@ https://ntrs.nasa.gov/search.jsp?R=19750014295 2020-03-22T21:34:22+00:00Z

"(NASA-CR-142703) THEF DYNAMICS OF SPIN N75-22367}
STABILIZED SPACECRAFT WITH MOVABLE |
APPENDAGES, PART 1 Final Report (Howard '
Univ.) 121 p HC $5.25 CSCL 22B Unclas J

63718 20362




M 75333671
HOWARD UNIVERSITY
SCHOOL OF ENGINEERING
DEPARTMENT OF MECHARTCAL ENGINEERING
WASHINGTON, D.C. 20059

FINAL REPORT
NASA GRANT: NGR-09-011-053 (Supplement No. 1)
THE. DYNAMICS OF SPIN STABILIZED SPACECRAFT WITH.
MOVABLE APPENDAGES
(PART 1}

by

Peter M. Bainum
Professor of Aerospace Engineering
Principal Investigator

and

R. Seilappan
Graduate Research Assistant

May 1975

e o X
AL TECHN
’ INFORMATION SEfgsfb&LE

US. DEPARTMENT OF COMME
L ... . . SPRINGFIELD, VA. z_%‘:'%f““‘ |



ABSTRACT

The motion and stabi]ify of spin stabilized spacecraft with mov-
able external appendages are treated both;analytically and numeri-
cally. The two basic types of appendages considered are: (1) a
telescoping type of varying length and (2) a hinged type of fixed
length whose orientation with respect to the main part of the space-
craft can vary. Two classes of telescoping appendages are considered:
(a) .where an énd mass is mounted at the end of an (assumed) massless
-boom; and {(b) where the appendage is assumed to consist of a uni-
formly distributed homogeneous mass throughout its length.

For the telescoping system Eulerian equations of motion are
developed. During all deployment sequences it is assumed that the
transverse component of angular momentum is much smaller than the '
component along the major spin axis. Closed form analytical solutions. .
for the time response of the transverse components of angular veloci-
ties are obtained when the spacecraft hiub has a nearlyASpherica1.mass
distribution. For the more general case, a series solution is
obtained and this solution is Timited by its radius of convergence.
'The cbmparison of the different approximate analytical methods with
numerical integration results are studied.and it is observed that the
oscillatory nature of the responses of the transverse angular velocity
components reduces rapidly with faster extension rates.

As an application for spacecraft rescue and recovery, booms are

extended along all principal axes to {(a) detumble a symmetrical

Preceding _p“age_b'laﬁﬂ 0



spacecraft, and (b) achieve a desired final sp1n about one of the
principal axes. From an application of Lyapunov's second mnthod boom
extension maneuvers can be determined. Numerical examination of
detumbling for asymetrical hubs also i§ considered. The use of tele-
scoping systems for detumbling a randomly spinning spacecraft to.
achieve a desired final state in a time optimal manner is studied and
if is found that simple boom extension maneuvers atone can not be used
to achleve the ‘desired state in minimum time.

The equations of motion for the hinged system are developed using
the Quasi-langrangian and the general Lagrangian formulation. In this
formulation there is no restriction on the location of the hinge

points.
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I. INTRODUCTIOH

A number of spin stabilized spacecraft have long appendages which
nominally lie in the plane of rotation ﬁekpendicu1ar to the desired
spin axis. These appendages might be on-board antennas which must be
extended in orbit after the initial injection sequence. The extension
of on-board antenna booms is usually done with the use of motors
located in the central hub of the spacecraft. The dynamical aspects
‘of such spacecraft have been discussed in the recent ]1terature.1 |

0f special interest is the stability of tha system during the
initial extension of boom-type telescoping appendages. An early
investigation considers this problem for the case of telescoping type
appendages consisting of two end masses at the ends of massless rods.
It is assumed that the extension maneuver is resiricted to a plane
which is perpendicular to the nominal spin axis and that both the
system angular momentum and kinetic energy are conserved during this
maneuver. In addition the transverse components of angular velocities
are assumed to be zero during extension. Under these assumptions it
is seen that the resuiting Lagrange equations of motion will yfe]d an
- apprdximate analytical solution for 1imiting values of initial tfo
final moment of inertia ratios.2 A more recent treatment using an
Eulerian formulation considers the extension of rigid booms where the
transverse component of angular momentum remains less than the polar

component throughout extension. For the special case where the spin

axis is an axis of symmetry the linearized equations can be solved



ana]ytica]]y.3 A similar approximate solution has also been obtained
previously under the same type of assumptions.4

The first phase of the current studylwi11 examine the three
dimensional motion of a general spinning épacecraft system with mov-
able telescoping appendages during the initial deployment manuever.
During all initial (nominal) deployment sequences, in accordance with
actual practiﬁe, it will be assumed that the transverse component of
angular momentum is much smaller than the component along the major
spin-axis. The dynamics of such a system will be studied using a
variety of analytical techniques for special cases and numerical
methods for the general case.

It is thought that by using movable and/or extendible booms the
recovery of é tumbiing spacecraft by passive means may be feasible.
Methods of recovering spinning satellites to a flat-spin condition
using spin-up thrusters and multiple combinations of thrusters were
examined in a recent paper.5 t was concluded that the use of such
thrusters for the recovery operation afe often Timited by the weight’
and propellant capacity of the thruster system, and also the reliabi-
1ity problems associated with multiple thrusters in sequence. Kaplan
" describes an alternate recovery system which utilizes & movable-mass
control device that is internal to the spacecraft and can move along
a fixed direction track.6 This device is activated upon initiation
of tumble and is programmed via a control law to quickly stabilize

7
motion about the major principal axis. In a recent related paper it

2



was concluded that the mass track should be placed as far as possible
from the vehicle center of mass and be oriented parallel to the maxi-
mum inertia axis; in addition the performance of the control system
can be improved through larger mass amp1{tudes along the track and
also larger mass sizeé.

It is apparent that the location and displacement amplitude of
any internal control mass will be limited by the physical dimensions
of the space vehicle. Externally movable appendages could allow for
a gfeater ranée of location and displacement amp}itudes of such a-
system; however, as the size of the appendages increases the flexibi-
1ity problems associated with such structures would have to be con-
sidered. |

Of interest in this study will be the considerétion of the
detumbling dynamics of a spacecraft system with extensible boom-type
appendages along the principal axes. The recovery maneuver from an
initial tumble is designed to reach either of two final states: (1)
close to a zero inertial angular ve]oéity vector and (2) to approxi-
mate a final spin about a principal axis. (1t is thought that small
terminal residual angular rates coﬁ]d then be removed by temporarily
‘activating on-board damping systems). A key advantage of this type
of system would be its potential reuse for subsequent detumbling
recovery operations as the need arises.

For the case of time optimal threé-axis control of the nonlinear

norm invariant system it is an established fact that the control



torques about each axis must be proportional to the instantaneous
angular momentum components about each axis, respectiver;B’g it is
doubtful that such a time-optimal control torque could be generated
only by boom extension techniques. However it may be possible to
consider a combination of movable end masses and optimal control jets
for three-axis control of a tumbling spacecraft. In the event of

jet failure the movable end masses could certainly be used as a back-
up re-usable system for detumbling: (even if they cannot effect time-
-optimal recovery).

Other types of spacecraft employ fixed length appendages {hinged
. systems) whose orientation relative to the main spacecraft is changed
during the deployment maneuver. The dynamiés of this type ofhfixed
length appendages during the deﬁ]oyment maneuver with rigid appendages
have been studied only for the case where the transverse components

of the angular velocity vector are assumed to be zero throughout
dep1oyment2 and where the hinge points are located on the hub's prin-
cipal transverse axes.2 The general three dimensional deployment |

dynamics of such a hinged system will be considered here without any

restriction on the Tocation of the hinge points.



11. MOTION DURING DEPLOYMENT OF TELESCOPING SYSTEM .

1. General Considerations

The motion and stability of spin stabilized spacecraft with
telescoping appendages are studied both analytically and numerically.
The telescoping appendages considered here are of varying length and
could represent extensible antennas or a tether connected to the main
part of spacecraft. Two types of telescoping appendaées are consid-
ered {Fig. 2.1): (a) the case where an end mass is mounted at the
‘end of an (assumed) massless boom (end mass moving) and (b) where
‘the appendage is assumed to consist of a uniformly distributed, homo-
geneous mass throughout its length (uniformly distributed mass moving}.

The torque free equations fqr a spacécraft with varying moments

of inertia are:

h]_ = w3h2 - m2h3
l:lz = wlha - !.l)shl | (2-1)
hy = wzhy - wihy

where hi(t) = I;(t) uy(t) (2.2)

Making the approximation:
|h1|; Ihzl << |h3|

and hy = hy = const.



the equations for h; and hp become

hl '-". "az(t) hz

h, = a,{t) hy

Here a;(t) and a,(t) are defined as:

(15(8) - 1,(8))
a(t) = 1,(t) 1,(t) "o

) (I5(t) - I2(t))
22{t) = ) (Y

0

As a special case when the spin axis is an axis of

a,(t) = b{(t)) during deployment, Eqs. (2.3) and (2.4) become:

0

h1 + b(t) hs

0

|.12 - b{t) hy

Introducing T = Jb{t}dt the above equations reduce to,

dhl

— =0
. h2

ik S
dr ~ M

(2.3)

(2.4)

(2.5)

(2.6)

symmetry (a;(t) =

(2.7}

(2.8)

(2.9)

(2.10)



' 10
The solutions to £qs. (2.9) and (2.10) can be written as

% % t *
hy(t) = q, €0s T = q  COS (£ b(t)dt + wo) (2.11)
h,(t) = g sin t = qp sin (sF b(t)dt + vg) (2.12)
) 0 . .

The solutions given by Egs. (2.11) and (2.12) are identical with those
given in Ref. 3.

For the general case where there fs no axis of symmetry during
depfoyment the following approach is taken. Differentiating £q. (2.3)
_with respect to time and using Eq. (2.4), the resulting equation for
h, is: . |

By - 820 st an(t) by = 0 (2.13)
az(t) ‘ ,

Similarly the equation for h, results as:

Ez - gf%%%'az + al(t) az(t) hé =0 : -(2.14)

Eqs. (2.13) and (2.14) will be extensively used in tﬁe*fo]]owing

sections.

2. End Mass HMoving

a. Analytical Solution for Asymmetrical Deployment
The telescoping system, where the end masses are attached at
the end of massless rods along the '2* axis, is shown in Fig. 2.1(a).

The extension of the masses is assumed to originate from the center



of the spacecraft hub. The moments of jnertia about the three prin-

cipal axes during the extension are

1, = 1%+ 2me®
. o
I, = I - (2.15)
.ok 2
I, = 13 + 20t

' - . . 2
For a uniform extension rate, £ = ct, and introducing P = 2me” Egs.

(2.15) become:

Il =- IT+Pt2 --'
=10 ) . (2.16)
13'='I§ + Pt
~ From Eq. {2.6)
Ca(t) | 131, - 130

a2(t) ) 1312(13-12) (2.]7)

Using Eqs. {2.16) and their derivatives, Eq. (2.17) can be written
as:
Cap(t) 215Pt
a(t] T (1ipe2)(13-1,+Pt?)

(2.18)

From Eqs. {2.5) and (2.6) with Eq. (2.17}, al(t) az(t) is obtained as:



: (15 - 1)) (I3 - I2) ,
ay(t) ax(t) = TR hg
a1 2.

(2.19)

Iy - D3+ P - 1) .
I3 P2 (17 4 PE2) Iy O

{2.20)

" Egs. {2.18) and (2.20) are used in Eq. (2.13) to obtain the fol-
Towing second order ordinary differential equation for hy:

213Pt by -, (5 - DY - 1E + pngh

Hl“* VA x Z * Zy2 g% 2y 1*
(I, + Pt)(1; + I, + Pt%) (I, + Pt7) (11 +PtT) I (2.21)

From Eq. (2.5),

. 2- 2-
a(t)  hils - Ish (2.22)

The second order differential equation for hp is obtained in a procedure
similar to that used for h;. Using Egs. (2.22}, (2.16) and (2.20} in
Eq. (2.14) we obtain the result as:
b, + (13 + 13 + 2pt%) 2Pt
(17 + Pt2)(1] + Pt?)

*
(15 - ID(I5 - 1, + Pt?) h) h,
(15 + Pt5)° (1T + Pt%) I




It can be seen that Egs. (2.21) and (2.23) contain time depéndent
coefficients with comp?éi reguiar singular points for the case of

positive boom extension rates (P > 0).

