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by
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ABSTRACT -
The dynamics of detumbling a randomly spinning spacecraft
using externally mounted, movable telescoping appendages are
studied both analytically and numerically. Two types of telescoping
appendages are considered: (a) where an end mass is mounted at the
end of an (assumed) massless boom; and (b) where the appendage is
assumed to consist of a uniformly distributed homogeneous mass throughout
its Tength. From an application of Lyapunov's second method boom
extension maneuvers can be determined to approach either of two desired
final states: close to a zero inertial angular velocity state, and
a final spin rate about only one of the prihcipal axes. Recovery
dynamics are evaluated analytically for the case of synmetrical deploy-
ment. Numerical examination of other asymmetrical cases verifies the
practicality of using movable appendages to recover a randomiy tumbling

spacecraft.
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NOMENCLATURE

c = boom extension rate

hys hys hs = .omponents of the angular momentum vector
along the principal axes

h0 = constant value of h for symmetrical
deployment maneuvea

I Ty I3 = instantaneous values of pr1nc1pa1 moments
of inertia '

I, 15, I = hub principal moments of inertia

Kk ok = moments of inertia at the switching time T, 3f

I, I, I, in the recovery sequence to achieve final
spin about the '3' axis

K = 2pc3

2{t) = time varying length of telescopic appendages

m = boom end mass

2

p = 2 me

t = tine

T = kinetic energy

T, _ = switching time in the recovery sequence to

f achieve final spin about the '3' axis

v = Lyapunov function

ys Woy Wy = angular velocity components along the principal-
axes |

Q = desired final value of w, (wéf)

P : = mass dehsity per unit boom length

wE, Vo = phase angles .appearing in the solutions for _

' wi(t), wy(t) and determined from conditions at -
| t=0,t-= Tgf, respectively

T . = fb(t)dt

8 _ - = nputation angle

. = indicates time differentiation

(0) : = indicates initial conditions
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I. INTRAOUCTION

With the advent of prolonged manned missions in space and
the possibility of in-orbit servicing and repairs to spacecraft
there is an increased interest in studying methods that can be
used to recover a spacecraft from an initial uncontrolled dynamic
state. A recent paper examnined methods of recovering spinning
“satellites to a flat-spin condition by using spin-up thruéters
and multiple combinations of thrusters.1 It was concluded that
the use of such thrusters for ihe recovery operation are often
limited by the weight and propellant capacity of the thruster
system, and also the reliabiiity prbb]ems associated with multiple
thrusters in sequence. Kaplan has described an alternate recovery
system which utilizes a movable~-mass contro] device that is infernal
to the spacecraft and can move along a fixed direction track.z This
device is activated upon initiation of tumble and is programmed via
a control law to quickly stabilize motion about the major principal
axis. 1In a recent related paper3 it was concluded that the mass
“track should be placed as far as possible from the vehicle center of
mass and be oriented parallel to the maximum inertia axis; in addition
the performance of the control system can be improved through Targer
mass amplitudes along the track and also larger mass sfizes.

It is apparent that the location and displacemént amplitude of

~any internal control mass will be Timited by the physical dimensions

of the space vehicle.



Externally movable appendages could aliow for a greater range of
location and displacement amplitudes of such a system; however,
as the size of the appendages increases the flexibility problems -
associated with such structures would have to be considered.

Of interest in this study will be the consideration of the
detumbling dynamics of a spacecraft system with extensible boom-
type appendages along the principal axes. The recovery maneuver from
an initial tumble is designed to approach either of two final states:
(1) close to a zero inertial angular velocity vector and (2) to approxi-
mate a final spin about a principal axis. (It is thought fhat smal}
terminal residual angular rates could then be removed by temporarily
activating on-board damping systems.) A key advantage of this type
of system would be its potential reuse for subsequent detumbling
recovery operations as the need arises.
II. ANALYSIS

A. General Considerations

The dynamics of detumbling a randomly spinning spacecraft using
externally mounted, movable te1escoping appendages are studied both
analytically and numerically. The appendages considered are of vary-
ing length and could represent extensible booms or a tether connected
to the main part of the spacecraft. Two types of telescoping append-

ages are condidered: (a) the case where an end mass is mounted aﬁ
the end of an assumed massless member (end mass moving) as shown in
Fig.1(a);anid (b) where the appendage is assumed to consist of a uni-
formly distributed, homogeneous mass throughdutrits length (uniformly

distributed mass moving) as shown in Fig.{l(b).



