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ABSTRACT

The motion and stability of spin stabilized spacecraft with mov-

able external appendages are treated both analytically and numeri-

cally. The two basic types of appendages considered are: (1) a

telescoping type of varying length and (2) a hinged type of fixed

length whose orientation with respect to the main part of the space-

craft can vary. Two classes of telescoping appendages are considered:

(a) .where an end mass is mounted at the end of an (assumed) massless

boom; and (b) where the appendage is assumed to consist of a uni-

formly distributed homogeneous mass throughout its length.

For the telescoping system Eulerian equations of motion are

developed. During all deployment sequences it is assumed that the

transverse component of angular momentum is much smaller than the

component along the major spin axis. Closed form analytical solutions.

-for the time response of the transverse components of angular veloci-

ties are obtained when the spacecraft hub has a nearly spherical.mass

distribution. For the more general case, a series solution is

obtained and thissolution is limited by its radius of convergence.

The comparison of the different approximate analytical methods with

numerical integration results are studied.and it is observed that the

oscillatory nature of the responses of the transverse angular velocity

components reduces rapidly with faster extension rates.

As an application for spacecraft rescue and recovery, booms are

extended along all principal axes to (a) detumble a symmetrical
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spacecraft, and (b) achieve a desired final spin about one of the

principal axes. From an application of Lyapunov's second 
method boom

extension maneuvers can be determined. Numerical examination of

detumbling for asymmetrical hubs also is considered. The use of tele-

scoping systems for detumbling a randomly 
spinning spacecraft to

achieve a desired final state in a time optimal manner is studied and

it is found that simple boom extension maneuvers 
alone can not be used

to achieve the desired state in minimum time.

The equations of motion for the hinged system are developed 
using

the Quasi-Langrangian and the general Lagrangian formulation. In this

formulation there is no restriction on the location of the hinge

points.
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NOMENCLATURE

ax  = offset of hinge point(s) from the '2' axis

ai(t), a2(t) time varying coefficients in the approximate
equations for 1 , h2

an  coefficients in the series solution for hz(t)

b(t) for deployment when '3' axis is a symmetry
axis, b(t) = al(t) = a2(t)

bn = coefficients in the series solution for h2 (t)

C,D,E,F constants appearing in the approximate analytical
solutions for hl, h2 for the case of a nearly
spherical hub

c = boom extension rate

h1, h2, h3  components of the angular momentum vector along
the principal axes

ho assumed constant value of h3 during nominal

deployment maneuver

11, 12, 13 instantaneous values of principal moments of
inertia

1 , 12, 13 = hub principal moments of inertia

I 12 ,13 = moments of inertia at the switching time T3f
in the recovery sequence to achieve final
spin about the '3' axis

J = Tf dt = Tf, cost functional for time optimal control
0

K = 2pc 3

S= constant length of hinged appendages

L(t) = time varying length of telescopic appendages

M = mass of the main part of the spacecraft

m = boom end mass

vi



m* constraint on the control vector such that,

p = 2 mc2

R1, R2  = Constants appearing in the solutions for wi(t)
for the asymmetrical deployment of booms with

uniformly distributed mass

ro o= ffset of the hinge point(s) from the '3' axis

t = time

T = kinetic energy

Tf= switching time in the recovery sequence to

achieve final spin about the '3' axis

u (t) = control vector

V = Lyapunov function

Vi inertial velocity of the ik mass of the

(hinged) system

VM/cm velocity of the main part of the spacecraft
with respect to the system center of mass

VM/O velocity of the main part of the spacecraft
with respect to the center of the coordinate

system (o)

Vmi/o = ri velocity of the ith mass in the system with

respect to the center of the coordinate system

Vo!cm = velocity of point 'o' with respect 
to the

system center of mass

X(t) = State vector

x t) = solution of controllable norm-invariant

system under unique time optimal control
i (t)

= coordinates describing the orientation of the

hinged appendages relative to the hub

vii



WO = constant value of 3 when two pairs of booms are

extended (symmetrically) parallel to the '3' axis

W1, 2 , W3 = angular velocity components along the principal
axis

= desired final value of W3 (W3f)

p = mass density per unit boom length

Po, to = phase angles appearing in the solutions for
mi(t), w2(t) and determined from conditions at
t = 0, t = T3frespectively

= fb(t)dt

i(t) = elements of control torque vector u

= indicates time differentiation

(0) = indicates initial conditions

I II = indicates norm of a vector quantity

viii
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I. INTRODUCTION

A number of spin stabilized spacecraft have long appendages which

nominally lie in the plane of rotation perpendicular to the desired

spin axis. These appendages might be on-board antennas which must be

extended in orbit after the initial injection sequence. The extension

of on-board antenna booms is usually done with the use of motors

located in the central hub of the spacecraft. The dynamical aspects
1

of such spacecraft have been discussed in the recent literature.