As a special case, for a nearly spherical hub (I} =.I; =13 = 17)
Eqs. (2.22) and (2.23) reduce to:
, 21* Pt b, - .
My - (I¥ + pt2)(21* + Pt?) 0 (2.24)
4Pt h, |
h (2.25)

L
z (1" + pt?)

Eq. (2.24) can be written as: -

~h

—

N - 21%pt
1 (1% + pt?)(21* + Pt?)

!

=l

N 1 |
= 2Pt -
z[:;* +Pt2 21% 4+ Ptg:] (@

Integrating with respect to time,

. I* + pt?
hy = C [%E;j;7ﬂ;g—lv - | (2.

Integrating once again, we have,

h(t) =C [t - o .,_JL____::] +D (.

10

26)

27)

28)



where C and D are constants which are determined from the initial

conditions. From Egs. (2.2}, (2.16) and (2.28), the solution for

)

w,{t) is given by:

*
cre - /L tan-l(__i&_._) ] +D
(t) ) 2P ‘JZI*/P .
wy(t) = T (2.29)
At t = 0, from Eq. (2.29), w,(0) = D/T* (2.30)
From Eq. (2.27), 0 (0) = T% (0) = €/2 (2.31)

Eqs. (2.30) and {2.31) are used in Eq. (2.29) to obtain the final

expression for “1(t) as:

| . ' - £
C0y(0) + 26, (0)1t - JT72P tan | ()
ml(t) = . Pt2 (2
1+
Eq. {2.25) can be written as,
b, __apt
== 0% + pt?) | (2

S
ho

This is an exact differential equation and after integrating with

respect to time,

Flz = B : (2.

1

.32)

.33)

34)



Integrating once again, we get

h(t) = = | 5= — + 7% tan” { === )|+ F {2.35)
2 . I I 1™ 372
ettt ) 203) / e

~where E and F are constants which are determined from the initial con-

~ditions. From Egs. (2.2), (2.16) and (2.35), the solution for w,(t)

is given by:

o ler e SR
mz(t) =< |== ~ w1 5 tan (ﬁ) + F| {2.36)
I" {P ZE—(t2+.£—) 2(}*)3/2 Y17°{P
P P 2
At t = 0, from Eq. (2.36), w,(0) = F/T* (2.37)
From Eq. (2.34), hy(0) = *4,(0) = E/(1%)? (2.38)

Using Egs. (2.37) and (2.38) in Eq.,(2.36), the expression for wy(t)

becomes .
w.(t) = w (0) + & (0) It 1 an ot ! (2.39)
2. _'2 ’ 2 ep (tZ +__1_;_) T5/P (\/I_*ﬁ)

In general, for a symmetrical spacecraft, the initial coﬁditions
vy (0) and w,(0) can be related to w, (0} and w,(0) from the torque-free
precessicn = before the extension begins. However, it should be noted

that such initial angular accelerations may also be caused by other

12



types of external perturbations.

b. Series Solution '
As Eqs. (2.21) and (2.23) cannot be solved in closed form except
_for the special case of a nearly spherical hub, a series solution is
developed for hy(t) and h,(t). A similar type of series solution has
béen previously used to predict the planar librational motion of a
gravity-gradient satellite during boom dep]oyment.]1 Here t = 0 is
an O}dinary point of Eqs. (2.21) and (2.23), and the radius of con-
vergence R is the smallest value of:

f1*

2
P or

—
o= *

The series solution for h, may be expanded about t = 0.in the

form: _ -
h = 2 a ¢n . : (2.40)

Substituting this into Eg. (2.21), we have:

215 Pt ) aﬂ-n-_tn'1

pod . n-2 n=o
Y ayen-{n-1)t -
nso | (13 + PE2)(I% + 15 + Pt2)

k  ckvgek gk L 0.2y 2
(15 - I - I, + Pt )by e

- atﬂ:O .
(1% + Pt2)2 (17 + Pt?) 13 ngo n (2.4)

+

Rearranging and collecting terms in Eq. (2.41), after a number of

algebraic manipulations, we get,

13



0 n -

£ 7[R (n-8) (n-5) -0y (n-8) + 1 aput™
n=4

+ 7 [ 6 (n-6) (n;7) - ¥ (n-6) + Ny ] an_et“'2
n=6
¥ H, 7 (n-8) (n-9) an_é 02
n=§
where Di = 131} (Igﬁz (13 + 1%)
E = I:P_[(Ig)z (17 + 1;1+ 1) +2 I§1§ (13 + 15N
F, = I:PZ[FI:)z + (I, + 1))
6, = 12931 1l + 315
TREEE W AP R il W G R
g, = 20+ IHUNT P k= 2(1)) P
L= h2 (15 - 1)) 1 * - (1))
M= 2020 (1T - 1) P 5 N = hZ (1% - 17) P

1

14

D, J, 20 (a-1t"F 4 nZ?[ E, (n-2)(n-3)-0,(n-2) +L;]a, 5t

n=-2

(2.42)



From Eq. {2.42),

when n = 0, D, a, (0)(-1) =0 ; i.e. a, # 0 in general;
when n = 1; D, a, (1)(0) =03 i.e a, # 0, in general;
when n = 2, D, a, (2)(1) + Ll(ao) = O; and
D,-2-1
Similarly,
a,=- QL) (2.44)
: 01-3-2
D, + 4. 3
as - _ [(3'2‘E1"‘ 3Q1 + Ll)ag + (_"Jl + Ml) al] (2.46)

01'5'4

The general form for the first ten terms can be written as {where it

is understood ay = 0 for j < 0):
an = = [n-2)(n-3)E;-(n-2)Q; + L1} 2y,

+'{(n-4)(n—5)Fl~(n-4)J1 + Ml} LI

+ {(n-6)(n-7)G;~(n-6)K; + N1} ap-¢

+ (n-8)(n-9) H a 1/10-n-(n-1)] (2.47)
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It is seen that the odd coefficients can be related to a, and the

even coefficients to a,. The solution for hy(t) is written as

1t

hy(t) of ant"
n=0
= a, [ F ()] +a, [6,(t)) | (2.48)

where F,(t) contains the even coefficients and G,{t) the odd coeffi-
cients. The constants a, and a; are determined from the initial con-

ditions as follows:

ag = hy(0) = 17 w,(0) u (2.49)
a, = h (0) = Iy &,(0) ~ (2.50)

The expression for w,{t) is given by:

o gy = )
i (t) s P : (2.51)

In a similar way, the series solution for ho(t) can be written

ast-

I by t"
n=o

h,(t)

b, [F(t) 1 +b " [6(t)] - (2.52)

n

~ where Fz(t) and Gz(t) are similar to Fl(t) and Gl(t). The constants
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are related to the initial conditions according to:

©r
n

= 1,(0) = 1} 0,(0) | (2.53)

[

h,(0) = 1} 5,(0) (2.54)

b,

The solution for mz(t) is then given by

0 (t) = h(t)/T} (2.55)

The expression for m3(t) results directly from the conservation of
hs(hg):

(2.56)

¢. Numerical Results.

In this section the results of numerical integration of the non-
"linear differential equations of motion for the most general case are
presented. The purpose of the numerical investigation is twofold:
first, to verify the analytical results obtained and, second, to com-
pare-the motion for different cases considered. The numerical

: ﬁnteération is carried out using the IBM 1130 electronic computer.
The RKGS and RKSCL subroutines are used to integrate three nonlinear
equations with time varying coefficients. The subroutine RKGS]2 uses .
the Runge-Kutta method for the solution of initial value problems.

The purpose of the Runge-Kutta method is to obtain an approximate

solution of a system of first order ordinary differential equations

17



with given initial values. It is a fourth order integration proce-
dure which is stable and.self starting; that is, only the functional
values at a single previous point are required to obtain the func-
tional values ahead. For this reason it is easy to change the step
size at any step in the calculations. The entire input of the
procedure is: (1) 1lower and upper bound of the integration interval;
initial increment of the independent variable, upper bound of the
10ca? truncation error; (2) initial values of the dependent varia-
bles and weights for the local truncation errors in each component of
the dependent variables; {3) the number of differential equations in
the system; {4) as external subroutine sub-programs, the computation
of the r{ght-hand side of the system of differential .equations: for
flexibility in output, an output subroutine. = The subroutine RKSCL
establishes weighting factors for the ervor function. |

A typical time response of the components of transverse angular
velocity for a neér]y spherical hub i; shown in Figs. 2.2 and 2.3.
End mass extension rates of ¢ = 4 and ¢ = 1 ft/sec reSpective1§ are
considered where extension is assumed to occur'only along the '2°
axis. 'For numerical integration Egs. (2.1) and {2.16) are used to
obtain the results. The approximate ana]ytica1 solution given by Egs.
(2.32) and (2.39) and the series solution, given by Eqs. (2.51) and
(2.55) with ten terms present, are compared wifh numerical integration
results. It is observed that the analytical solution corresponds more

closely with numerical integration results when the extension rate is

18



increased. The series solution can be used only in the initia) part
of the extension where the analytical solution also gives essentially
the same result. The series solution is limited by its radius of
convergence as shown for each case. Fig. 2;4 shows the case of Fig.
2.3 where the hub is spherical (analytical and numericaf integration
results are the same) and the same initial angular velocity compo-
nents. Fig. 2.5 is a comparison of the analytical and numerical
intggration results for different initial conditions than those shown
in Fig. 2.3. It can be seen with the numerical integration results
that even though the final magnitudes of the angular velocities are
~ small, the responses differ predominantly for the intermediate time
rangeéf

In Figs. 2.6(a) and (b}, the effect of varying the hub spin-
axis moment of inertia is shown using numerical integration. It is

observed that when the hub spin axis moment of inertia (I:) is

increased from a spherical one (I* = =1r=5 s]ug-ftz), the trans-
3 1 2

verse angular responses tend to become more oscillatory in nature
. during the full deployment time.

~ The effect of varying the end mass is considered next and it is
seen (Fig. 2.7) tﬁat the transverse angular velocity amplitudes tend
to decay more rapidly when the end mass is increased. This tyﬁe of
‘response is due to the increase in moment of inertia when the end

mass is increased.
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3. Uniformly Distributed Mass Moving

a. Analytical Solution for Asymmetrical Deployment

The telescoping system with the uniform]y distributed mass mov-
ing along the '2' axis is shown in Fig. 2.1(b)}. The extension of the
telescoping system is considered to originate from the center of the
spacecraft hub. The moments of inertia during this deployment can be

expressed by,

S1ta2

Il Il + 3 pt

I, =1, ' (2.57)
i} 2,3

=1, + 502

3 3
where p = linear density = mass/unit length.

With £ = ct and K= 20c3, Eq. (2.57) can be written as:

3

=1+ 5t

I, = 13 | (2.58)
3

I3=I;+§t

Following the same procedure as used for the case of the moving end
mass the angular momentum equations for hy and h,, from Egs. (2,13) and

(2.14), can be developed to yield the following:
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1, Kt? . (1% 1% - 1F £5) ,
Kt
gk e K ar - K
3
2kt® Kt
MG TS e o IS € SIS SO 16 00 iy
2
h,* , h,+ - - hsh, = 0 (2.60)
' * 5_1:__ « Kt3 2. Kkt x  Kt°o o«
(144 {1+ 737) (134 737) (I, + 37},

As a special case, for the nearly spherical hub

* * * * . 3
(I1 =1,=1,= 1), the above equations can be approximated by:

- 3 1*h
hy - . (2.61)
(1% + Kt
3.
- 2Kt? h
h, + m = 0 (2.62)
Eq. (2.61) can be written as
Hl . 3&3 . . (2 63)
hl (a3 + . _
. .
where ad = %_ | : (2.64)
Integrating Eq. (2.63)
. - B
hy = Ry > (2.65)

a’ + t3

where R, is a constant. Integrating again and introducing the initial
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conditions the solution for w;{(t) can be obtained as:

Ry a . {t+a)? a -1 BtQa T
wy(0)+ I*[t a3 £n{m}-—ﬁ-{tan (m-) + -6—-}]
wy(t) = (2.66)
1+ t3/a3

The constant Rj cannot be determined from the initial conditions using
Eq. {(2.66), since at t = 0, R; is indeterminate. A series solution
(about the ordinary point t = 0) of Eq. (2.61) can be developed to

yield:

b 3 &
01(0) + Rzt [V -+ 2o ]
w (t) = (2.67)

1+ t3/a3

Here a]so_the.constant Rz cannot be determined from the initial condi-
tions using Eq. (2.67);

A different approach is now adopted using the parent equations of
_Egs. (2.59), (2.60), i.e. Eqs. (2.3) and (2.4), to evaluate R; in Eq.
(2.66). The equation for ﬁl is obtained from Egs. (2.3}, (2.6), and
(2.58) as below: o

h1 = -az(t)h2
3
LR R i
- h, h, (2.68)

Tk L KE3y g%
(I, + _§_J I,

For the case of a nearly spherical hub, Eq. (2.68) reduces to the

following equation, using Eq. (2.64),
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[} t3
hy = : hoh 2.6%
1 oy o . (2.69)
Equating Eqs. {2.65) and (2.69) we obtain:
- % ' T
Ry= ~hgh,/1 (2.70)

~Using the initial condition, h2(0), and recalling that h, = Ig wy(0) =

_1*w3(0), the constant may be evaluated Ey,
R, = = I* 43(0) w,(0) (2.71)

Using Eq. (2.71) in Eq. (2.66), the solution, w,(t), results as:

e i apn g (t +a)sy, _ a =1 2%-ay 1
gl(o) mg(o)wz(o)(t Eﬁn (At T4/} - _ES{tan (__:FJ+EJ]

- 2 2
o (t)= t2-atta 3 a3
1 + t3/at
: (2.72)
Eq. (2.62) can be written as
o 2 '
22'_ = - ._._.__2_K.E....3_. (2.73)
h2 (1* + K2 '
3
Integrating Eq. {2.73), we get
. S
h; = ! (2.74)

(1 + K£2)°

where S; is a constant.