The extensible boom type appendages are assumed to originate
from the center of the hub along the three principal axes. The
desired final states of the system considered are: (1) zero inertial
angular velocity vecior and (2) a final spin about one of the principal
axes, The necessary conditions for({asymptotic)stability during the
detumbling sequences are determined using Lyanunov's second method,

B. End Mass Moving

1. Development of Kinetic Energy

The configuration of the system, where the end masses are assumed
to be attached to the end of massless rods along all three principal
axes is shown in Fig.1{a).The end masses are assumed to be identical

(i.e. m, = m). The rotational kinetic energy of the system can be

developed in terms of the hub inertias (I;*) and boom lengths as:

) 2 0 2 - 2 2 2
T ='% [{I? tomleg + 2g)} wp + {I, + 2m(2g *+ 21) ),
. 2 5 2 2 .2 .2
+ Ik 2m(ey + 2y)} wg 4 2m(L) + g, + 45)] (1)

* 2 2
I, + 2m(%, + 23)

1

-Pefining, 1

* 2 2 ' '
12 = _Iz +2m(ng + 21) (2)
Lk 2 2
1= I+ 2m(ey + 89) s

Eg. (1) can be rewritten as:

] 2 2 o, 2 .2 .2
T = -2- [Ilwl + 12!1)2 + -Iawa + zm(g‘l + 9'2 + 23)] (3)



If the extension rates are assumed to be constant, Eq. (3)

can be expressed:

T ='% [Ilm? + Izw: + Iamz] + non-negative const. (4)
Here the moments of inertia are time varying as the length of the
booms varies during extension,

2. Achieve Zero Inertial Angular Rate

{(a) Lyapunov Function-Kinetic Energy

The desired final state_of the system is w, = 0. A suitabie
Lyapunov function, in the state variabies w,, w, and ws, is the
sys tem rotational Kinetic energy which can be written as:

V=T-= [Ilwi + Izmz + Isng + non-negative const. {5}
The Lyapunoy function, V, is positive definite in the state variables
selected; for aéymptotic stability 0 will now be examined.

Differentiating Eq. (5) with respect to time, there results:

.-'I.' 2 iz L] 2 L] . ) .
V= ﬁ'(Ilml + 12w2.+ 13w3 + lewlwl + 212w2w2 + 21 30403) (6)

Euler's equations of torque-free motidn can be viritten in the follow-

ing form:
F‘l = (‘ﬂahz -~ m2h3 = i1‘"1 + 11(:31 (73)
h, = why ~ why = Ing + Iswp ' | (7b)
h3 = wohy - mlhz = 13w3'+ Ism3 (7c)



Multiplying Eq, (7a) by w,, Eq. (7b) by w,, and Eq._(?c) by wsg,
and adding we obtain the following:
. . . 2 2 2
Lwwy + Towaup + Tawgwg = = (Iyoy + Ipwp + Tqug) (8)

Substituting Eq. (8) into Eq. (6), there results:

. ' 2 ¢ D . 2 .
V=- (Ilwl + I2m2 + Istﬂs) (g)

S

From Eq. (9), we conclude that v is a negative definite function in the
state variables only if il, iz, ia >0,

Here it is seen that when the rotational kinetic energy is used
as a Lyapunov function expressed in terms of small amplitudes of the
inertial angular velocity components, that the necessary conditions
for asymptotic stability are satisfied for positive constant hoom
extension rates and three orthogonally mounted sets of booms along
the hub principal axes. This means that as time becomes extremely
large (and boom lengths become infinite) it would be theoretically
possible to achieve a zero inertial angular velocity state. (OF
course, such a situation will, in practice, not occur due to finite
Tength appendages and the presence of large amplitude rates for the
general situation of an initial random tumble. However, it will be
of interest to simulate how much of a random tumble could be removed
'by this process where stabjlity is ncw considéked in the global sense
about wy = 0.) The selection of rotational kineﬁic energy as a Lyapunav
function has also been used by Edﬁards and_Kapians for the syéfem treated

in Ref. 2.



