115 research outputs found

    Spacecraft detumbling using movable telescoping appendages

    Get PDF
    The dynamics of detumbling a randomly spinning spacecraft using externally mounted, movable telescoping appendages were studied both analytically and numerically. Two types of telescoping appendages are considered: where an end mass is mounted at the end of an (assumed) massless boom; and where the appendage is assumed to consist of a uniformly distributed homogeneous mass throughout its length. From an application of Liapunov's second method, boom extension maneuvers were determined to approach either of two desired final states: close to a zero inertial angular velocity state, and a final spin rate about only one of the principal axes. Recovery dynamics are evaluated analytically for the case of symmetrical deployment. Numerical examination of other asymmetrical cases verifies the practicality of using movable appendages to recover a randomly tumbling spacecraft

    The dynamics and optimal control of spinning spacecraft and movable telescoping appendages, part A

    Get PDF
    The problem of optimal control with a minimum time criterion as applied to a single boom system for achieving two axis control is discussed. The special case where the initial conditions are such that the system can be driven to the equilibrium state with only a single switching maneuver in the bang-bang optimal sequence is analyzed. The system responses are presented. Application of the linear regulator problem for the optimal control of the telescoping system is extended to consider the effects of measurement and plant noises. The noise uncertainties are included with an application of the estimator - Kalman filter problem. Different schemes for measuring the components of the angular velocity are considered. Analytical results are obtained for special cases, and numerical results are presented for the general case

    The dynamics and control of large flexible space structures. Part A: Discrete model and modal control

    Get PDF
    Attitude control techniques for the pointing and stabilization of very large, inherently flexible spacecraft systems were investigated. The attitude dynamics and control of a long, homogeneous flexible beam whose center of mass is assumed to follow a circular orbit was analyzed. First order effects of gravity gradient were included. A mathematical model which describes the system rotations and deflections within the orbital plane was developed by treating the beam as a number of discretized mass particles connected by massless, elastic structural elements. The uncontrolled dynamics of the system are simulated and, in addition, the effects of the control devices were considered. The concept of distributed modal control, which provides a means for controlling a system mode independently of all other modes, was examined. The effect of varying the number of modes in the model as well as the number and location of the control devices were also considered

    The dynamics of spin stabilized spacecraft with movable appendages, part 1

    Get PDF
    The motion and stability of spin stabilized spacecraft with movable external appendages are treated both analytically and numerically. The two basic types of appendages considered are: (1) a telescoping type of varying length and (2) a hinged type of fixed length whose orientation with respect to the main part of the spacecraft can vary. Two classes of telescoping appendages are considered: (a) where an end mass is mounted at the end of an (assumed) massless boom; and (b) where the appendage is assumed to consist of a uniformly distributed homogeneous mass throughout its length. For the telescoping system Eulerian equations of motion are developed. During all deployment sequences it is assumed that the transverse component of angular momentum is much smaller than the component along the major spin axis. Closed form analytical solutions for the time response of the transverse components of angular velocities are obtained when the spacecraft hub has a nearly spherical mass distribution

    The dynamics of spin stabilized spacecraft with movable appendages, part 2

    Get PDF
    Research efforts on various methods that employ moving external parts for spacecraft control are presented. Two basic types of appendages were considered: (1) a hinged type, and (2) a telescoping type. Procedures for evaluating each type of appendage are listed, and control laws and equations of motion for each type are also discussed. Illustrations of the different types of appendages are shown

    EXTRACTION, ISOLATION OF ACTIVE PRINCIPLES, ANTI-BACTERIAL AND WOUND HEALING ACTIVITY OF THE MARINE ALGAL SPECIES OEDOGONIUM GLOBOSUM AND OEDOGONIUM INTERMEDIUM