Integrating again, and introducing the initial conditions, the solution

for w,{t) results as:
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. 2
() = wy(0) + 2 AN PG L

3 ad¥a+otd 3 a2 - at + t?
2a - -1,2t - a T o
+ — {tan + =1 2.75
g T O T e (2.75)

b. Numerical Results j

Figs. (2.8) and (2.9) represent a typical comparison of analyti-
cal Qith numerical results. Extension rates ¢ = 4 and 1 ft/sec,
respectively, are assumed for an asymmetrical deployment only along
the '2' axis. The analytical result is obtained using Egs. (2.72) and
(2.75). Numerical integration results are obtained using Egs. (2.1)
and (2.58); The analytical approximation improves with the faster
deployment rate for the case of the nearly spherical hub. (The same
type of improvement with faster deployment has previously been noted
for the case of the moving end mass, Fig. 2.2). Because of the very
Vimited rad%us of convergence of the'series solution, a comparison
with this method of solution was not performed for the case of uni-
formly distributed mass along the boom.

The response of both types of telescoping systems, when the uni-
formly distributed mass 1s replaced by an equivalent end mass, is
shown in Figs. 2.10(a) and (b). It is seen that initially both types
yield approximately the same responses but the amplitudes of trans-

verse angular velocities are rapidly reduced for the end mass system.
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This shows the effect of increased moment of inertia, as time
increases, due to the total mass being placed at the end of the boom.
The total computer time for numerical integration of the general
torque free equations with step size oflat = 1 sec varied from 135 to
145 secs for both the moving end mass and uniformly distributed mass
cases. The extension rates considered were ¢'= 4 and 1 ft/sec for a
total boom length of 60 ft.‘ The computer time for the evaluation of
éach analytical solution for the above cases considered was about 20

to 25 secs.
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I11. USE OF TELESCOPING SYSTEM FOR DETUMBLING

7. General Considerations

The dynamics of detumbling a randomly spinning spacecraft using
externally mounted, movable telescoping appendages are studied both
analytically and ﬁumerica]]y. The appendages considered are of vary-
ing length and could represent extensibie booms or a tether connected
to the main part of the spacecraft. Two types of telescoping append-
ages are considered: (a) the case where an end mass is mounted at
the end of an assumed massless member (end mass moving) as shown in
Fig. 3.1; and {b) where the appendage is assumed to consist of a uni-
formly distributed, homogeneous mass throughout its length {(uniformly
distributed mass moving).

The extensible boom type appendages are assumed to originate from
the center of the hub along the three principal axes. The desired
final states of the system considered are: {1) zero inertial angular
velocity vector and (2) a final spin about one of the principal axes.
The necessafy conditions for aSymptotic stability during the detum-

bling sequences are determined using Lyapunov's second method.

2. Eﬁd Mass Moving

a. Development of Kinetic Energy
The configuration of the system, where the end masses are assumed
to be attached to the end of massless rods along all three principal

axes is shown in Fig. 3.1. The end masses are assumed to be identical
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(i.e. m; = m). The rotational kinetic energy of the system can be

i

developed as:

T= Lty e () + 2503 ey + (15 4 om(2 + £2)} w,

- : 2 2 2 v2 n2 "2
£ (I 4 om(e] + £,)) wy b 2n{ly * Ly ¥ 23)] _ (3.1)

. 2 2
Defining, I 17 + 2m(L, + £;)

—
]

1% + 2m(2l + £7) | (3.2)

+ > 2
15+ 2m(£1 + £2) .

—
L}

Eq. (3.1) can be rewritten as:

] 2
T=5 01

w

2 2 2 2 .
Jog + Tpwy + Tqug + 2m (2] + Ly + £5)) (3.3)

1f the extension rates are assumed to be constant, Eq. (3.3) can

be expressed:

|_|

T [ I wl + 1 w2 + 1o ] + non-negative const. - (3.4)

)

Here the moments of inertia are time varying as the length of the

booms varies during extension.

b. Achieve Zero Inertial Angular Rate
1. Lyapunov Function-Kinetic Energy

The desired final state of the system is wj = 0. A suitable

Lyapunov function, in the state variables w s W, and W, is the system
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rotational kinetic energy which can be written as:

V=T¢= [ Ilmf + Izmi + Iami] + non-negative const. (3.5)

The Lyapunov function, V, is positive definite in the state variables
selected; for asymptotic stability ¥ will now be examined.

Differentiating Eq. (3.5) with respect to time, there results:

Ve (1l + Tul Tl + 21wy + 2Tuu, + 2Leg0;) (3.6)

The equations of motion can be written, from Eg. (2.1), in the follow-

ing form:
Ry = wgh, = wyhy = Ty, + Loy (3.72)
h, = why - wh = Tu, + Lo, (3.7b)
hy = w,hy - wph, = Ty + Lo, B ERTS

Multiplying Eq. (3.7a) by w,, Eq. {3.7b) by w,, and Eq. (3.7c) by w,,
1 2 3

we obtain the following:

A _ . s
Lww, = (wgh, - why ) wy = Ty

2

Luwyw, = {why = why ) o, - izmz (3.8)
- h . 2
Tjwqug = (w,hy = w;h, ) wy - T,
Eqs. (3.8) can be combined to yield:
. . . so2 .z o2 % 2
Loy + Luww, ¥ 1w, =~ (Ilwl + Thw, I3“’3,) (3.9)
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Substituting Eq. {3.9) into Eq. (3.6}, we obtain

. » 2 - 2 - 2
V=- (Ilml + 12w2 + I3w3) {3.10)

pO[—

From (3.10), we conclude that V is a negative definite function in the

state variables only if il, izs I, > 0.

Here it is seen that when the rotational kinetic energy is used
as a Lyapunov function expressed in terms of the inertial angular
velocity components, that the necessary conditions for asymptotic
stability are satisfied for positive constant boom extension rates and
three orthogonally mounted sets of booms along the hub principal axes.
This means that as time becomes extremely large (and boom lengths
become infinite) it would be theoretically possible to de-spin & tum-
bling spacecfaft and achieve a zero inertial angular velocity state,
(Of course, such a situation will, in practice, not occur due to finite
length appendages, but it will be of interest to simulate how much of a
random tumble could be removed by this process. The selection of rota-
tional kinetic energy as a Lyapunov fuhction has also been used by

Edwards and Kaplan for the system treated in Ref. 6.)

2. Analytical Solution
The solutions for the angular momentum of a symmetrical spacecraft

{1y = I = I) during deployment are obtained from Section II.1 as:

ny(£) = af cos (7% b(t)dt + ¥}) (3.01)
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= a* i t *
hz(t) qy sin (.6 b{t)dt + wo) (3.12)
h3(t) = h, = const , (3.13)
where  b(t) = 1a(t) = O (3.14)
I(t) I(t) |
The moments of inertia about the principal axes are given by
(Fig. 3.1):
= 1%+ dme® = 1+ 2pt]
* 2 * 2
I, = 1% +4me® = 1%+ 2Pt (3.15)
_ 1k 2 _ * 2
I, = I} +4m” = 1 + 2Pt
Using Eq. (3.15) in Fq. {3.14) we obtain:
hg. 1 1 .
b(t) = wlgee-a+2) (3.16)
where  d, = /I*/2P  and - d, = JI}/2P (3.17)

Introducing Eq. (3.16) in Egs. (3.11), (3.12), and (3.13) and after
performing the integration, the sol utions for the angular velocities
are obtained as:

ho 1 , ¢ 1

ot
q: cos[ 55 { g~ tan” a'a“ tan™ R q;‘é’]
1 2 2

I* + 2pt2

wy(t) = (3.18)
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. ho. 1 -1t 1 -1t *

* Ro. 1 LY L

% s1n [ 3p ¢ dy tan dy dp o 43.3”_,ff_3_

wz(t) = I'k + 7 Ptz (3.19)
i; wa(D)

u (t) = 1% + 2pt? (3.20)

"where qf and $3 are determined from the initial conditions. Ve observe
here for large values of t, the solutions for the angular velocities

jead to the form:
0 (t) = const/(Ij’i’ y2Pt2) , i=1,2,3 (3.21)

This equation indicates that the magnitudes of the angular velocities
decrease during extension of the appendages, with the-square of the

elapsed time.

3. MNumerical Results

A typical detumbling maneuver for an initially §1ow1y tumbling
spacecraft is illustrated in Figs. 3.2 and 3.3. In this example
because of symmetry the uncontrolled torque-free motion (Fig. 3.2) can
'-be theoretically predicted. With an extens{on rate of 4 ft/sec after
60 £t. of extension along all three principal axes the angular veloc-
ity components_have been reduced by more than a factor of 10 and, if
240 ft. of boom could be extended, by a factor of over 300, to a value
comparable with the orbital angular rate. Removal of this residual

angular velocity could then be achieved by activating on-board
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damping devices.

When the initial angular velocity is increased by an order of
magnitude the uncontrolled situation (Fig. 3.4) can be recovered as
shown in Fig. 3.5. For the same extension rate and end-masses the
order of magnitude reduction in the total angular ve1ocfty vector 1is
similar to that shown in the slow tumbling case.

The effect of extension rate on détumbTing is illustrated in
Figs. 3.6(a) - (c). For small extension rates (up to 1 ft/sec) the
oscillatory nature of the transverse motion is not removed until
after the first cycle; the advantage of considering higher extension
rates (at the expense of on-board power) for an initial fast tumbling
is apparent. It should be noted that at a given time in these figures
different boom lengths are represented according to the extension rate.

Numerical examination of other cases for asymmetrical hubs also
verifies the practicality of using movable appendages for the initial
detumbling of randomly spinning spacecraft. (Figs. 3.7(a) and (b)).

The numerical simulation results for an asymmetrical spacecraft are
compared with the closed form solution for a symmetrical extension and
it is observed that the closed form solutions are only applicable when

the asymmetry is small.

¢. Achieve Final Spin About One of the Principal Axes
1. Lyapunov Function-Modified Kinetic Energy
The desired final state of the system is; w; = 0, w, = 0 and
wy T Wy = Using the state variables w;, w,, and wy - Q»

f
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the Lyapunov function is defined as the modified rotational kinetic

energy, which can be written as:

V= [ Ilw% + Izwg + 13 (wa - 0)2 3

PO -

(3.22)

Here V is positive definite in the state variables selected. Differ-

entiating Eq. (3.22) with respect to time, we get

V=l L2+ Lol + 1 (o - 0)?

N —

+ 210wy + 2 Iowows + 2 I3 (ws = Q)os ]
Using Eqg. (3.9) in Eq. (3.23), we obtain,

w% + I'm% + Iswz) + %9213 - (13m3 + I3é3)

(1 2 ;

M| —

P -1,

For symmetry about the '3' axis during extension:
hy = Tug + I3m; =0

Eq. (3.25) is used in Eq. (3.24) to obtain:

Vool T2+ Le2+ I, (w2-02) 1

RO —

2
2%2
After rewriting Eq. (3.26) in terms of the state variables,

y = - [ Ilm% + Izwg + 13 (wa -Q)?] -I3Q (m3 - Q)

Do) —

Also from Eq. {3.25), the solution for w3(t).i5 given by,

wy(t) = T3, (0)/1,
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We conclude from Eq. (3.27) that v is negative definite in the state
variables
only if w3 2 @, il, i2 > 0, and i3 > 0 for wy > @

Thus for the case where a spin about one of the principal axes
is a desired final condition, a modified form of the kinetic energy
can be used as a Lyapunov function. Here the final state can be
achieved by extending all telescoping booms until the desired spin
rate is reached and then continuing the extension of the set of booms
along the nominal spin axis until the transverse components of angu-
lar velocity reach an acceptably small amplitude (within the limita-
tions of boom length). It should be noted that if we allow wg < & and
i3 # 0, there will be a difference in sign between the third and

fourth terms in Eq. (3.27).