(b) Analytical Solution
As a special case when the spin axis is an axis of symmetry

(I, = 1, = 1) during deployment, Eqs. (7) become:

hy +b(t) hy = 0 (10a)

hy - b(t) hy = 0 (10b)

hs = ho = const (10c)
where |

b(t) = ;?ig)l;(igt) fy (1)

Introducing « = sb(t)dt Eqs. (10a) and (10b) reduce to,

dhy _ |

-a-{-— + h2 = 0 | (12&)
dha _

= - hy = 0 | (12b)

which are in the standard form of the two dimensional harmonic

oscillator. The solutions to Egs. (12) can be written as 4,
* ' * i ' *

hy(t) = q, €Os T =gy COS (ID b(t)dt + ¢,) (13)
e *.

hy(t) = gy sin = ay sin (55 b(t)dt + yy) (14)

The solutions given by Egs. (13) and (14) are’identical with those
previously given hy Hﬁghes as & cpecial case of his approximate
ana1yt1ca1 solution for the'motion duhing depToyment of a spacecraft

with telescoping booms where the nutation ang1e remains sma]].s



We apply this solution to the symmetrical configuration of
Fig. 1(a) where the moments of inertia about the principal axes
are expressed, for the case of a uniform extensiun rate, ¢, along

all three axes, by:

% 2 * 2
I = I+ 4mg = I_ + 2Pt
* 2 * 2
I, =1 +4dme = I +2Pt (15)
* 2 * 2
I, = I + dmg = I3 + 2Pt
2
“and P = 2mc

Using Egs. (15) in Eq. (11) we obtain:

ho 1 1 .
b(t) = »p {@Es ~ @} (16)
1 2
where d = VIJZF  and d, = VT52F (17)

Introducing Eq. (16) in Egs. (13) and (14), and after performing the
integration, the solutions for the transverse angular velocities are
obtained as:

* he 3 t ] -1

-1 £ *

g, cos[ 7 H}ta" a az~tan 8;']+ Yol |

w () = | %% P2 (18)
S O N S TE
~9p sin [ {gqrtan qo- gptan g I vl

wy(t) = % ¥ 2Pt% _ (19)



*
where q; and &3 are determined jrom the initial conditions.

From Eq. (10c), the angular rate about the '3' axis s written,

*
13 013(0)
Ig ¥ 2Pt (20}

Cwg(t)

we observe here for large vatues of t, the solutions for the anyular

velocities lead to the form:

oy (t) =const/(1: + 2Pt0), 5= 1,2,3 (21)

This equation indicates that the magnitudes of the angular velocities
decrease during extension of the appendages, with the square of the
elaysed time,

3. Achieve Final Spin About One of the Principal Axes

(a) Lyapunov Function-Medified Kinetic Energy

The desired final state of the system is: w; = 0, w, = 0 and
vy = wge = R Using the state variables: w,, wy, and wg - 2, the
Lyapimov functicn is defined as the modified rotational kinetic

energy, which can be written as:

1 2 2 2
V=5 [I,my + Tou, + I, (g - 2) ] (22}

Here V is positive definite in the state variables selected. Differ-

entiating Eq.'(22) with respect to time, there results:

. ] . 2 . 2 . 2
V = 7 [Ilwl + Izmz + 13(0.!3 - Q)

+ 2Lwguy + 2 Ly, + 2 1 (uy~ )as] (23)
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Using Eq. (8) in Eq. (23), we obtain,

Ve e Lhek 4 el i L )Ha 1, - (L, + Iye.) 24)
- 'g( 149 2 ag/Taee 1g = iU 3k, (

For symmetry about the '3* axis during extension:

L ]

hy = Tqug + Iyug = 0 (25)

Eq. (25) is used in Eq. (24) to obtain:

* L]

2 . 2 . 2 2
Vr g [l + Loup + 15 (wg = 8 )] (26)
After rewriting Eq. (26) in terms of the state variables,

] 'I * 2 . 2 . 2 *
V:—?-[Ilwl-l-lzub '*'13 (w3 "'R) ]"' Isn (lﬂ3'n) (27)

Also from Eq. (25), the solution for ws(t) is given by,
*

wg(t) = Isws(O)/I3 (28)

We conclude from Eq. (27) that V is negative definite in the state

variables only if:
wg = D il, I, >0, and I3 > 0 for uy > 0

Thus for the case where a spin about one of the principal axes

is a desired final condition, a modified form of the kinetic energy

can be used as a Lyapunov function.

