54 research outputs found

    Mapping of subtasks with multiple versions in a heterogeneous ad hoc grid environment

    Get PDF
    Includes bibliographical references (pages 7-8).An ad hoc grid is a heterogeneous computing system composed of mobile devices. The problem studied here is to statically assign resources to the subtasks of an application, which has an execution time constraint, when the resources are oversubscribed. Each subtask has a preferred version, and a secondary version that uses fewer resources. The goal is to assign resources so that the application meets its execution time constraint while minimizing the number of secondary versions used. Five resource allocation heuristics to derive near-optimal solutions to this problem are presented and evaluated

    Higher whole-blood selenium is associated with improved immune responses in footrot-affected sheep

    Get PDF
    We reported previously that sheep affected with footrot (FR) have lower whole-blood selenium (WB-Se) concentrations and that parenteral Se-supplementation in conjunction with routine control practices accelerates recovery from FR. The purpose of this follow-up study was to investigate the mechanisms by which Se facilitates recovery from FR. Sheep affected with FR (n = 38) were injected monthly for 15 months with either 5 mg Se (FR-Se) or saline (FR-Sal), whereas 19 healthy sheep received no treatment. Adaptive immune function was evaluated after 3 months of Se supplementation by immunizing all sheep with a novel protein, keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity (DTH) skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. Innate immunity was evaluated after 3 months of Se supplementation by measuring intradermal responses to histamine 30 min after injection compared to KLH and saline, and after 15 months of Se supplementation by isolating neutrophils and measuring their bacterial killing ability and relative abundance of mRNA for genes associated with neutrophil migration. Compared to healthy sheep, immune responses to a novel protein were suppressed in FR-affected sheep with smaller decreases in FR-affected sheep that received Se or had WB-Se concentrations above 250 ng/mL at the time of the immune assays. Neutrophil function was suppressed in FR-affected sheep, but was not changed by Se supplementation or WB-Se status. Sheep FR is associated with depressed immune responses to a novel protein, which may be partly restored by improving WB-Se status (> 250 ng/mL)

    Coastal structures as beach erosion control and sea level rise adaptation in Malaysia: a review

    Get PDF
    The shoreline of Malaysia is exposed to threats of coastal erosion and a rise of sea level. The National Coastal Erosion Study, 2015 reported that 15% of an 8840 km shoreline is currently eroding, where one-third of those falls under the critical and significant categories that require structural protection. The Study of Sea Level Rise in Malaysia, 2017 presented a sea-level increase of 0.67–0.74 mm on average yearly. This study reviewed selected coastal protection structures along the shoreline of Malaysia as an erosion control and sea-level rise adaptation based on coastal management strategies. Hard structures such as rock revetment and breakwater are commonly used as erosion protection systems in the “hold the line” strategy. Increased platform level of seawalls and earth bunds, considered as an “adaptation” approach, are effective in erosion protection and are adaptive to sea-level rise. Mangrove replanting is suitable as a “limited intervention” approach in minimizing the long-term impact of both threats. However, offshore breakwater, groyne, and geotextile tubes are solely for protection purposes and are not as effective for sea-level rise adaptation. As the sea level is continuously increasing, their function as coastal protection will also become less effective. In summary, this comprehensive review on coastal protection in Malaysia will benefit the related agencies on the future assessment

    Fewer non-native insects in freshwater than in terrestrial habitats across continents

    Get PDF
    Aim: Biological invasions are a major threat to biodiversity in aquatic and terrestrial habitats. Insects represent an important group of species in freshwater and terrestrial habitats, and they constitute a large proportion of non-native species. However, while many non-native insects are known from terrestrial ecosystems, they appear to be less represented in freshwater habitats. Comparisons between freshwater and terrestrial habitats of invader richness relative to native species richness are scarce, which hinders syntheses of invasion processes. Here, we used data from three regions on different continents to determine whether non-native insects are indeed under-represented in freshwater compared with terrestrial assemblages. Location: Europe, North America, New Zealand. Methods: We compiled a comprehensive inventory of native and non-native insect species established in freshwater and terrestrial habitats of the three study regions. We then contrasted the richness of non-native and native species among freshwater and terrestrial insects for all insect orders in each region. Using binomial regression, we analysed the proportions of non-native species in freshwater and terrestrial habitats. Marine insect species were excluded from our analysis, and insects in low-salinity brackish water were considered as freshwater insects. Results: In most insect orders living in freshwater, non-native species were under-represented, while they were over-represented in a number of terrestrial orders. This pattern occurred in purely aquatic orders and in orders with both freshwater and terrestrial species. Overall, the proportion of non-native species was significantly lower in freshwater than in terrestrial species. Main conclusions: Despite the numerical and ecological importance of insects among all non-native species, non-native insect species are surprisingly rare in freshwater habitats. This is consistent across the three investigated regions. We review hypotheses concerning species traits and invasion pathways that are most likely to explain these patterns. Our findings contribute to a growing appreciation of drivers and impacts of biological invasions