2. Analytical Solution

The time at which wy, = w,_ =@ will be denoted by T,

3f £
At t = T3f’
=1, = 1"+2p (1307 (3.29)
-k *
15 = I3+ 2P (T3.)? (3.30)

For t ¢ Tag,s the solutions for the angular velocities can be obtained

from Egs. {3.18}, (3.19) and (3.20).
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FOY‘ t > Taf,

If = const = T3 + 2P (t5.)° (3.31)
T* = 1%+ P(Ty,)24 PL2 = 1§ + pt2 (3.32)
where I¥ = I* + P(T3¢)? (3.33)

From Eq. (3.14), and using Eqs. (3.31) and (3.33), we obtain

b(t) = wzp 1 — Is___ -1} (3.34)

Introducing Eq. (3.34) into Egs. (3.11) and (3.12), the solutions for

the angular velocities for t > Tic are,

T§ -1 t -1(_;221)
qqeos fwy (75— {tan (;F§f==ﬁ-tan Jox -t 149, ]
‘ f If P If/P ' If/P f
wy{t}) = N
I + Pt2
(If ) (3.35)
i "
q.sinfw, [ == {tan-1 ) ~tan-1 2) ItHT, 1+ ¢]
o (V1§/P) e Ii/p) A
w,(t) = -
I. + pt?
( f ) (3.36)
and from Eq. (3.13),
wy(t) = vge = const (3.37)
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Here q, and ¥, are to be determined from Egs. (3.18) and {3.19) at

t = T3 and should not be confused with g% and ¢ which are determined
at t = 0.

For large va]ues of t, Egs. {3.35) and {3.36) reduce to the form,

q, COS (m3f x const x t + const)

wy = (3.38)

I; + Ptz

qo sin (w3e x const x t + const) _
w2 = " {3.39)
1T+ pt2

The above two equations indicate that the frequency of oscillation

approaches a constant value and the magnitude of the oscillation
decreases with the square of the elapsed time.

The time t = T3f at which the extension of the booms along '1'
and 12 axes are stopped can be determined from hs = 0, yielding the

result:

15 ws(0) - o
_]_ __3 (u (3_40)

Tsg = Zc m w3g

3. Numerical Results

Figs. 3.8 and 3.9, with extension rates c = 4 and ¢ = 1 ft/sec,
respectively, illustrate a recovery maneuver which would result in a
final spin about the ‘3' body axis with a small transverse residual.

The booms are extended so that the modified rotational kinetic energy
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is positive definite and its total time derivative is negative defi-

nite during the maneuver. A1l booms are extended until Tag at wnich

time w3 = wig. Then, only booms along the + '3' axis are extended to
reduée the transverse residual componenfs.

A comparison of the recovery maneuver of an asymmetrical space-
craft with that of a symmetrical spacecraft to achieve a final spin
along the '3' axis is shown in Figs. 3.10(a).and (b).  The calculated

~Tag for the symmetrical spacecraft is used for stopping the booms
along the ‘1' and '2' axes. It is observed that using this logic the
final w3e reaches a Jower value (1.8 rad/sec) when compared with thg
desired final value (2.0 rad/sec). Also we notice from Fig. 3.10{a),
the response of w1(t) for the asymmetrical case differs from that of
the symmetrical case. This is due to the increase in the order of
the system equations for the asymmetrical extension {i.e. ~ three
first order differential equations must now be considered). It should
be pointed out that after Tig, for thg asymmetrical case, the time
response of w3 is not exactly a straight line as apparently indicated
in Fig. 3.10{a} but also consists of small amplitude oscillations

_ superimposed about this straight line solution. For larger asymmet-
ries this oscillation would become appareht within the plotting scale
shown and the difference between wy, achieved and desired would also

increase using the open loop control logic of switching the extension

sequence at a pre-set T3f.

49



3. Uniformly Distributed Mass Moving

a. Achieve Zero Inertial Angular Rate
J. Analytical Solution
The desired final state of the system is wy = 0. The booms con-
sidered are assumed to have a uniformly distributed mass along their
lengths. The same procedure as adopted in the case of end mass moving
can be applied here to obtain the solutions for the angular velocities.

Here we present oniy the final results.

The solutions for the .angular velocities are given by:

q: cos { rEb(t) dt + 9g )
wy{t) = . | (3.41)

* . 2 p33
I + 3 Kt

qy sin s b(t) dt + vy}

4
O)Z(t) I* + _2_ Kt‘?' (3.42)
3
I'; w3(0) . .
w {t) = (3.43)
3 * 2
h+§K§
t _3hp 1 . (d3 +t)? 1
where st b(t) d(t) = 210 — pn {2 } ot X
0 2K "6d% d2 - d,t +t? 273
2t - d, 1 d, +t)° - a
tan™! { —} - o { . } - ~—L_ tap- {EEL“iit}]
d,v3 6d2 d2-d,t + t? d2v3 d, V'3
(3.44)
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% *
43 = 31" apd d3 = 3L (3.45)
3 2K - b 2K
b. Achieve Final Spin About One of the Principal Axes
1. Analytical Solution
The desired final state of the system is w3 = 0, wy = O and

wy = wy. = 0. For t £ Ty, the solutions for the angular velocities

f f?
can be obtained from Egs. (3.41), (3.42) and (3.43). For t > T3f,

the solutions for the angular velocities can be obtained as:

qe cos{ St b(t) dt + Yo }
T

3f
wl(t), = I (3.46)
f 3
g, sin{ st b(t) dt + ¥g )
Tgf
wolth = 1, .- (3.47)
— 3
’ I.f: + 3 Kt
wy(t) = “3% = const (3.48)
uhere:  I* = I*+ R (7,03 (3.49
: K ” )
. 3 -i* 2
/L blthdt =y ’ 6;_213” q ?(ds * 1) s
Tag K : di -dst + t
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] -1 2t - d - (3
+ 1 tan- 5 t o+ .50)
{ 1) 3] .
dg V3 d, V3
*= 1P+ 2x(1.)8 | (3.51)
3 3 3 31.-
‘ *
g3 - 31f (3.52)
3 K

The time T3¢, at which the booms along the '1' and '2' axes are stopped,

can be obtained as:

*
T, =l 313 wz(0) — w3f) ]1/3 (3.53)
f ZK '

.w3f

b2
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1IV. TIME OPTIMAL CONTROL

1. Combination of Booms and Control Jets
“(Norm Invariant Principle)

In this section, we shall consider the control of a norm-
jnvariant system which has the property that the Euclidean length of
the state vector is constant when the control is zero. Here we state
the problem and the control law to achieve-the time optimal control
of the system from Ref. 9.

Problem:

Given the controllable norm-invariant system
X(t) = g [ X(t): £ 1+ a(t); k(0) = & (4.1)
Assume that the dimension of u{t) is the same as the dimension of X(t)
and that || u(t) || < m* for a1l t. Then determine the control which
forces the system (4.1)from the initial state § to 0 and which mini-
mizes the cost functional |

Tt

J=1f dt=Tg Ty - free (4.2)
0

Control Law:

The unique time optimal contro] u*(t) that is, the control which

minimizes the cost J of Eq. (4.2) is given by,

&

) =R (4.3)

where X*(t) is the solution of Eq. (4.1) with u(t) = u*(t). The

minimum value of J% of the cost J, that is, the minimum time t*,
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required to force £ to 0 is given

.Jf:t*z.lléll (4.9

m*

The above theory, which deals with the time optimal control of
horm-invariant systems, is applied to the case of an unsymmetrical
spacecraft tumbling in torque-ffee space. The angular momentum

equations given by Egqs.(2.1) can be rewritten as:

hy = (1 - 1) hyhy

I3 Iz
ﬁz = (L - “10 hsh,

I I3 (4.5)

O R |
hy = (12 11) hiha

we find that, -9]|h(t)]] = <F'(§)s h(t)> = o (4.6)
& THEN

and so the system represented by Eq. (2.1) is norm-invariant.

Eqs. (2.1) describe the motion of the spacecraft in the absence
of any applied torques. A torque vector, u(t), can be generated bj
means of gas jets, reaction wheels, gravity-gradient arrangements,
etc. At any rate, if u{t) is a control torque, whose components are

Ti(t)’ i =1,2,3, the equations of motion become:
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RO 1,
NORE RN n(£) + 7,(t)

h(t) = [ - —1 1 hy(t) my(t) + 5p()  (4.7)
' L(t)  I3(t) :

ﬁsft) = [TET%T'_ Tz%qzﬂ hl(t) hz(t) + T3(t)

We can immediately conclude that, if the constraints on the control

torque u(t) are of the form,

MO R 2O ERHRCERADE- (4.8)

the torque components for time optimal control are:

e (1) = - m*11(t)e1(t)
! Ln(e) )]
€(t) = - m*lz(t)mz(t) (4.9)
| {h(t)]]
o I(t)ua(t)
REURNTTION
where ||h(t) is defined as:
RG] = 12080 w2(2) + 1o(t) wp(t) + T3(t) uy(t) (4.10)

This means that, in order to reduce the angular momentum vector h(t)
to zero in the shortest possible time, the torque vector u{t) must

point in the opposite direction to the angular momentum vector h(t)
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- 9
and the torque u(t) must be as large as possible.

For the case of symmetrical spacecraft (I,(t) = I,(t)), the tor-
que components required to reduce the transverse angular momentum to

zero are given by:

~ n* w, (t)
Tl(t) = - 7 1
" u(t) + ujlt)
' (4.11)
* wy(t)
1o(t) = - Z - -
Y oi(t) + oy(t)
where Y Tf(t) + T;(t) < m* (4.12)

Here we conclude that for a symmetrical spacecraft with wy = const, and
T3(t) = 0, the control torques reguired to reduce the transverse
angular momentum are not explicitly dependent on the type of extension.
It is doubtful that boom extensions alone could be used to effect time
optimal control.

In general, we can. say that in.the event of control jet failure
the booms could certainly be used as a back-up reusable system for
de-tumbling {even if they cannot directly implement time optimal

 recovery).

2. Extension of End Masses

The extension of four end masses, along the symmetry axis of the
spacecraft, is shown in Fig. 4.1. This scheme is considered as a

possible means of reducing the transverse angular velocities in a time

70



optimal manner. The end masses are assumed to be equal and they are
placed very close to the symmetry axis such that d/¢; << 1. The

control variable are the extension rate il(t) and iz(t).

The moments of inertia about the principal axes can be written

as
I = Ip = T + 4m(¢f + £5) =
1 = 12 = 17 m{ei + £25) = 1
(4.13)
- 1%
I3 = I3
The equations of motion can be developed, with wy = wy = const,
as:
. S am 2,2 .
wl = ._(___.....i.;._.3_) U-Jowz + "I_;' (ﬂl + ﬂz)(wowz - UJl)
-8 (nty + Lola) o (4.14)
. * 2 2 )
wy = - il—iiél-mowl - %2—(31 + £3) (wow1 + w2)
am . .
- ]¥‘(31£1 + LyE,) w, (4.15)

Eqs. {4.14) and (4.15) can be rearranged to yield:

=
]

ww, + g(t)(!:!] - momz) + h(t) W, (4.16)

E-
n

~wo) + g{t) (8, + wge,) +h(t) w, (4.17)

-



. (1F - 13)

where w T W (4.18)

(t) = - 4B (e() + £5()) (4:19)

() = - 3 (0,() £,(8) + £,(8) L,(1) ) (4.20)

and we observe, h(t) = é(t) ' (4.21)

Uéing the transformation,
93] cos wot -sin wet f
] | | (4.22)
Qo sin wpt . ¢os wgt [92
Fqs. {4.16) and (4.17) become '

(1) 0 (0-w0) | | 21(t) ) a1 (t)
= ‘ + gela(t) 1. (4.23)

ﬁz(t)j “{w-wp) . O Q2(t) Ae2(t)

Comparing Eq. (4.23) with the standard form (Ref. 8, p. 599, Eq.