Of special interest is the stability of the system during the

initial extension of boom-type telescoping appendages. An early

investigation considers this problem for the case of telescoping type
2

appendages consisting of two end masses at the ends of massless rods.

It is assumed that the extension maneuver is restricted to a plane

which is perpendicular to the nominal spin axis and that both the

system angular momentum and kinetic energy are conserved during this

maneuver. In addition the transverse components of angular vel.ocities

are assumed to be zero during extension. Under these assumptions it

is seen that the resulting Lagrange equations of motion will yield an

approximate analytical solution for limiting values of initial to
2

final moment of inertia ratios. A more recent treatment using an

Eulerian formulation considers the extension of rigid booms where the

transverse component of angular momentum remains less than the polar

component throughout extension. For the special case where the spin

axis is an axis of symmetry the linearized equations can be solved

1



3
analytically. A similar approximate solution has also been obtained

4

previously under the same type of assumptions.

The first phase of the current study will examine the three

dimensional motion of a general spinning spacecraft system with mov-

able telescoping appendages during the initial deployment manuever.

During all initial (nominal) deployment sequences, in accordance with

actual practice, it will be assumed that the transverse component of

angular momentum is much smaller than the component along the major

spin axis. The dynamics of such a system will be studied using a

variety of analytical techniques for special cases and numerical

methods for the general case.

It is thought that by using movable and/or extendible booms the

recovery of a tumbling spacecraft by passive means may be feasible.

Methods of recovering spinning satellites to a flat-spin condition

using spin-up thrusters and multiple combinations of thrusters 
were

5

examined in a recent paper. It was concluded that the use of such

thrusters for the recovery operation are often limited by the weight

and propellant capacity of the thruster system, and also the 
reliabi-

lity problems associated with multiple thrusters in sequence. Kaplan

describes an alternate recovery system which utilizes a movable-mass

control device that is internal to the spacecraft and can move along
6

a fixed direction track. This device is activated upon initiation

of tumble and is programmed via a control law to quickly stabilize
7

motion about the major principal axis. In a recent related paper it

2



was concluded that the mass track should be placed as far as possible

from the vehicle center of mass and be oriented parallel 
to the maxi-

mum inertia axis; in addition the performance of the control system

can be improved through larger mass amplitudes along the track 
and

also larger mass sizes.

It is apparent that the location and displacement amplitude 
of

any internal control mass will be limited by the physical dimensions

of the space vehicle. Externally movable appendages could allow for

a greater range of location and displacement amplitudes 
of such a

system; however, as the size of the appendages increases the flexibi-

lity problems associated with such structures would 
have to be con-

sidered.

Of interest in this study will be the consideration of the

detumbling dynamics of a spacecraft system with extensible boom-type

appendages along the principal axes. The recovery maneuver from an

initial tumble is designed to reach either of two final states: (1)

close to a zero inertial angular velocity vector and (2) to approxi-

mate a final spin about a principal axis. (It is thought that small

terminal residual angular rates could then be removed by temporarily

activating on-board damping systems). A key advantage of this type

of system would be its potential reuse for subsequent detumbling

recovery operations as the need arises.

For the case of time optimal three-axis control of the nonlinear

norm invariant system it is an established fact that the control

3



torques about each axis must be proportional to the instantaneous
8,9

angular momentum components about each axis, respectively; 
it is

doubtful that such a time-optimal control torque could be generated

only by boom extension techniques. However it may be possible to

consider a combination of movable end masses and optimal control jets

for three-axis control of a tumbling spacecraft. In the event of

jet failure the movable end masses could certainly be used as 
a back-

up re-usable system for detumbling. (even if they cannot effect 
time-

optimal recovery).

Other types of spacecraft employ fixed length appendages (hinged

systems) whose orientation relative to the main spacecraft is changed

during the deployment maneuver. The dynamics of this type of fixed

length appendages during the deployment maneuver with rigid appendages

have been studied only for the case where the transverse components

of the angular velocity vector are assumed to be zero throughout
2

deployment and where the hinge points are located on the hub's prin-
2

cipal transverse axes. The general three dimensional deployment

dynamics of such a hinged system will be considered here without any

restriction on the location of the hinge points.

4



II. MOTION DURING DEPLOYMENT OF TELESCOPING SYSTEM

1. General Considerations

The motion and stability of spin stabilized spacecraft with

telescoping appendages are studied both analytically and numerically.

