-
bility in a multistock recreational fishery. Canadian Journal of Fish-
eries and Aquatic Sciences, 70: 1542–1550.

illiams, P. and Ruaia, T. 2021. Overview of tuna fisheries in the West-
ern and Central Pacific ocean, including economic conditions–2020.
wcpfc scientific committee sc17-2021. Technical Report, Western
and Central Pacific Fisheries Commission.

iao, Y. 2006. Catch equations: calculating the instantaneous rate of
fishing mortality from catch and back. Ecological Modelling, 193:
225–252.
Handling editor: David M Kaplan

e Exploration of the Sea. This is an Open Access article distributed under the terms of the

unrestricted reuse, distribution, and reproduction in any medium, provided the original work

https://mfcl.spc.int/index.php?option=com_jdownloads&view=viewcategory&catid=3&Itemid=116
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Results
	Discussion and outlook
	Acknowledgements
	Supplementary material
	Conflict of interest statement
	Author contributions
	Data availability
	References