BT



Here the final state can be achieved by extending ail telescoping
booms until the desired spin rate is reached and then continuing
the extension of the set of booms along the nominal spin axis until
the transverse components of angular velocity reach an acceptahly
small amplitude {within the limitations of boom length), It should
be noted that if we allow wy < n and ia # 0, there will be a
difference in sign between the third and fourth terms in Eq. (27).

{(b) Analytical Solution

The time at which wy = wze = @ will be denoted by Tag,

At t = T3f,
* *
- - 2
I,=1,=1"42p (T3f) (29)
}* = 1% 4 2p (T )2 ' (30)
3 3 V' 3f

For t s Ty, the solutions for the angular velocities can he obtained

from Eqs. {18), (19) and (20).

For t » Tsf,
% . N
I, = const = I, + 2P (T3f) | (31}
~% 2 2 2
o= 1%+ P(Tgp) +PE = Ip 4 Pt (32)
) * * -
where - If =1 + P(Tsf) . (33)

From Eq. (11), and using Eqs. (31) and (33}, we obtain

-
b{t) = Wy { I ia t.' -1 : (34)

-12-



Introducing Eq. (34) into Eqs. (13) and (14), the solutions for

the angular velocities for t > Taf are,

-k
I3 t T
—a R D WAL TS
qﬂcos[waf[VTE_F_ {tan. (J—T¥/P )-tan (Jfgﬂ;_ )}-L+T3f]+wo]
wy(t) = (I* + Pt2)
f (35)
i, | T
-1
q,5inlu, [/-——— {tan” If/P )-tan~! /f;ﬂ;‘ Varp o ) 1=tT, J+w ]
wy(t) =
2 (1* + Pt2)
f (36)
and from Eq. (}0c),
wy(t) = wsf = const (37)

Here q, and v, are to be determined from Eqs. (18) and (19) at
t = Tsf and should not be confused with q% and wz which are determined
at t = 9,

For large vatues of t, Eqs. (35) and (36) reduce to the form,

4, €os (waf % const X t + const)

0y = I% + P2 (38)

q, Sin (wsf'x const x t + const)

I; + P2 | | (39).

~13-



The above two equations indicate that the frequency of oscillation
approaches a constant value and the magnitude of the oscillatiun
decreases with the square of the elapsed time.

The time, t = T3f, at which the extension of the booms along the

"1'" and '2' axes are stopped can be determined from h, = 0, yielding
3

R | _I_a_(_a&_si
ooy Yag  (40)

C. Uniformly Distributed Mass Moving

the result:

1. Achieve Zero Inertial Angular Rate
(a) Analytical Solution
The desired final state of the system is Wy = 0. The booms con~
sidered are assumed to have a uniformly dist{ributed mass (p) along
their lengths., ' The same procedure as adopted'in the case of the
moving end masses dan.be applied here to obtain the solutions for
the angular velocities. Here we present only the final results.

The solutions for the angular velocities are given by:

* ¢ %
g, cos { 6 b(t) dt + ¥ }

w(t) = _ :
b ' | %- kt3 (41)
qz-sin {_ét b(t) dt + w: }
x-*+§- Kt | (42)
*
o L5 ug{0) |
wy(t) = e : . '
I3+ 3Kt : (43)

.~ .and K= 2 pc3

~14-




In Egs. (41) and (42),

t 3 2 2t - da
J b(t) dt = EKE [ 1 enf (dB 4+ t) }4 1 tan-l{ )
0 6d? 43 - dtrt2  d3/ T d3v 3
2
. 1 (dy + ) 5 _ _1 -1 2t -dy
T = Tl e dh
(44)
* *