The telescoping appendages considered here are of varying length and

could represent extensible antennas or a tether connected to the main

part of spacecraft. Two types of telescoping appendages are consid-

ered (Fig. 2.1): (a) the case where an end mass is mounted at the

end of an (assumed) massless boom (end mass moving) and (b) where

the appendage is assumed to consist of a uniformly distributed, homo-

geneous mass throughout its length (uniformly distributed mass moving).

The torque free equations for a spacecraft with varying moments

of inertia are:

hi = w3h2 - w2h3

h2 = l1h3 - 'W3h (2.1)

h3 = w2h - wh2

where hi(t) = Ii(t) wi(t) (2.2)

Making the approximation:

h 1, Ih 21 << jh31

and h3  = ho  = const.

5



the equations for h, and h2 become

hi = -a2(t) h2  (2.3)

h2 = al(t) h, (2.4)

Here al(t) and a2(t) are defined as:

(1 3(t) - 11 (t))

a2(t) = 13(t) 1 (2.6)
13(t) 12 (t)

As a special case when the spin axis is an axis of symmetry (al(t) =

a2(t) = b(t)) during deployment, Eqs. (2.3) and (2.4) become:

hi + b(t) h2 = 0 (2.7)

h2 - b(t) hl = 0 (2.8)

Introducing = fb(t)dt the above equations reduce to,

dhj
+ h2 = 0 (2.9)

dh2
d - hi = 0 (2.10)

6



10

The solutions to Eqs. (2.9) and (2.10) can be written as

h1(t) = q cos = q cos (ftb(t)dt + ) (2.11)
0 ,o 0

h2(t) = q sin r = q sin (ft b(t)dt + )  (2.12)

The solutions given by Eqs. (2.11) and (2.12) are identical with those

given in Ref. 3.

For the general case where there is no axis of symmetry during

deployment the following approach is taken. Differentiating Eq. (2.3)

with respect to time and using Eq. (2.4), the resulting equation for

hi is:

h - a2t) + al(t) a2 (t) h = 0 (2.13)
a2(t)

Similarly the equation for h2 results as:

a(t)
h2 - a(t h2 + al(t) a2 (t) h2 = 0 .(2.14)

Eqs. (2.13) and (2.14) will be extensively used in the following

sections.

2. End Mass I-loving

a. Analytical Solution for Asymmetrical Deployment

The telescoping system,where the end masses are attached at

the end of massless rods along the '2' axis, is shown in Fig. 2.1(a).

The extension of the masses is assumed to originate from the center

7



of the spacecraft hub. The moments of inertia about the three prin-

cipal axes during the extension are

I= I + 2ml 2

*2 (2.15)

13 I * + 2m 2

For.a uniform extension rate, t = ct, and introducing P = 2mc2 Eqs.

(2.15) become:

2

17 = I + Pt

12 =1* (2.16)

2
13 = I3 + Pt

From Eq. (2.6)

23 2
a2(t) 12 I1 3 - 13i 2  (2.17)
a2(t) 1312(13-12)

Using Eqs. (2.16) and their derivatives, Eq. (2.17) can be written

as:

a2(t) 21 *Pt
= pt2)(2.18)

a2 P 2) 1 3 2 P2

From Eqs. (2.5) and (2.6) with Eq. (2.17), al(t) a2(t) is obtained as:

8



(13 1 11) (13 12) 2
al(t) a2(t) 

=  2 ho  (2.19)
312 I2

(I~ - I*)(I + Pt2  1 2
= 1 3 h2 (2.20)
(1* + pt2)2 (I* + Pt

2) 1* 0
3 1 2

Eqs. (2.18) and (2.20) are used in Eq. (2.13) to obtain the fol-

lowing second order ordinary differential equation for hi:

21hPt 2 h (I3 - I*)(I - I2 + Pt2)hh 0
hi - ---- --- - + 0

(I + Pt + Pt + Pt2 )  (I + p )2  + Pt2 ) I (2.21)

From Eq. (2.5),

a 2 2*
a,(t) 1113 - 1311 (2.

- (2.22)
al(t) 1311(13-11)

The second order differential equation for h2 is obtained in.a procedure

similar to that used for hi. Using Eqs. (2.22), (2.16) and (2.20) in

Eq. (2.14) we obtain the result as:

h +(I* + I* + 2Pt 2) 2Pt h

(I* + Pt2)(I* + Pt2)
3 1

(IT - I1)(I * + Pt2  h 2h
+ = 0 (2.23)

(I* + pt2)2 (I + Pt2 ) 12

'9



It can be seen that Eqs. (2.21) and (2.23) contain time dependen.t

coefficients with complex regular singular points for the case of

positive boom extension rates (P > 0).