(7.378))
x,(t) 0w ] [x(t)] u, (t) WI
= +K | (4.24)
xz(t) -0 0 xz(t)-l u (t)Jl'
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we can write,

S (gl o,(8) ) = Kuy(2)
(4.25)
B‘% (g(t) sz(t) ) = Kuy(t)
For time optimal control
ui{t) = =1
(4.26)
uz(t) = =21

Expanding Eq. (4.25), using Eqs. (4.19) and (4.20) with Eq. (4.26),

the following result is obtained.

I+

- %2-[<zf(t)+z§:tn)él(t)+2(zl(t)é1(t)+z2(t)%2(t))Ql(t)1= 1 (4.27)

- 30 U102 (04208, (1) 15 (£) 2, (0} (8 (£)15

1+

1 (4.28)

From the above equations, we observe that the control variables él(t)
~and éz(t) are nonlinearly coupled with the state variables and the
solution for éi(t) becomes trivial. It can be concluded that the time
optimal control of this type of system using only boom extension rates
can not be established by analytic means. However it way be possible

13
to consider this problem by using techniques of dynamic programming.
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Symmetry about '3' axis is maintained

Masses are equal: m; = my =M

ORIGINAL PAGE Is
OF POOR QUALITY

FIG. 4.1. EXTENSION OF END MASSES ALONG '3' AXIS.
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V. HINGED SYSTEM

1. Derivation of Kinetic Energy

The hinged system to be studied is shown schematically in Fig.
5.1. The co-ordinate system representation is shown in Fig. 5.2. The
system consists of a spinning spacecraft with masses attached to mass-
less booms of constant length £; which in turn are attached to the main
spacecraft at radius rg. The end masses are released at t = ty and
thereafter swing out from the spin axis. The argles between therbooms
and the spin axis are denoted by «; and «, as shown in Fig. 5.2 and
are initially zero. A special case of this type was considered in
Ref. 2 (where it was assumed that the transverse angular velocities
during deployment remained at zero) but here we consider the general
three dimensional deployment dynamics.

The development of the kinetic energy of thjs type of hinged
system from‘first principles is considered below:

The total kinetic energy of the system, in terms of rotational and

transtational energies, can be written as,

T =T, + Ty + const. due to (circular) orbit motion (5.1)

S 2 2 2
where Tr = 5 (I 0, + I, u, + Iju3)
1w u2 n 2
Te = ?.M Vig/cm + 'Zl mi Vpg/cm (5.3
1= ‘ .

(M = mass of main body)
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" . From the definition of center of mass of the system:

ren/o (5.4)
where point 'o' is the center of coordinate system and the masses are
assumed to be equal (mj = m). The velocity of the various components

relative to the system center of mass may be expressed:

vm.ilcm ffmifo + Vo/cm (5-5)

Vy/o + Vg/cm (5.6)

il

GM/cm

The components appearing in Eqs. (5.5) and (5.6) can be further repre-

sented as:
Vmifo = ri . (5.7)
Vo/M = 0 (5.8)
- / - 2 m-Z,;i'
V./em = - Vo /O = = Pepf/0 = = ——F— .
0 cm cm M+ Jm; (5.9)

Upon substitution of Egqs. {5.7), (5.8) and (5.9) into Eq. (5.3), the

translational energy may be expressed as

Tt = ¥ [o/em|® + L5 mi [mi/o]®
+ L5 mi szolcml2 + } mj (.‘;fmi/O) . (Vo/em) (5.10)

2
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After some algebraic manipulations, we obtain,

me = - m> - ~
Te=z D0V - Vi) - s OV - 1 Vg) (5.11)
where Vi = ii + WX i
M =M+ m

Thus, the total kinetic energy of the system is given by:

T=J§(Im2+12w%+13w3 %‘-?

m2 n - n - :
Do (Y vi- ¥ Vj) + const. . (5.12)
oM 11 i=1 '

As an example, we consider the case from Ref. Z where m = m/2,
ay =a, =a, Iy~ Tandwy= 6. The kinetic energy is then obtained
as (neglecting orbital motion)

-1 22 o Mo opn t . ' -
T-?Ie +-2—[£2a2+92 (ro + £ sin a)?]

2 2 . .
- Ln-z- i f = sing o? _(5,’]3)

which correspond§ identica11y with Eq. (18) of Ref. 2, which was
presented without development.

Next, a more general case of the hinged deployment system con-
sidered is shown in Fig. 5.3. Here there is no restriction on the
location of the hinge points. The co-ordinates of the two masses are

given by
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X1=0 ) X2=0

~{ry + £ sin ay) (5.14)

n

=1y + £ sin o Yo

‘e
—
1

1]

Zy =3y - £ cos oy 2, = 3, - L cos o,y

Here 'a,' is the offset of the hinge point from the *2' axis. Upon

substituting Eqs. (5.14) into Eq. (5.12), and after algebraic simplifi-

cations, the resulting equation for kinetic energy is:

—
1
-

[ I,u? + Iw2 + Iws)

+ %-I{ 2(r%+ai+£2 )+2£'{ro(sina1+sinaz)—a*(c05a1+c05u2)}} w?
+ {2a2-2a,L{cosa,+cosq, y+£2(cos?a +c0s2a,)} wj
+'{2r%+2r0£(sinu1+sina2)+£2(sin2u1+sin2a2)} w§

-'{2£‘{a*(sinal—sinaz)-ro(COSal-CDSuz)}

- 2£2(sina; cosa - Sine, COSa,) )} wyng
+{2£2(&1 - &2) + 28 {a1 (ro sinal - a,cosa1)
- as(rg sinaz - a*cosaz)}} wy + £2 (&f + &%)]

m?2 _ [{2{2a2 + £2) + 2£%cos (ot ap)-4a,L{cosa;+cosa;) ut
2 (M+2m)}

+ {2a,- £{cosa)+cosar)}? w} + £2(sina;-sina,)}? wj
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-2£(sina; - sine,) {2a, - £{cose; + €os0a,)} wyug
F20LE(3y - 3) + £ cos (o) + ap){dy - &)
- ?2a, (cosa; a; - €OSap ap)} oy

+ 22 {a% + a2 - Zalu

Z cos(a1 + az)}] + const. (5.15)

2

2. Development of Fauations of Motion (Neglecting External Torquas )

The equations of motion in the five variables w;, w,, w3, a; and
14
a, are developed using the Quasi-Lagrangian formulation for wj,
i =1,2,3 and the general Lagrangian formulation for the variables

ayy o,. The equations of motion for this system can be represented

by:

d aT a7 3T

'd_t' aTi'-Lﬂa 'é:j;'l'tuz E; 0 (5'16)
d 3T aT 3T .

g Al aT

dt 80.\3 mw2 Bwl +UJ]_ BD}E - 0 - (5'18)
d ol a1 oF _

at se; " 3e; Taa, - 0 (5.19)
d T _ o7 sF
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where T Total kinetic energy of the system

F Ray]eigh dissipation function.

Making the approximétion: m2/M << m or {m/M << 1) and letting ¥ = 0
(for the case of no aSSQmed energy dissipation), the equations of

motion are obtainéd as follows:
Ilél-(lz—ls)m2m3+m [2(r§+ai+ﬂ2 V428 {r0(5a1+5u2)—a*(0a1+ca2)}]531
-m{2a2 -Za*z(Ca1+Ca2)+£2(c2&1+c2a2)—2r%—2r0£(5a1¥5a2)} GoWy

+ 2me { rolcaras + Conty) + ax{Saja; + Sapny)} wy

+me f{a, (Sdl-;az)-PO(Cul—Cuz)n %.(szal—SZuz)} (w? - m%)

+me (L (a) - 8,) + (&1)2 {roce; + agsey) + &;(rgse;- a,cey)

- {0,)2 (PoCay + 2ssa,) = @, (rgsw, = asca,)l =0 - (5.21)

12&2-(13;1;m3m1+m{2a§-2a*£(cq1+ca2)+gz(czal+czaz)}52
-mg{ax(say- sap ) = vo {cay = Cap ) - %—(5211 - 5230} o,

+ mli{a*(s::l - Saz) -Tr (Cal' - Ca, ) - (52-11 - 52:12)} Wy sy

™ e

-m {£2 (52u1'+ Szug) -2 (ai + 32) +'2£a*(Ca1 + Caz)] W3]
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+ m{ Za*il (Sa—lél + Sczz&g) - 32(5231&1 + 52a2r12)} wo

+ ml{ £ (& - a,) -2a (cuya; - cayd,) + £ (c24y8; - €2azay)luy = 0O

(5.22)

Ishy = (I - L)wpwy + m{ 2rf + 2rgf (sa; + sap) + 22(s%u +s5%0,)} uy
—mk{a*(Sai - Saz) -ty (coy - Ca,) - %:(52a1 - 5232)} @,
- m {2(rd +£2) + 2&r;y (sa; + sa,) - 22 (c2a; + c2ay)} wiw,
-mg {au{say = sap) - ry (cay - coy) - %'(5211 - sZaz)} wawg
ML (2rg(Seydy - Sanly) - £ (c2aidy = C2agi;) *+ L (3 - 8,)) wy

Lo, + (¢ + Sal - a*Cal) éi

2 2
- {rgco; + %.S2u1) g - (a*Sal - §.5201} w,

) mz + (a,ca, +r sa - ECZul)w3w2= 0 (5.24)

- +
('”0‘:‘lt 850y 1 1 0~%1

1
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Lar - {2+ PoSdy - a*cuz) wy

£ 520t2 )] u%

- (rocuz + %5232') m% - (a*SaZ - 5
- 2 . - =
(!“OCaZ + a*Sa?_) w) (a*(:az + rosaz' £C2d2)m3m2 0 (5.25)

where saj= Sinaj and Ccay = COS§

3. Numerical Results

The five nonlinear equations of motion for the hing'ed system are
used to study the torque free motion of the system. The equations have
been coded for computer simulation and the results are expected in the

neayr future.
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* FIG. 5.2. COORDINATE SYSTEM FOR FIG. 5.1.
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z1=a*-—£cos<!1 zp = a, - £ cos 93

FIG. 5.3. MORE GENERAL CASE OF HINGED DEPLOYMENT SYSTEM.
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VI. CONCLUDING COMMENTS

As a result of the present analysis and numerical results, the
following conclusions can be made:

1. For both types of telescoping systems, closed form analytical
solutions for the transverse components of angular velocities as a
function of time are obtained for the special case where the space-
craft hub (main part) has a nearly spherical mass distribution and
where the telescoping system is assumed to originate from the hub
mass center along one of the transverse axes only.

2. When the telescoping system is assumed to consist of two
identical sets.of two orthogonally mounted booms in a plane normal to
the spin axis, the spin axis remains an axis of mass symmetry and, for
this special case, the analytical solutions are identical to those
obtained previous1y.3 For this special situation it is seen that the
amplitudes of the transverse components of the angular momentum
remain constant (but at an accelerating fréquency) during deployment.

3. For the more general case where the hub is not spherical a
series solution is obtained about t = 0, an 6rd1nary point of the
time dependent coefficients, in the differential equations of the
rotational motion of the telescoping system. However, the radius of
convergence of such a solution is 1imited due to the other singular
points in the coefficients.

4. The approximate analytical solution for the nearly spherical

hub and the series solution for the general case are compared with
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numerical integration results. It is observed that the analytical
solution correéponds more closely with numerical integration results
when the extension rate is increased. The series solution can be
used only in the initial part of the extension where the analytical
solution also gives essentially the same result. |

5. With fast extension rates and large end masses, the numerical
study shows that the oscillatory nature of the responses of the trans-
verse angular velocity components can be reduced rapidly.

6. As an application for spacecraft rescue and recovery, when
booms are extended along all the principal axes to detumble a symmet-
rical spacecraft, exact closed form analytical solutions are obtained
for all three angular velocities of the spaéecraft.

7. The necessary conditions for asymptotic sta5i1ity during the
detumbling sequences can be obtained using Lyapunov's second method.
The conclusions are that: (1) as time becomes extremely large (and
boom lengths become infinite) it would be theoretically possible to
despin a tumbling spacecraft and achieve a zero inertial angular velo-
city state (of course, such a situation will, in practice, not occur due
to finite length booms); (2) the final spin about one of the princi;
pal axes can be achieved by extending all telescoping booms until the
desired spin rate is reached and then continuing the extension of the
set of booms along the nominal spin axis until the transverse compo-
nents of angular velocity reach an acceptably small amplitude.

8. Numerical examination of other cases for asymmetrical hubs
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< A

also verifies the practicality of using movable appendages for the

initial detumbling of randomly spinning spacecraft.

