General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-145605) THE DYNAMICS OF SPIN N76-11216 STABILIZED SPACECRAFT WITH MOVABLE APPENDAGES, PART 2 Semiannual Status Report, 16 May - 15 Ncv. 1975 (Howard Univ.) Unclas
26 p HC \$4.00 CSCL 22B G3/18 01579

HOWARD UNIVERSITY

s

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

WASHINGTON, D.C. 20059

SEMI - ANNUAL STATUS REPORT

(May 16, 1975 - Nov. 15, 1975)

NASA - NSG 1181

THE DYNAMICS OF SPIN STABILIZED

SPACECRAFT WITH MOVABLE APPENDAGES -

PART II

by

Peter M. Bainum

Professor of Aerospace Engineering $\frac{1}{2}\sqrt{9202}$

Principal Investigator ... and ... $R.$ Sellappan

and

R. Sellappan

Graduate Research Assistant

Nov. 15, 1975

 $\frac{1}{2}$
 $\frac{1}{2}$ **NASA STI FACIL INPUT BRANC**

P.

į

I. SUIMRY OF RESULTS ACCOMPLISHED DURING PERIOD - MAY 16, 1975 - *NOVIMER* **15, 1975**

A. Analytical Results

•

The basic two year study plan is shown in TABLE I. The items indicated by asterisks were proposed for study in the second (present) year. The items indicated by a check mark have been completed during the **six** month reporting period. Two basic types of movable appendages have been considered throughout the study 1) a hinged type of fixed length whose orientation relative to the main part can change and 2) a telescoping type of varying Length which is further subdivided into (a) the case where a large end mass is mounted at the end of an assumed massless boom and (b) where the appendage consists of a uniformly distributed **homogeneous mass** throughout its length (Fig. 1).

The equations of motion for the hinged system as previously developed have been linearized about the nominal equilibrium position where the booms are orthogonal to the nominal spin axis for the case of two dimensional motion (as simulated by Lang and Honeycutt^{1*}) and three dimensional motion. Analytic stability criteria are developed from the necessary condition on the sign of **all** the coefficients in the system characteristic equation.

^{*}**Please** refer to references listed after Table I.

It is seen that, for the general case, for stability some form **of active** damping must be present and that for limiting cases where the spin **axis is an axis** of symmetry, certain inequalities relating the hinge point offset coordinates to the moment of inertia ratio must be satisfied. For this same case it is seen that the system characteristic equation separates into two factors a second order factor describing a mode where both hinged members move in phase as a unit, and the second factor represented by a mare complex fourth order polynomial.

Th date viscous damping at both hinge points has been included in the mathematical model. Rate damping about the transverse axes will be included since the numerical results indicate that the coupling with only hinge damping present does not result in favorable nutation decay time constants.

Equations of motion have been developed for the telescoping system where: (1) a single boom is linearly offset from the nominal spin axis and (2) two booms are linearly offset From the hub principal axes - one boom from the spin axis and the second from one of the transverse axes. For the latter case, the two booms move at right angles to one another. (Figs. 2a, 2b) These equations of motion have been linearized about two desired equilibriiun states: (a) a final spin rate about the nominal spin axis only and (b) a state of zero inertial angular velocity. It is concluded that three-axis control with a single offset boom can not be achieved and that boom offset is required for any control of the linear system.

-2-

For a special case of a single boom offset from the hub **axis of** mass symmetry, it is seen that the optimal control theory for the linear system using a quadratic performance index with unspecified final time can be examined analytically. For such a system the matrix Riccati equation can be solved in closed form and the control law gains obtained without the **use** of a computer. For this application (involving two **axis** control) the integrand in the cost functional is assumec to be a weighted function of the transverse angular velocity plus the control.

The problem of optimal control with a minimum time criterion has been examined analytically for the special case of a single offset boom where it is assumed that the initial conditions are such that the system can be driven to the equilibrium (rest) state with only a single switching maneuver in the bang-bang optimal sequence. For this system it is possible to obtain an analytical solution for the switching and final times in terms of the initial conditions and magnitude of the maximum value of the control force.