3 _ 3l ) |

dy =<¢ and d,, = '-ETE (45)

2. Achieve Final Spin About One of the Principal Axes

(a) Analytical Solution |

The desired final state of the system is w, = 0, w, = 0 and
wy = uge = R For ts Ty the solutions for the angular velocities
can be obtained from Eqs. (41), (42) and (43). For t > T3f, the

solutions for the angular velocities can be obtained as:

q_cos{ ft b{t) dt + ¢ }
0 T 0

i

w, (t) =
o I:+%Kt3 -~ (46)

q_ sin{ s/Eb(t) dt + v )
1] T 0

i
wz(t) = : * 1 q (47)
If'l'jKt
m3(tj = w3f = cpnst '. | (48)
where 17 = 1%+ K (T, )3 ' _ | (49)
f 3%



In Eqs. (46) and (47),

¥
2
£70(e)de =0y [ === U= (pgyie)
3 f 5 5 5
£
! B T
+ e——e— tan - + 50
T W (50)
*
Lk 2 3
I, I3 + 3 K(T3f) (51)
3 1:
3 1
dg =—¢" (52}

The time Tsf’ at which the booms along the '1' and '2' axes are stopped,

can be obtained as:

315wy (0) us
T3 -1 2K Wy ! (53)

III. NUMERICAL RESULTS
A. End Mass Moving

A typical detumbling maneuver for an initially uncontrolled
spacecraft is illustrated in Figs. 2 and 3. In this example because
of'symmetny the uncontrolled torque-free nutation (Fig. 2) ¢5h be
theoretically predicted, This motion is also represented by the
dotted curves cbrresponding to a zero bdom extension rate (ci = 0)'
in Figs. 3. The effect of extension rate on the recovery is illustrated

| in'Figs. 3(a) - (c). For 5ma11 extension rates (up to 1 ft/sec) the

oscillatory nature of the transverse motion is not removed until after

=16~



the first cycle; the advantage of considering higher extension rates
(at the expense of on-board powar) for an initial fast tumbling is
epparent, It should be noted that at a given time in these figures
different boom lengths are represented according to the extension
rate. For example, with an extension rate of 4 fi/sec after GO ft.
of extension along all three principal axes the angular velocity
components have been vreduced by more than a Tactor of 10 and, if
240 ft. of boom could be extended, by a factor of over 300, Removal
of this residual angular velocity could then be achieved by temporarily
activating on-board damping devices. Then the appendages could be
retracted and would be ready for subsequent reuse as necessary.
Numerical examination of other cases for asymmetrical hubs
also verifies the practicality of using movable appendages for the
initial detumbling of randomly spinning spacecraft (Figs. 4(a) and
(b)), The numerical simuiation results for an asymmetrical spacecraft
are compared with the closed form solution for a symmetrical extension
and it is observed that the closed form solutions are only applicable
when the asymmetry is small. Although the moving end mass system s
effective in reducing the magnitude of all components of the angular
velocities, for the masses considered here it will not effectively |
reduce the initial nutation angle dﬁring the respdnse time simulated.
For the symmetrical dep]pyment shown ip Fig. 4 the initial nutation
angle of 27.89 degreés'is maintaihed, bhereas for the asymmetrical
case, an initﬁal nutation angle of 29.09 degrees is 1ncreé§ed withih

3.5 seconds to 36.95 degrees and maintained up to the 60 seconds simu]ated.
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The nutation angle is defined here as the angle between the nominal
symnetry ('3') axis and the total angular momentum vector.

Fig. 5411ustrates a recovery maneuver which would result
~in @ final spih about the '3' body axis with a smail transverse
residual. The booms are extended so that the modified rotational
kinetic energy is positive defihite and jts tutal time derivative
is negative definite durihg the maneuver. A1l booms are extended
until Taf at which time w, = maf. Then, only booms along the + '3
axis are extended to reduce the transverse residual components. At
the switching time, Taf: the effect of any lag fn the system has not
been considered here but should be considered in the design and per-
formance of the actual system., From the figure it can be seen that
the frequency of the response of the transverse componehts of the ' ;
angular velocity is essentially constant in the terminal part of the |
maneuver (consistent with the discussion in connection with Egqs. (38)
and (39)).