9. Simple boom extension maneuvers. alone can not be used to
detumb1é a randomly spinning spacecraft to achieve a desired final
state in a time optimal manner.

10. The constraints on the telescoping system as used for
detumbling are: (1} the Timitations on the extension rate, size of
end mass masses and the length of booms that are practicable; (2) the
1imitation§ on the rate of initiable tumble that could be handled by

the system without compromising its structural integrity.
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VII. FUTURE WORK - PART 1I

It is proposed that this effort will be a continuation of the
research accomplished during the first year (May 1974-May 1975) on the
dynamics of spin 5tabi1ized spacecraft with movable appendages. Part
I concentrated on the analysis of the motion of a spinning spacecraft
during the deh1oyment of two types of movable appendages - the tele-
scoping rod type of varying length during deployment and fixed length
appendages whose orientation with respect to the main hub can vary.

In addition the use of these appendages to detumble a spacecraft with
a random spin to achieve final states of (1) close to zero inertial
angular rate and (2) a final spin rate about one of the principal axis
was also considered. In the effort proposed for Part Il the following
will be treated: effect of energy dissipation during deployment; ﬁse
of appendages to detumble spacecraft when the appendages may not be
deployed along principal body axis of inertia; examination of Tinear
optimal control theory as applied to the deployment maneuver by
selecting different integrand functions in the ébst fuhctiona]; and an
examination of the effects of first order perturbations such as due to
solar pressure, gravity-gradient, and small amplitude flexibility of
the appendages.

With reference to Table I, the items denoted by an asterisk were
not treated during the first year, Part I. This Plan of Study has
been modified slightly in accordance with technical discussions held

at NASA-Langley. The proposed items for future study, as indicated
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by asterisks will now be discussed.

The effect of damping during deployment can be studied by incor-
porating additional degrees of freedom in the mathematical model of
both types of appendage systems. For example, a pendulous type of
nutation damping mechanism on the main hub could be considered and the
Lagrangian equations of motion for the hinged system modified directly to
include generalized coordinate(s) associated with the damper motion.
The Eulerian equations of motion as derived for the telescoping system
would also require appropriate redevelopment since the center of the
spacecraft hub would no longer be the instaneous system center of mass.
The effect of energy dissipation during a general deployment maneuver
could be evaluated using.numerical integration techniques. For
deployment with a small nutation angle - i.e., transverse momentum
components small when compared with the total momentum, approximate
@na1ytica1 approximations such as energy sink will be studied.

In the area of detumbling (a randomly spinning spacecraft) the
use of te1éscoping appendages dffset from the principal axes will be
considered. An attempt will be made to reformulate a modified
Lyapunov function, either in terms of cross products of inertia using
the original hub symmetry axes system or in terms of the instantaneous
principal moments of inertia. Numerical simulation of this more com-
plicated system will be performed and results compared with those for
the simpler system. In addition the use of the hinged type system in
conjunction with a pair of telescoping booms along the "3" axis could

be examined.
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The difficulty in determining a control sequence of extension
rates for different pairs of telescoping booms which would yield a
time-optimal recovery of a tumbling spacecraft is seen in Section IV.
The problem has been that when the equat%ons are written in standard
state form--e.g. for a case of two sets of booms parallel to the spin
axis - (where symmetry about this axis is maintained during extension),
the control function (two different extension rates) is non-linearly
coupled with the state variables.

Instead of considering only time optimal contol of a tumbling
spacecraft, it was suggested at NASA-Langley that linear optimal con-
trol theory might be applied where now the integrand functioﬁ in the
cosf functional would contain a gquadratic form in the state variables
plus some function of the controi. After appropriate linearization of
the system an attemptwill be made using the matrix Riccati equation to
yield solutions for boom extension rates.

A time optimal control solution for this problem can be obtained
numerically using the techniques of dynamic programming (gradiént
techniques). This approach was recently emplioyed by Kunc:iw.I3 in
lana]yzing the optimal detumbling of the system treated in Ref. 7. A
dynamic programming solution as applied td the presenﬁ problem will be
considered, especially if the application of linear optimal control
techniques does not yield meaningful physical results.

As time permits at the end of the study, it is planned to briefly

examine the effect of such perturbations as gravity-gradient torques,
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solar pressure, and first order flexibility. It is hoped that this
effort would establish 1imits on the rate of tumble that could be
handied by extendible appendages without;compromising their structural
integrity. .

It is felt that by analyzing the dynamics, control and perturba-
tions of such types of systems with various types of appendages, a
valuable insight into the dynamical behavior of more complex systems

can be obtained.
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TABLE I - TWO YEAR PLAN OF STUDY
THE DYNAMICS OF SPIN STABILIZED SPACECRAFT
WITH MOVABLE APPENDAGES
"CONTENTS
A. MOTION DURING DEPLOYMENT

Spinning spacecraft - small transverse momentum

1. Hinged Type
- development of equations of motion

2. Telescopic Type

a. End mass moving b. Uniformly distributed mass moving
- Analytical solution for spherical- Hub
- Series solution for non-spherical Hub
*3, Effect of Dampers
B. USE OF APPENDAGES TO DETUMBLE SPACECRAFT

1. Telescopic Type
derivation of kinetic energy

1

a. Achieve zero inertial angular rate

Lyapunoy Function - Kinetic Energy
b. Achieve spin about principal axis

Lyapunov function - Modified kinetic energy

*2. Telescoping appendages offset from hub principal axes
*3. Appendages + "3" axis boom

C. OPTIMAL CONTROL

*1. Aoplication of linear optimal
control theory using different performance indices

*2. Use of gradient technique
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EFFECT OF PETURBATIONS

*1. Gravity-gradient
*2. Solar pressure

*3. Flexibility with small amplitude

*proposed for study in second year (Part II)
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COMPUTER PROGRAMS

1. End Mass Moving - Numerical Integration

-

C PROGRAM _ FOR__GEN._ EULERIAN FORMULATION

c TELESCOPIC TYPE A. END MASS MOVING

SUBRDUTINE RGSOL{T Wy DW)
MENSION  W(3),0W(3)

“”T'"___‘”“””“REAE 1,012,013, 01,02+13,110,120,130,M1,M2,M3
COMMON 11,12,13,110,120,130,M1,M72,M3, c1,cz,ca

sNalial

L1=C1*T__ e
L2=C2%T
L3=C3%T

T pDLZ2=C2
pL3=C3
Al=nl=L1%xL1

_bLA=CY e

A2=M2%L2%L2
Ad=M3IxL3%L3
11=110+2.0%(A2+43)

12=120+2.0% (A3+A1)
13=130+42.0%(AL+A2)

B2=M2*#L2*DL2
B3=M3%L3%UL3
DI1=4,0%{E2+83)__
DI2=4,0%(33+81)
DI3=4.0%(B1+82)
 DR(1)=(12=-13)%9{2)*W(3)~011sn (1)) /11

Cn (2 S ((I3=T1 1) %W (3 =n{1)-002*wi2)) /12
DW(3)={(11-12)V5W{1)=sn(2)}-D13*w(3))/13

LRETURN
END

SUBRUUII NE  RGSDZ2(TsWsDWy THLF N, P_J___,___,__
DIMENSTION  W(3),0u(3],0UM¥Y(3)

REAL 11,12,13

COMMON  T11412+13

CAaTa DtG/S? 295??95/

"CALL  RGSOL{T wsRUNMY)
Hl=T1%4(1)
CH2=12#%4{2)
H3=13%W{3)
THETA=ATN2 { SQRT{HL#H1+H2%H2) 113 ) *DEG
_TP=T+0.00005_
TWRITE(S, 1) TP Wy THETA,DW, LIILE
RETURN

e —— w4 b

ORIGINAL PAGE IS %
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! FORMAT (1X,F9.4,7F13.7,110)

ORI VA o e _
END _ .
EXTERNAL RGSO1,RGS02
J DIMENS 10N PARM(S),H(B),DH(B},SIZE{BI,HDRK{B 3) ,
S DATA N/3/_ S
REAL 11,12,13,110,1204130,M1,M2,M3
COMMON  11,12,13,110,120,130,#1,M2,M3,C1,£2,C3
C
C :
C DATA CARDS -- 10 COLUMNS FOR EACH VALUE
_ C 1- TMAX,INITIAL STEP, TULERENCE L
¢ 2~ MASSES
c 3~ INITIAL I'S
L 4= C's _ e
C S INITIAL wW'S
C 6~ TYPICAL S1ZES OF WS
c
READ(2,91) THAX,STEP,TOL
READ(2,91) M1,M2,M3
e READ(2,91) 110,120,130 o o
TREAD(2,91) C1,C2,C3 S
READ(2,91) W
e READ{2,91) SIZE o
WRITE(5,927 TMAX,STEP,TOL Tt T
WRITE(3,93}) M1,M2,M3
e MWRITE{5,94) 110,120,130 B
WRITE(5,55) C1,€2,C3 i CoTTTT T
WRITE(5,96) W
WRITE(5,97) SIZE
o WRITE(S,98) T T T T
PARN(1)=0.0
PARM{2])=TMAX
T TUPARM( 3 =ESTEP T T T T T T e e e
CALL RKSCL{N,SIZE,Uins TOL,PARM)
CALL RKGSIPARM, W D N, ITHLF,RGSO1,RG6502,WORK)
T waTE(b.sg}xHLF‘ T - - -
CaLL EXIT
c

—_ AL e e L e e eem e camim b et

T 91 FORNMAT( BF10.0 ) -
92 FORMAT{ *1TMAX=!',F8.2,10X,'STEP=*,FB.4,10X, 'TOL="',F8,6)
93 FORMAT{'OMASSES',3F10.6)

“f”““‘"‘ﬁ@"ﬁbkhﬁ?(*UerT*T?;3Fro;6i““_

95 FORMATI(*0OC VL3R 10.6)
. __QQ_FUBﬁAT£EQWHW_“ ¥ 3810.60
97 FCRMAT('0SIZE t3F10.0} TCoTT e e

98 FCRIAT{‘I',T&,‘T' TI7, "Wl T30,'W2',T43,'W3t,
_2T05,'THETA' yT69, 'Dwl ', T8Ll,'DW2",
C 3794, 'Da3, TlDS,']HLF',/)

99 FORMAT('OIHLF=t,13)

ERD
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C_ ANALY. CAL. Wl,W2. A, END MASS MOVING

2. End Mass Movihg - Analytical Solution

REAL 10,M
REA(2,51) W10,W20

. READI(Z2,51) CW10,0W20 . .
READ(2,51) 10,4,C T

51 FCRMATI(5FL16.0)
CWRITE(5,52) wl0,yW20

WRITE(S5,53) LW10,0w20
wRITE(S,54) 10,4,C

52 FORMAT(*1w10="',F15.6,10%, W20="',F15.6]

83 FORMAT('UDWIO=Y F15.6,10X, 'DW20=",F15.6) -

54 FOKMAT('OI0=t,F8.4,10X, "Mz, F8.4,10X,'C="4FB8.4}
. KRITE(5.5) R
5 FORMATU YLt qT6, T 117 W1V ,T30,'W21")

T=0.0

o STeP=1.0 .