B. Numerical Results

The nonlinear equations of motion describing the deployment of the hinged system have been programmed for numerical integration using the NOVA computer at Howard University. A few typical results are illustrated in Figs. 3-6. Figs. 3(a) ani 3(b) simulate the dynamic response of the system to an initial rirturbation in the hinge angles of 0.1 radians with hinge damping absent and then, present, respectively.

-3-

For the damped case a damping coefficient of 0.1 lb/ft/sec is selected. The deployment of the system from the position where the hinged members are **initially parallel to** the local vertical (**a**=0) is simulated in Fig. 4(a) without damping, and Fig. 4(b) with damping. The 'x' represents the maximum time simulated by Lang and Honeycutt. It is seen that without damping the hinged members exhibit a flapping-type motion as momentum is exchanged between the hinge and spin motions. With the damping coefficient selected the system can be fully deployed in about 10 seconds. An example of the three dimensional hinge-system dynamics is simulated in Fig. 5 (undamped) and 6 (with damping). Initial perturbations in both hinge angles and one of the transverse angular velocities are assumed. Although the hinge damping is effective in reducing the amplitudes of the hinge motion, the time constants associated with the nutation angle decay (Fig. 6(b)) are extremely long. It is clear that an additional form of nutation damping must be added for effective removal of excess transverse rates.

An illustrative numerical example, using the single offset boon as a wobble damper with the gains in the control based on the linear optimal control theory is shown in Fig. 7. The dotted curve shows the response of the nutation angle for such a system where the physical parameters,monents of inertias, masses and offset length are identical to the single control mass system previously analyzed by Edwards and Kaplan. 6'7

-4-

In their application a control law is selected such that the average rate of change of **excess** rotational kinetic energy is **less** than zero for each cycle. Using the same value of maximum **amplitude (i.e. m.ximum** boom length) it is seen that the nutation decay time constant can be improved by about an order of magni**tude** by **using** a control law based on linear optimal control theory.

II. PRESENTATION AND PUBLICATION OF RESULTS

On November 6, 1975 an oval presentation was given at NASA-Langley to Mr. C. W. Martz, the Technical Monitor, Dr. W. Anderson, Head, Stability and Control Branch of the Flight Dynamics and Control Division, and to 6 other members of the Stability and Control Branch. Prior to this date Mr. Martz had been contacted several times by telephone to inform him of the progress. Copies of all visual aids used in 'the presentation (about 50 in total) were left at Langley. It is anticipated that another presentation will be given during the period December 1975 - January 1976 at which time a draft copy of a follow-on proposal could also be discussed.

During the six month reporting period two papers based on last year's work were accepted:

- (1)"Spacecraft Detumbling Using Movable Telescoping Appendages," Peter M. Bainum and R. Sellappan, XXV1 th International Astronautical Congress, Lisbon, September 21-27, 1975, Paper No. 75-113.
- (2)"Dynamics of Spin Stabilized Spacecraft During Deployment of Telescoping Appendages," by R. Sellappan and Peter M. Bainum, to be presented at the AIAA - 14th Aerospace Sciences Meeting, Washington, D.C., Jan. 26- 28, 1976, Paper No. 76-185.

In addition a paper based on a NASA-Grant during the 1973-74 period has been published: "Three Dimensional Motion and Stability of **Two Rotating Cable.- Connected Bodies," by P.M.** *Bainum* **and K.S. Evans,** *Journal* of Spacecraft and Rockets, Vol. 12, No. 4, April 1975, pp. 242-250.

-5-

III. PLANS FOR THE NEXT REPORTING PERIOD

Additional numerical simulations of the hinged system during deployment and in response to small perturbations will be made with both hinge damping and nutation damping present, *and* the results compared with the simulated response with only **hinge** damping. In the optimal control area, for the more general case of an asymmetrical main hub and one or two offset boons, the matrix Riccati equation will be solved numerically to obtain the control law gains. The dynamics of this system will be simulated numerically using the optimal control law. A comparison in system performance both in a linear and nonlinear region will be made with our previous results where he boons were assumed to extend only along the hub principal axes. Where possible, for the single boon offset case, a comparison will be made with the previous results obtained by Edwards and Kaplan.