    Screening for gestational diabetes mellitus: one step versus two step approach. A meta-analysis of randomized trials

    No full text
    Objective: Worldwide controversy exists regarding the best approach and criteria for gestational diabetes mellitus (GDM) screening and diagnosis. The aim of this systematic review and meta-analysis of randomized trials was to assess the incidence of maternal and neonatal outcomes comparing the one step with the two step approach for the diagnosis of GDM. Methods: Electronic databases were searched from their inception until June 2018. We included all the randomized trials comparing the one step versus the two step method for screening and diagnosis of GDM. The primary outcome was the incidence of large for gestational age (LGA), defined as birth weight >90th percentile. Meta-analysis was performed using the random effects model of DerSimonian and Laird, to produce summary treatment effects in terms of relative risk (RR) with 95% confidence interval (CI). Results: Four randomized clinical trials (RCTs) (n = 2582 participants) were identified as relevant and included in the meta-analysis. Women screened with the one step approach had a significantly lower risk of adverse perinatal outcomes, including LGA (RR 0.46, 95% CI 0.25–0.83), admission to neonatal intensive care unit (NICU) (RR 0.49, 95% CI 0.29–0.84) and neonatal hypoglycemia (RR 0.52, 95% CI 0.28–0.95), compared to those randomized to the screening with the two step approach. The one step approach was also associated with lower mean birth weight (mean difference −112.91 grams, 95% CI −190.48 to −35.33). No significant difference in the incidence of GDM was found comparing the one step versus the two step approach (8.3 versus 4.4%; RR 1.60, 95% CI 0.93–2.75). Conclusions: This study provides high quality evidence that the diagnosis of GDM by the one step approach is associated with better perinatal outcomes, including lower incidences of LGA, NICU admission and neonatal hypoglycemia, compared to the two step approach. Based on these findings, we recommend screening of GDM using the one-step approach

    A conceptual framework for prioritization of invasive alien species for management according to their impact

    Get PDF
    The number of invasive alien species is increasing and so are the impacts these species cause to the environment and economies. Nevertheless, resources for management are limited, which makes prioritization unavoidable. We present a prioritization framework which can be useful for decision makers as it includes both a scientific impact assessment and the evaluation of impact importance by affected stakeholders. The framework is divided into five steps, namely 1) stakeholder selection and weighting of stakeholder importance by the decision maker, 2) factual description and scoring of changes by scientists, 3) evaluation of the importance of impact categories by stakeholders, 4) calculation of weighted impact categories and 5) calculation of final impact score and decision making. The framework could be used at different scales and by different authorities. Furthermore, it would make the decision making process transparent and retraceable for all stakeholders and the general public

    Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity

    Get PDF
    Droughts associated with climate change alter ecosystem functions, especially in systems characterized by low biodiversity, such as agricultural fields. Management strategies aimed at buffering climate change effects include the enhancement of intraspecific crop diversity as well as the diversity of beneficial interactions with soil biota, such as arbuscular mycorrhizal fungi (AMF). However, little is known about reciprocal relations of crop and AMF diversity under drought conditions. To explore the interactive effects of plant genotype richness and AMF richness on plant yield under ambient and drought conditions, we established fully crossed diversity gradients in experimental microcosms. We expected highest crop yield and drought tolerance at both high barley and AMF diversity. While barley richness and AMF richness altered the performance of both barley and AMF, they did not mitigate detrimental drought effects on the plant and AMF. Root biomass increased with mycorrhiza colonization rate at high AMF richness and low barley richness. AMF performance increased under higher richness of both barley and AMF. Our findings indicate that antagonistic interactions between barley and AMF may occur under drought conditions, particularly so at higher AMF richness. These results suggest that unexpected alterations of plant-soil biotic interactions could occur under climate change

    A conceptual framework for prioritization of invasive alien species for management according to their impact

    No full text
    NatuurwetenskappePlant- en DierkundePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    A unified classification of alien species based on the magnitude of their environmental impacts

    Get PDF
    Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact-ranging from Minimal to Massive-with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions. © 2014 Blackburn et al
    • 

    corecore