15 P=2,0%{%C=C
Ar=SGRT(2.0%10/P)
B1=SQRT(O0.5%10/P)
Cl=T/Al
DI1=ATAN(C1)

E1=81%D1
Fl=rs/10
Gl=1.0+F1#T*T
Wl=(nl10+2.,.0%0Wl0=(T-E1) /61
A2=SGRT(Iu/PY ST T
B2=10/P

C2=T/A2 B
D2=ATAN(C2Y
EZ2=D2/A2
F2=T+T+82
Ge=T/F2
W2=n20+0.5%DW20%R2%(GR24E2)
WRITE(3,10) T,Wl,d2

10 FORMATUILX,F9.4,2F13.7)

T=T45TLP

1IF{T-60.0) 15,15420
20 CUNTINGE

CALL EXIT

END
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3. End Mass Moving - Series Solution

SERIES SOLM. CAL. Wl,W2. A. END MASS MOVING
CREAL 110,120,130,11,12,4
READ(2,21) 110,120,130,M,C,TF
READ(2,21) «10,420,NW10,Dw20,H0
FORMAT(BF10.0) .
WRITE(5,51) 110,120,130,H,C,TF
WRITE(S5451) wW10,W20,DW10,DW20,H0

FORMAT{BF17.6)

P=2.0%MN¥C%C
TCONSTANTS FOR HI(T) T
AD1=110%120%130<130%(120+130)

AE1=120%(130%130%(110+[20+130)+2.0%110%]130%(1204130))%P

CUAF1=120% (130%I304110%(120¢130))%p%p

AGL1=120%(110+120+3.0%[30)%{P%%3,0)
AHL=120%(P%%4.0) 7
A11=2.0%110%130%120%120:P
AJL1=2.0%(110+130}%120%120%P*P
AK1=2.0%(120%120)#(P*%3.0) o
ALL=(130°T107#(130%130-120%120) *H0%H0
AM1=2.0%130%(136=110)¢P=HO*HO
AN1={130-110)%P*PEHOSHO

Al=—(ALL)/{AD1%2.,0%1.0)
A2==(2.0%1,0%AF1-2,0%811+ALY)}/(ADLI%*4.0%3.0}
AZ==AN1/(ADL®4,0%3,0)

Ab=—(4,0%3.0%4F 1 -4, 0%A1 1 +AL 1) /{ADYI%6.0%5,0)
A5=-(2.0%),0%AF1=2,0%AJ1%AM1)/(ADL%6.,0%5,0)
AG==A")L/{ADL*6.0%5.0)

AT==16.0%5, C*AF1-6.0ATL+AL 1)/ (ADL®R.0%7.0)
AB=-{4.0%3.05AF1~4,0%AJ1+AMI I /{ADI=8.0%7.0)
A9=—12.,0%1.0%AG1-2, 0¥AK1+ANL)/{ADL*B.0%7.0)
ALO=—(8B.0%7.0%AEL-6.0%ATL+ALL)Y/ (ADL*10.0%9.,.0)
Al 1l={6.0%5. NEAFL-6.0%AJI+AMI)/(A0L*10.0%9.0)
Al2={4.0%3, 0FACLl -4 OFAKI+ANL )/ (ADLI=10.0%9.0)
Al3=(2.0%1.0%AH1}/{AD1*10.0%9.0)

Bl=—{=AT1+AL1) /7 CADLI=3.0%2.0)
B2=—(3.0%2.0%AC1-3.0%AT1+AL1)/(ADL*5.0%4.0)
B3=—({—-AJ14AM1}/(AD1%5.0%4,0)
Ba==(5.0%4,0%AF1 -5, 0241 +aL1)}/{AD]15T7.0%6.0)
B5=—(3.0%2.0%AF1 =3, 03AJ1+AM1 )}/ (ADL%?.0%6.0)
BoH==(~AK1+ANY1 )}/ LADL*T.0%6.0)
B7=-(7.0%6.0%AE1-7.0%aT1+ALL}/{ADL1%8,0%7.0)
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. s . 4 e = =T maes

. . - - - - - -, . _

BB=={5.0%4.0%AF1-5.0%AJ1+AM1 )}/ (AD1%*8.0%7.0)

. B9=-13.07%2.

WRITE(5,5)

5 FORMAT('1!',
COUr=0.0 0
STEP=1.0

__A10=110%4d10

15 AA1Z2=ALl*(T

AAL3=(A2%AL

T OAARYA=(AL4F(A

AlS1=AT*A4*

AlS2=AB%{a2=
Hh1621{T=%8,0)

T TTTTAALS=(AISTE
ArOl=A10%AT
A162=A10%AT™
A163=A12% (A
AA1G6=(AL161+
Al7=1,0+AA1

c

BI11=Blx(T#%*
B12=(B2*Bl+
"B13=(B4%(82
Bl41l=R7#u4%
B142=R3% (82

B15=1.0+211

"H1=A10%417+
11=110+p*T=*
S Wl=H1/11

C CONSTANTS F
ADZ2=110%120
AE2={2.0%11
AF2=120%(11

C AG2=120%(Px*
TAHZ=2.0%(11
AI2=2.0%t11
AJ2=6,0%120
AKZ=(1306-11
AL2={130-11

C2=-{2.0%1.
C3=—{AL2)/!
T C4=-14.0%3,
CS5=-{2.0%1.
_ Cb=~(6.0%5,
T CT=-14.0%3,
C=—(2.0%1.

" ORIGINAL PAGE IS
OF POOR QUALITY

TBl14={Bla1+3

ATT®T®R1S

‘Ci=-AKZ27(AD2¥2.0%1.0)

0*AG1-3.0% AKI+AN1)/[ADl %*3.0%8.0)

T6,'T*,T17," ﬂllltiq[:H?:lm_”“

All=110%DW1lO
x%2,0)

+A3) % (T*%¥4.0)
PRALFTAI)FASHAT+AL Y= (T%6.0)
(A2=A1+A3)+ATHASEAL+ATH AL
Al+A3)+A95A]

(AGEAZEAL+ABFAL)+AL0RATHAG*AL
AG+HALLHLAGTA2ZFAL+ALEAB+ASEALHAL])
2AAT+A3)+AT3 o
A162+4A163)%(T%#%1C.0)
2+AAL3+ALI4+AALS+AALG

2.0)

B3I (T*%4.0)
#¥R1+R3)+BOABIFRE) #(T=*6.0)
{R2*BL+£3)+87%B5%B1+BT*B6
*B1+83) +09%B1
1421 (T*%9,07F
+B12+B13+614

T

OrR HZ2{T)

*130%]130
Nx120%130+120%130%130)=*P
Q+2,0%f30)%P%P

*3,0)

0+130)»120¥f§6'P
0+3,0%130)1%120%pP%pP
s(Pr®3.0)
01%(130-120)*HO%HO
0)%PEHO¥HO

QRAF2+2 . 0%AH2+AK2) / (ADZ2%4.0%3,0)
ADZH&4 ,0U%3,0)

NELE2+4 . 0%AH2+AK2) / L AD2%6.0%5.0)
OEAFE?+2.0%AT24AL2)/LAD2%6.0%5.0]
QAE2+6.0% AP2+&K2}/[AD?¢8 0%7.0)
O%AF2+4 . 0581 2+AL2) /L ADZXB.0%T.0)
0*AGZ+2.0*AJ2)/lnDZ*B.O*T.OJ
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E . L ——— - ® = - - .‘ . -

DI=Z{AHZ¥AKZ)/7{AD2%3,0%2.0)
D2=-{3.0%2.0%AE2+3.0% AH2+AK2)/(ADZ*S 0%4.0)

. D3=-(A12+AL2)/{AD2%5.0%4,0) .
T D4=— (5. 0%4 0¢AE245 . 0FAHZ+AK2 ) / (AD2%*T7.0%6.0)

D5==(3.,0%2.0%AF2+3.0%AI2+AL2)/(AD2%7.0%6.0)
D6=-A02/({AD2%7.0%6.0)

c
A20=120%W20
o A2Y=120%LwW20
C
Cl12=Cla(T=%2.0)
. C13={C2%CLl+C3)=(T*%4,0) e
C Cla={Caex(C2*CI+C31+C8%CLI%(TE=6.0)
C151=Ch*Ca+{C2%C1+C3)+Co%C54C)
_.._.Cl52=Cy=1C2%C1%C3}+CB*CY
Cl5={C151+4C152)%(T%=8.0]
Cle=1.0+C12+C13+C14+015S
C
: CTTTDIIE01 = (T2 .0 T T e
D12=({D2%D1+D3 )% (T%%4,0)
O13=(D4%(D2+D1+03) +05%D1+D6)*(T*%6.0)
D14=1.0+D11+012+D13
C
_ . H2=A20%Cle+A21xT*D1s
12=12¢
: W2=H2/12
C i

WRITE(S,10) T,Wl, ;w2

10 FORMAT(LIX,F9.442F13.7}
T=T+S$76P
IF(T-TF) 15,15,20

20 CCHNTINUE )
CALL EXIT
END

ORIGINAL PAGE Is
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4. Uniformly Distributed Mass

¢ FRCGRAM. FCR__GEN.  EULFRIAN _FCRMULLATICA ...

R e — - .

UNIFCe¥LY C1ST MASS MOVIRG CNLYERICAL
CLRRCULTINE RCSOL{T ;h,DlW)

CIMENSICA  w(3)},Ch{2) _

REAL I1,412:12,L,LF,
CCMNMCH 11,12,13,11C
L=C*T

Moving - Humerical Integration

116,120,120
,120,130,4,CCN,CsL,LF

ENE

OF POOR
QUALITY 10

Aﬂ=(2;0/3.C}*EEN*(EA+L}**3-b¢¢3}+2.C*EEh*(LF—L1*&**
PR=2.CHCENSCH{ (A+L)#32-A%%2)
I § 50 % 1 0.2 L N U
12=12C
12=12C+4A
U EMYEBB e T T
Ciz2=Cc.cC
Ci2=RE
ﬂw__,mﬂ__ﬂ,_Ebilifijj?:léi#hjﬂﬁihL%l:Ell?h!Allill__;__“____“,__ﬂ__m___
w2z 112- T ) skt an{)-E12%u(2)) /12
CRi3)=((I1-12}w(1)%w(2)-C13%a{2)1/13
L URETURN i e e o e S
C
C
. _ENC o S
o _H______HWEkEREET}Eﬁ_ﬂEQSQZLflh'ghxlﬁLELStﬁl;“m“,__ e
CTNMENSICN  w(3)},Cn(2),CUNMNY(2)
REAL 11,12,13
__,__"*_,_“EEEEEEMJJ¢12n13 e
o CATA CEG/57.2951719%/ ) TrTTT T
C
e - — e
o CALL "RESCLITyW,DLNMMY) B Tttt T
F1=11%wt(1)
o kzmleEwle) e
T Fa=]22a1(3) " ’ ’ T T T T
TFETA=ATNZ (SCRY(H1#H1+MH2%F2),F3)}*DEC
R _ qP=T4GLCCCCS e
- WRITE(S.1)  TPak THETA,CH,y IHLE ' T T T T
RETURRN
.......—C_._._...-— h e R Aw e W mER W= [ — P ——
el e , - e e e e e e
1 FCRFAT (1X,FS.4,7F13.7.11C)
C .

2
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|
l
]
i
}

o

C

CALE EXET

_EXTEPKNAL | RCSCI RESC2 . "

C]FEKQICR PARM(S5)wi2),CWIL3 '§12-73),hﬁ {e:3)

CATA N/3/ R - |
__REAL “'17’f”‘19132LEW ALY S A

CCMICN 11112’1 il]CsI?O 120,45, DEN,C o LF -

—————— e+ ————————— T e e e

~EhiA CarCS -- 1C TCCLUVRS FCR EACH VALLE

1- THAX,INITIAL STEP, TCLERENCE
2~ DEhSITY'.h{RhEIUS CF S SATFLLITE)

TEITIRTTIAL IS

4~ C,LF
S- INITIAL W':

TELTIYPICAL STZES CF W S

REACIZ2,61) TKAX,STEP,TOL
READLZ, y911 CEN,A o ) S

T READ(2,51) IlC:lZCsI’O
REAC(Ciql) C:LF :

REAC(2,S1) % ... _ _ e
TTRERD(2, ,61) SIZE ' '
WRITE(S5462) TVMAX, STEF,ICL

_WRITEL5,63) CENsA

TURITE(5,64) 116,120,130

WRITE(S5,551C,LF
CWRITELS,96) W

TTTWRITE(S5,97) SIZE

WRITE(5,58)
PARV(1)=0.C
TEARF(Z)=TFAX
PARM(3)=STEP _
CALL. RKSCLINsS1ZE,Ci,TOL,PARN]

T C AL RKGSUPARY YW Tinah T1hLFRCSGL, RESCZ WCRK)

WRITE(5,5G}IFLF

g} FCR¥AT{ BF1C.C )

92 FCR¥AT( '"1TMAX="',FE&. 2.10(,‘STEP—‘,F8 4,4 lCX,’TCL—',Fﬁ!Q}

§9 FCRFAT('OIFLF=1eL130,

63 kCRFﬁT(‘CLFN",FB & 10Xy A2t ,FB.4)
G4 FCRMET('CINIT 1*,3F1C.6)
55 FCRVAI(‘LC-‘,VQ:Q‘ICX;'LF=_Ligrﬁl-ﬂ__mm_uﬂuuf____
TG FCRMAT('OW 1,23F1C.6) Tt T T
§7 FCRMAT{'CSIZE ,3F1c 6}
58 FCk’A1('l',T6,'T‘.Tl?,'n1' T30, W2, T42, "h3Y,
SYES I THETAY (TEG, 'Cul?y TBL TENZ !,

3764,'Ca3',T10E,"IFLE, e/}

ENE
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Uniformly Distributed Mass Moving - Analytical Solution

CARFLY CBU. ViswZ. ELUNIFCFRM,
REAL IC
CPEACI2,51) 21C,%2C

CIST. NASS

TFCVING

TREAC(Z,81) Trh1C,CheC Tt T T
REAL{Z+51) 1C,C4CoyIF

B1 FCRYAT(SFIECY e .
CENSITY CF vCCH
RRITE(5,52) %51C,nZC
WRITE (5,520 CWICALR2C o e e

TTWEITE(S,54) LICaCHCaTF
€2 FCRMAT('IWIC=',F15.€,10%, "2
B3 FrRY¥AT('CCIC='yF15.€,1CX, 0

RRITE{(S,5)

e FCRMATIIN T T T 1T
T=C.C

S1EP=1.C
E=((1.5%1C/01#%(1.C/
WRITE(S.61)E

€1 FCRNAT(1X4FG.4)

15 W1= vic/t1, C+¥#%3,C/C% ¥3., 03

2.0))/C

Ple((B%%2,C)3T)/(E**2,04T%%2
F=({P+T)#%%2.0)/(B**2.C~ ExT4T
TTC1=tE/3. CY=#AaLCGIF)
[=22.0/742.C
Cl=(z.C*¥T-B)/(1.722%E)
Cz=ATANICLI)HE
C2=2(Z2.0%B)/1.732
C4=023C2
El1=CwZC/2.C
W2=heC+EL2(EL14CL+C4)
WRITELS,1C) Tally WZ

1TCECKYATILX,FS. q;2F1,.f1
1=14STEF
1FET-1F)115,15,2C
CCNTINLE '
CaLL EXIT
CENC

M
(g3

ORIGINA] -
PAGE
OF POOR gy ALIT?