It is planned to prepare at least one technical paper based **on** this research for open publication and/or presentation at a professional society meeting during the next six months. Close liason with NASA - Langley will be maintained. A comprehensive final report will be prepared at the end of. the contractual period and a final oral presentation made.

IV. POSSIBLE EXTENSION OF THE CURRENT RESEARCH

Referring to TABLE 1, it is hoped to complete all the items related to the hinged system during the **next six** months.

 $-6-$

Because of the success we have had with the application of linear control theory and the need to use the computer both for the solution of the matrix Ricoati equation and the simulation of the optimally controlled telscoping system, it is doubtful that much progress can be made with the application of dynamic programing to consider the general problem of time optimal control. This is an item which could be considered in depth during a subsequent one year period. For all simulations *involving* optimal control laws it is assumed that such a law can be implemented with no time lag and no errors in measuring the state vector components - i.e. angular $velocity$ components and boom lengths. The present work could be extended to include such an estimator problem incorporating the actual expected measurement errors and time lags in obtaining such measurements.

7b date all of our results have been obtained by neglecting any and all external perturbations (i.e. in torque - free space). As a tumbling spacecraft is recovered by appropriate maneuvers of the appendages su&. effects as those due to gravity-gradient torques and solar pressure must be considered. It is hoped to briefly examine the maximum expected magnitudes of these perturbations during the hext six months. A more thorough trea_ument of these two types of perturbations could easily occupy a secondigraduate student for a one year period if suitable funding were available. And finally the problem of including flexibility effects (luring deployment of the telescoping appendages, (to the knowledge of the authors) has never been fully treated in *the* open **literature.**

-7-

This problem is made extremely difficult by the fact that the length of the appendage in its undeformed state is being continually altered according to the particular control law being used.

TABLE I - TWO YEAR PL4N OF STUDY

THE DYNAMICS OF SPIN STABILIZED SPACECRAFT WITH MOVABLE APPENDAGES

CONTENTS

A. MOTION DURING DEPLOYMENT

.

Spinning spacecraft - small transverse momentum

- **v 1.** Hinged Type - development of equations of motion and stability analysis
	- **2. Telescopic Type**
		- **a. End** wss moving b. Uniformly distributed mass roving
		- Analytical solution for spherical Hub
		- Series solution for non-spherical Hut
- $\sqrt{*}$ 3. Effect of Dampers
- B. USE OF APPENDAGES TO DETUMBLE SPACECRAFT
	- 1. Telescopic Type - derivation of kinetic energy
		- a. Achieve zero inertial angular rate
		- Lyapunov Function Kinetic Energy
		- b. Achieve spin about principal axis
		- Lyapunov function Modified kinetic energy
- $\sqrt{\alpha}$ *2. Telescoping appendages offset from hub principal axes
	- 3. Appendages + **"3" axis boom**
- C. OPTIMAL CONTROL
- \checkmark *1. Application of linear optimal control theory using different performance indices
	- *2. Use of gradient technique

D. EFFECT OF PETURBATIONS

 $\ddot{}$

 $\ddot{}$

- *1. Gravity-gradient
- *2. Solar pressure
- *3. Flexibility with small amplitude

^{*}Proposed for study in second year (Part II)

HINGED SYSTIM

- 1. **Derivation** of Kinetic Energy
- 2. Development of Equations of Motion
- 3. Two Dimensional Motion Analysis
	- a. Small Angle Analysis about Equilibrium State
		- (i) Linearization of Equations of Motion
		- (ii) Stability Criteria
		- (iii) Closed Form Solutions
		- (iv) Numerical Results
	- b. Large Angle Analysis
		- **(i) Closed** Form Solutions
		- (ii) Numerical Results
- 4. Dwee Dimensional Motion Analysis
	- a. Small Angle Analysis about Equilibrium State
		- (i) Linearization of Equations of Motion
		- (ii) Stability Criteria
		- **(iii) Numerical Results**
	- b. Large Angle Analysis
		- (i) Numerical Results