A comparison of the recovery maneuver of an asymmetrical spacecraft
with that of a symmetrical spacecraft to achieve a final spin along the
'3' axis {s shown in Figs. 6(a) and (b). The.ca1cu1ated Taf for the
symnetrical spacecraft is used for stopping the booms aleng the ‘1!
and '2' axes. It is observed that using this logic the final M3f
reaches a lower value {1.8 rad/sec) when compared with the desired -
final value (2.0 rad/sec). Also we notice from Fig. 6(a), the response

of w,(t) for the asymmetrical case differs from that of the symmetrical |

case. o : o : o ' ' :

-18-




This is due to the increase in the.order of the system equations

for the asymmetrical extension (i.e. - three first order differential
equations must now be considered), It should he pointed out that
after Tsf’ for the asymmetrical case, the time response of wy is not
exactly a straight line as apparently indicated in Fig. 6{a) but also
consists of small amplitude oscillations superimposed about this
straight line solution. For larger asymmetries this oscillation
would become apparent within the plotting séa]e shown and the
difference between w3f achieved and desired would also increase

using the open loop control logic of switching the extension sequence
at a pre-set Tsf- It should é]so be noted that the nutation angle,

for both cases, does not vary greatly after Taf-

B, Uniformly Distributed Mass Moving

For the case of a spacecraft with a uniformly distributed
mass along the.boom Tengths a typical detumbling maneuver is illustrated
in Figs., 7{a) and (b) for a symmetrical and asymmetrical hub, respectively.
If 240 ft. of boom could be extended the total mass of.each appendage
would be about 1 slug. The effect of the increased appendage mass
(when compared with the casé of Figs., 3. and 4)is inmediately apparent
by noting the extremely small amplitude of the residual angu1af velocity ~
of the order 10"4 rad/sec. The nutation angle behavior for both dases
of deployment is essentially the same as already descrjbed in connection
with Fig. 4.

A representative recovery operation to achieve a final spin about

the '3' axis with this system is shown in Figs. 8(a) and (b).

-9




A comparison with the results of Figs., 6{a) and {b) clearly demonstrates
the effectiveness of the heavier boom after the switching time. In
addition, after approximately 40 seconds a drastic reduction in the
ndtation angle is also apparent - a result not achieved by the Tighter
end mass system. Despite the obvious advantages of using a more
massive appendage there are, however, two practical considerations
that have been ignored: (1) the increased weight of the payload
package and (2) the effect of flexibility on the assumed rigid body
dynamics simulated here,
IV. CONCLUDING COMMENTS

As an application for spacecraft rescue and recovery, when booms
are extended along all the principal axes to detumble a symmetrical
spacecraft, exact closed form analytical solutions can be obtained
for all three angular velocities of the spacecraft. |

Boom extension maneuvers can be determined to approach either
of the two desired final states using Lyapunov's second method. The
conclusions are that: (1) as time becomes extremely large (and boom
lengths bpcome infinite) it would be theoretically possible to achieve
a zero inertial angular velocity state {of course, such a situation will,
in practice, not occur due to finite length booms); (2) the final spin
about one of the principal axes can be achieved by extending all tele-
scoping booms until the desired spin rate is reached and then continuing
the extension of the set df booms along the nominal spin axis until the
transverse components of angular velocity reach an acceptably small

amplitude,

- 20~



Numerical examination of other cases for asymmetrical hubs
also verifies the practicality of using movable appendages for
the'initial detumbling of randomly spinning spacecraft,
An advantage of the telescoping system as used in the recovery
of tumbling spacecraft is its potential reuse. The booms can be
retracted at the end of each recovery operation once the small
residual angular velocity components have been removed by temporarily
activating on-board damping devices. The constraints on such a system
are: (1) the Timitations on the extension rate, and boom lengths that
are practicable; (2} the Timitations on the rate of initial tumble
that could be handled by the system without compromising iis structural
integrity.
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FIG. 1, SYSTEM GEOMETRY I'OR DETUMBLING MANEUVER
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