TEXTRE TERFS wlir PL ARE TLEFT T

C=',F1lE.¢)
lu:’C'—_ Fls-e’

Teu FCRNATLTCIC=Y \ T84 1CX, 'C=1 FE, a,lcx,-c—"Fe 4, TCX, VTE=1,FE.4)

.0
#22.,0)
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6. Detumbling--To Achieve Final Spin Along One of the Principal

Axes (End Mass Moving - Humerical Integration)

we ¥4 N e ha Ws e e
OO0

Ma ws e Wa % we ks e a2 Ve Wz Wk 4

wa % r WE w4 W5 me Wi We

b e

91
92
a3
a4
95
a6
57
o3

. 0
. e wm W %s Ne e e he ws Wa

82

e %e We We e wr v

EXTERMAL RG5A1.RGSA2Z

DIMENS 1OH PHRH(S),U(E?.DU(SJ;S!ZE(3),MDRK(8.3)
REAL 11,12, 13,116, 128. 120, M1, 112,13

COpMrion 11.12,]3.llB.]28,I3B,H1.ﬂ2.ﬁ3,CI,E2.C3

DATR CARDS =~-- 16 COLUTHS FOR EACH VALYE
{- THAX, IHITIAL STEP, TOLERENCE

2- MASSES

3- IMITIAL I°S

4- €’S

5- INITIAL WS

€~ T¥PICAL SIZES OF WS

CALL INOUTC(Z2.5?

H= 3

TYPE “REGS JOB’
READ(Z,S1) THAK, STER. TOL
READ(Z.91) MI.HM2.M3
READ¢2,91) 11@,120.120
READCZ.91) C1.C2.C3
READCZ.31} |
READ{R.91) SI1ZE

WRITECS, 22) THAX.STER. TOL

WRITE(S. 93y M1.0E.M3
WRITE(S, 94y 114,128,139
WRITEC(S.33) C1.CZ2.C3

WRITE(S.2E8Y W

LRITE(S, 97) T1£E

PARMCLY=A.0

FARM{2) =THMAX

PARM(Z) =STEFP

CALL RKSCL ¢M.SIZE,DWL TOL, PARM)

WRITEC(S.33) :

cAaLL RKGS(PQRM,U,DU,N,IHLF.EGSB]»RGS@Z;UDRK)
WRITE(S.93) IHLF

CakbL EXIT

=

FORMAT( 2F16.8 ) )
FORIATC ’ITHQK=‘,F8.2.IDX.’STEP={.FS.4.IBK,‘TUL=',FB.SJ
FORraT (" GMASSES . 3F18.6) :

FORMATC DINIT 1°.3F10.6)
FURMaT("TC *LIT0LAS
FORTWTL OW *LaF1E. Y
FOoRMATC OSIZE  ©.3F10.8)

FGRNRT(‘l',TE.‘T’.TI?,'Ul',T3B,’U2'.T43.'U3'.

5785, " THETR” . 769, DU, T3, “DL2".
3794, "DY3" . T108, " 1HLF . »)

FORMATC OIHLF=",13)

END
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PROGPAM FOR GEM. EULERIAK FORMILATION

TELEZCORIC TYPE A. EHD HASS  MOYIHG DETUIMBL TNG
SUEBROUTINE  RGEDICT.W.DILD

DIMENSION  W(3).DW(2)

KEAL .12, 13,0 L2.L2.118. 128, 126.M1.M2. M2
COMMIN 11.12.12,110,120.130,.M1,1M2.12.C1,C2.C3

IF(T.CT.2.5} GO TQ 28
Li=CiaT

L2=C2xT

DLi=C1

DL2=Cc2

GO TO 28

Li=CHe2.5

LZ=C2%2.5

DL1=G.8

DLZ2=A.0

CONT IHLE

L3=C3xT

DLZ=C3

Al=M1%L 1L 1

A2 =124l 2wl 2

S=EMARLEIHLE .
11=116+2.86(A24AD)

Z=1284+2 B (23481

F3=130+2 , 0iai+R2)

Bl=Mlx=0 %I 1

B2 =M2ni 24D 2

Ba=M3#L34DL 3

Dil=a,0:(B2+E3)
DIZ=4 B {RB3+812
DI3=4, k(B 14E82)
DT =C0l2-13) R0 2) (S -DT 10t d Y 1
DUC2Y = (CI3-T 12 st 0 LY =D I 240200 /12

TP = CCT -T2 S22 DI 332 413

—

RETURN
END

795
Did. THLF .M. P)
L DU (3D

PRRAMETER DEG=57.2857
SUBROUTINE  RGSGZ(T. L.
DIMENSIOM  W(3Y.DUICE)
REAL 11.12.13
EOMFEON 11, 12,13

CALL FRGSAICT.LL DUNITY)

Hl=1 1012

HZ=124L02)

Ha=15403)

THETA=aTRUZ (SORTIHIAHI+H24H2) L H3 ) =PEG
TP=7+0., 02003

WRITE(S. 1)  TP.W.THETAR, DWW, IHLF

RETURN .o

FORMAT (I1X.F9.4.7F13.7. 11

ERD
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7. Subroutine RKSCL

SUBROUTINE RKSCL(MU. UMAG,. DU. TOL. P2
REAL  UMAG(L). DUCLDY, P4

H = HJ
UNGRM = B.E
pétt I=1.H

URG2H = UNORH + 1.0.U0MRLTTD
COMTINUE
UNGRI = 1.8-UNORM
L0 2 I=1. N

pUdly = UHORMAIMAG(D)
CONTIHUE
P{d) = HMGHORMETOL-1S.8
RETUERN

ERD
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8. Subroutine RKGS

SUBRCUTINE RKGS(PRHT.Y;DEEY,HDEH,]HLF.FCT.OUTP.QUX)
DIMETS 10M Y(l).DEEY(lJ,QUK(B.1).RE&).B(AJ.C(d),FENTfSW

b 1 i=1.1DIH

GUN(E, 1) =. 665566567 %ERY (1)
K=PEMT(1)

KEHD=FRITT{(2)

H=FrifT3)

PEMT(5) =4,

CALL FCTiX.Y.DERY)

ERRGR TEST

IF (H&CXEHD-3))38.37.2
FREPHEATICONS FUR FUNEE-KUTTR METHOD
R(1Y=.3

A2y =.24283932

- =

R(2)=1.

C{d)=.5 .
FREPARATIONS CF FIRST RUNGE-KUTTAR STEP

‘DO 3 T=1 NN

AUK(2, P =DERY(D)
AUXR(3, 1) =8.
AUN(G. 1) =0,
JREC=0H

H=H+H

JHLF=-1

J1STER =0

JERD =0

. GTART GF A RUNGE-KUTTA ST=P

wm N A

JF ((34H-NEND) ¥HIT. 6.5
H=NEND-X
IEHD=1

RECOEDING OF INITIAL VALLES gr TH1S STEP

CALL DUTF(K,Y.PEEY.EREC,NDIH,FQHT)
IF(PRITTIE) 2«0, 8. 48

1TEST=0
I8TEP=1STEF+]

§TRRT DF IHNERMOST RUNGE-KUTTR Loee
=}

(er 108 -
IGINAL p

0 AGE 18- .

F POOR QUALipy

RKEGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS

RKGS .

RKGS
RKES
RKGS
RKGS
RKES
RKGS
RKGS
RKGE
RKGS
RIKGS
RKGS
RFKGS
RIKGS
RKGS
REGS
RIKGS
RKGS
RKGS
RKGS
EKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
REGS
RKGS
RKGS

la
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o
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LUl O stmat L

b .
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16

11
12

13
14

16

17

1e

19

21
22

23
24
25

26
27

28

Al=A(J}

Bgl=g(J2 L
ci=CcJy

Do 11 I=1.HDIM
Ri=H=DERY(D)
R2=AI*{F1-BIAtUx(6.12)
YD) =Y{I1+R2

R2=RZ24R2z+E2

BAUXIG, 10 =aUn(s5, [34R2-TJ*R]
1F¢i-4)12.15.15

J=j+1

IF(J-3313. 14,13

W=+ .5rH

CALL FCTOALY, DERY)

GOTO i

EHMD OF IHNERMI: FUNGE-KUTTA LOOP

i
iUy
fr) = i
-~ )
.
Im
)

m

)

~

RN I I

v el e (T

— S

~

b=, Dok

DO 13 1=1.NDIM
V(1) =Aumil. 1)
REPY (T =A%, 1
AUX(E, 1Y =ALX(S,
GGTO 9

)
I

TESTING OF ACCURACY IS POSSIELE

AU
—t

I
[

Lt}

—1F0DY 21,283,231
L DERYD -
il -

5

¢

ba 22
AUR(S, 1)

ALX(T, TI=RERY(T)

GOTG 9

COrPUTATION OF TEST VALUE DELT

DELT=B.

pO Z4 1=1.KDIH

DEL T=DELTHRUN{E, I} =ABRS (AUX{L, 1) -Y (1))
JF(DELT-FRITLS228.28.25 o
ERROR 15 TOOD GRERT

IF(IHLF-10335.55.56

ol 27 =1, HDEN

RLUNGE, DY =803, 1)

ISTER=IETER+ISTER-4

X=Xx-H

1EHD=08

6OTO 18

RESULT vaLUES &RE GOOD

ERLL FCTUX, Y. DERY)

,.
—

ORIGINAL Pagp IS .+109-

OF POOR QUaLITY

IS NO POSSIBILITY FG2 TESTIN
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RKGS
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REGS
RKGE
RKGS
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- RKES
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28

3
31

32

24
35

. 37

B
39
48

AUXCL, 1= (D)
fAUXC2, Ty =DERY(D)
AUR(Z. 1) =flxi6, 1)

V{1 =aUK(3, 1)

DERY (1) =Hix{7, 1)

CAtl QUTE (<~H. ¥. DERY., IKLF . NDIML.PRIT)
IF(FRAT(S) 188,328,449

U0 %1 i=1.WDIM

YD =RUHCE, 1D

DERY (1) =RUK{2. 1)
IREC=1HLF
IF¢IEDIEZ,322,33
INCREMEMT GETS TMOUELED
THLF = THLF-1

ISTER=15TEPA2

H=H+H

IF¢IHLF)4.33.33
IMOD=1STERPA2

IF CiSTERP-IMMGD-1M0T 4,34, 4

I

1E(DELT- . BE#FRMT (42135, 35. 4

RETUBNS TO CALLING PROGRAM
IHLF=11
CALL FOTERLY, DERYD

1
GOTo 39
THLF=13
CoLL QUTP (X, Y. DERY. IHLF . KD 1M, FRET)
RETURHN
END

10

RKGS
RKGS
REGS
REGS
REGS
RKGS
RKGS
REGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
RKGS
BKGS
RKGES
RKGE

RKGS ]

RKGE
REES
RKGS
RKEGE
RKGS
RKGS
RiCGE
RKGS
RKGS
RKES
RKGS
RiKGS
RKGE

- RKEGS
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