PRECEDING PAGE BLANK NOT FUMED

OPTIMAL, CONTROL

A. Optimal Control With Quadratic Performance Criterion

I. Theory

 \mathbf{r}

- II. Applications
	- 1. Single Boom Offset System
		- a. Equations of Motion.
		- b. Linearization
		- c. Special case
			- (i) Analytical Solution (ii) Numerical Results
				- Illustrative Example
		- d. General Case (i) Numerical Results

2. Two Boom Offset System

- Development of Equations of Motion a.
- b. Linearization
- c. Numerical Results
- B. Optimal Control With Minimum Time Criterion
- I. Theory
- II. Applications
	- 1. Single Boom Offset System
		- a. Special Case (i) Analytical Solution (ii) Numerical Results
		- b. General Case
			- (i) Numerical Results

REFERENCES

- 1. Lang, W. and Honeycutt, G.H., "Stimulation of Deployment Dynamics of Spinning Spacecraft," NASA TND 4074, August 1967.
- 2. Bainum, P.M. and Sellappan, R., "Dynamics of Spin Stabilized Spacecraft with Movable Appendages," Part I, Final Report, NASA Grant, May 1975.
- 3. Aue]mann, R.R. and Lane, P.T., "Design and Analysis of Ball-in-Tube Nutation Dampers," Proceedings of the Symposium on Attitude Stabilization and Control of Dual-Spin Spacecraft, pp.81-90, August 1967.
- 4. Bainum, P.M., Fuechsel, P.G., and Mackison, D.L., "On the Motion and Stability of a Dual-Spin Satellite with Nutation Damping," Technical Memorandum, TG-1072, Applied Physics Laboratory, June 1969; also Journal of Spacecraft and Rockets, Vol. 7, No. 6, 1970, pp. 690-696.
- S. Athans, M. and Falb, P.L., "Optimal Control An Introduction to the Theory and its Applications," McCraw-Hill, 1966, pp. 750-851.
- 6. Edwards, T.L. and Kaplan, M.H., "Automatic Spacecraft Detimbling by Internal Mass Motion," AIAA Journal, Vol. 12, No. 4, 1974, pp. 496-502.
- 7. Edwards, T.L., "A Movable Mass Control System to Detumble a Disabled Space Vehicle," M.S. thesis, Department of Aerospace Engineering, Pennsylvania State University, June 1973, pp. 72- 79.
- 8. Pande, K.C., Davies, M.S. and Modi, V.J., "Time-Optimal Pitch Control of Stellites Using Solar Radiation Pressure," Journal of Spacecraft and Rockets, Vol. 11, No. 8, 1974, pp. 601-603.
- 9. Amieux, J.C. and Liegeois, Alain, "Design and Ground Test of a Pendulum - Type Active Nutation Damper," J. Spacecraft and Rockets, Vol. 11, No. 11, Nov. 1974, pp. 790-792.
- 10. Halfman, R.L., "Dynamics-Volume 1 Particles, Rigid Bodies, and Systems," Addison - Wesley Publishing Co. 1962, pp. 130-134.

Binged deployment system

•Radially telescoping deployment system - type a

Spinning satellite with booms extending - type b

Fig. 1 Different Types of Movable Appendages

FIG. 2(a) SINGLE BOOM OFFSET SYSTEM

FIG. 3(b) DYNAMICS OF THE SYSTEM ABOUT 90° EQUILIBRIUM POSITION WITH DAMPING.

6

4

 $\dot{2}$

 \mathbf{g}

10

0

Ÿ

Decay of Nutation Augle With Differen' Control Laws. FIG. 7

 \cdot