    Get PDF
    Objective: Algae is the undisputed treasures of the sea and are a valuable raw material, providing unlimited opportunities for new drug discoveries. Marine algal products are in demand in the international market in the form of standardized algal extracts or semi-finished products. Methods: Aqueous and methanolic extracts of Oedogonium globosum and Oedogonium intermedium species were obtained maceration and hot percolation. The active principles from O. intermedium were isolated, purified by column chromatography, and characterized by spectral studies IR, λmax, 1HNMR and MS. The extracts of Oedogonium species were screened for their anti-microbial effects, acute dermal irritation and wound-healing activity studies. Results: Comparing to Oedogonium intermedium (45 %, 90 %, 87 %), very low extractive yields were obtained for Oedogonium globosum (10.80 %, 37 %, 28 %). At phytochemical screening, Terpenoids, Flavanoids and, Glycans were found to be present in a significant amount and upon their isolation, it was found that a collection of fractions from cold extract with Rf value in the range 0.32-0.34 as Glycans and those from the hot extract with 0.40-0.72 as Flavanoids and those from methanolic extracts with 0.23, 0.44 and 0.71 as for Terpenoids. Anti-bacterial study revealed out the fact of Oedogonium species could give higher inhibition to gram-positive than for gram-negative bacteria at (10 μg/10μl/disc) concentration. No symptoms of systemic toxicity and mortality were observed. Silver sulfadiazine, more potent in wound closure, the effect of methanolic extracts of O. intermedium (87 %) was almost at par to the standard (95 %) in action and significantly greater than O. globosum (72 %, P<0.05). Conclusion: Admittedly, Oedogonium type algal species can be known as medicinal algae with a plethora of a wide range of pharmacological activities. Thus, this research work may be considered further for extensive innovative discoveries of new lead molecules and any other pharmacological activities, in the future

    Predicting failure: acoustic emission of berlinite under compression.

    Get PDF
    Acoustic emission has been measured and statistical characteristics analyzed during the stress-induced collapse of porous berlinite, AlPO4, containing up to 50 vol porosity. Stress collapse occurs in a series of individual events (avalanches), and each avalanche leads to a jerk in sample compression with corresponding acoustic emission (AE) signals. The distribution of AE avalanche energies can be approximately described by a power law p(E)dE = E(-ε)dE (ε ~ 1.8) over a large stress interval. We observed several collapse mechanisms whereby less porous minerals show the superposition of independent jerks, which were not related to the major collapse at the failure stress. In highly porous berlinite (40 and 50) an increase of energy emission occurred near the failure point. In contrast, the less porous samples did not show such an increase in energy emission. Instead, in the near vicinity of the main failure point they showed a reduction in the energy exponent to ~ 1.4, which is consistent with the value reported for compressed porous systems displaying critical behavior. This suggests that a critical avalanche regime with a lack of precursor events occurs. In this case, all preceding large events were 'false alarms' and unrelated to the main failure event. Our results identify a method to use pico-seismicity detection of foreshocks to warn of mine collapse before the main failure (the collapse) occurs, which can be applied to highly porous materials only

    Sequence dependent antitumour efficacy of the vascular disrupting agent ZD6126 in combination with paclitaxel

    Get PDF
    The clinical success of small-molecule vascular disrupting agents (VDAs) depends on their combination with conventional therapies. Scheduling and sequencing remain key issues in the design of VDA–chemotherapy combination treatments. This study examined the antitumour activity of ZD6126, a microtubule destabilising VDA, in combination with paclitaxel (PTX), a microtubule-stabilising cytotoxic drug, and the influence of schedule and sequence on the efficacy of the combination. Nude mice bearing MDA-MB-435 xenografts received weekly cycles of ZD6126 (200 mg kg−1 i.p.) administered at different times before or after PTX (10, 20, and 40 mg kg−1 i.v.). ZD6126 given 2 or 24 h after PTX showed no significant benefit, a result that was attributed to a protective effect of PTX against ZD6126-induced vascular damage and tumour necrosis, a hallmark of VDA activity. Paclitaxel counteracting activity was reduced by distancing drug administrations, and ZD6126 given 72 h after PTX potentiated the VDA's antitumour activity. Schedules with ZD6126 given before PTX improved therapeutic activity, which was paralleled by a VDA-induced increase in cell proliferation in the viable tumour tissue. Paclitaxel given 72 h after ZD6126 yielded the best response (50% tumours regressing). A single treatment with ZD6126 followed by weekly administration of PTX was sufficient to achieve a similar response (57% remissions). These findings show that schedule, sequence and timing are crucial in determining the antitumour efficacy of PTX in combination with ZD6126. Induction of tumour necrosis and increased proliferation in the remaining viable tumour tissue could be exploited as readouts to optimise schedules and maximise therapeutic efficacy
    • …
    corecore