As a special case, for a nearly spherical hub (I* = I = I*)

Eqs. (2.22) and (2.23) reduce to:

21* Pt h(
1 (I* + Pt 2 )(2I* + Pt 2 ) (2.24)

4Pt h
h2 + (I* + t2 ) .25)

Eq. (2.24) can be written as:

.h1 21*Pt

h (I* + Pt2 )(21* + Pt2)

= 2Pt 1 (2.26)
I* + Pt2 ?I* + Pt2

Integrating with respect to time,

i = C t + Pt 2  (2.27)

Integrating once again, we have,

h (t)= C t- tan ( + D (2.28)

2P

10



where C and D are constants which are determined from the initial

conditions. From Eqs. (2.2), (2.16) and (2.28), the solution for

w1(t) is given by:

C[t - tan- 1t 1 + D

ow(t) = I* + Pt2  (2.29)

At t = 0, from Eq. (2.29), wl(0) = D/I* (2.30)

From Eq. (2.27), h1 (0) = I*1 (0) = C/2 (2.31)

Eqs. (2.30) and (2.31) are used in Eq. (2.29) to obtain the final

expression for wi(t) as:

Wm(O) + 2, (O)[t - v7I'1 tan, ( /P
(t) = Pt2  (2.32)

1 +

Eq. (2.25) can be written as,

.h _ 4Pth- (I*Pt )  
(2.33)

h2

This is an exact differential equation and after integrating with

respect to time,

h2 = E (2.34)
(I* + Pt2)

IT



Integrating once again, we get

t 1 t 1
h(t)= + -* tan( ) + F (2.35)
2(t)  F * t _i. 2 1* 3/2 VI*/P

2-t + -p) 2( -p)

where E and F are constants which are determined from the initial 
con-

ditions. From Eqs. (2.2), (2.16) and (2.35), the solution for w,(t)

is given by:

E t + - t
2 (t) E t + 2 - tan ( + F (2.36)

P ;* p2 * * * 3/2V/
2 - _t2 + ._) 2(

At t = 0, from Eq. (2.36), m2(0) = F/I* (2.37)

From Eq. (2.34), h2(0) = *2(0) = E/(I*) 2  (2.38)

Using Eqs. (2.37) and (2.38) in Eq. (2.36), the expression for W2 (t)

becomes.

3 (t) = (0 ) + ;2(0) + 1(t2 + tan (2.39)

In general, for a symmetrical spacecraft, the initial conditions

m1(0) and w2 (0) can be related to wl(0) and m2(0) from the torque-free

precession before the extension begins. However, it should be noted

that such initial angular accelerations may also be caused by other

12



types of external perturbations.

b. Series Solution

As Eqs. (2.21) and (2.23) cannot be solved in closed form except

for the special case of a nearly spherical hub, a series solution is

developed for h1(t) and h2(t). A similar type.of series solution has

been previously used to predict the planar librational 
motion of a

11

gravity-gradient satellite during boom deployment. 
Here t = 0 is

an ordinary point of Eqs. (2.21) and (2.23), and the radius of con-

vergence R is the smallest value of:

or -

The series solution for h1 may be expanded about t = Oin 
the

form: (2.40)
h a t (2.40)

n=o

Substituting this into Eq. (2.21), we have:

n-1
21* Pt ' anntn -

a -  n-2 n=o
Y ann(n-l)t (I* + Pt2 )(I* + I* + Pt2 )

n=O 3 3 2

(I* - I)( -* + Pt2 ) ho

+ (I* Pt2 (* + t2) I* an tn = 0 (2.41)

(I3 + pt2) 2 (1  2 n=0

Rearranging and collecting terms in Eq. (2.41), after a number of

algebraic manipulations, we get,

13



D a n (n-1)t n - + [ E, (n-2)(n-3)-Ql(n-2) +Ll]a nt

n=o n 1 n=2

+ X [ Fi (n-4) (n-5) -J 1 (n-4) + M1 ] an-4 t

n=4

+ C G1 (n-6) (n-7) - K1 (n-6) + N1 ] an_t

n=6

o tn-2  0(2.42)

+ H1 X (n-8) (n-9) a_ tn- 2  0(2.42)
n=8

where D1 = II* (I)2 (I* + I*)
112 3 2 3

E= I P [(I )2 (1* + I* + 1*) +2 II* (1 + I )]
F 2 2 3 2  32 3

F = I*2[(I*)2 + * + *)
2 3 12 3

G I =*p3 1 + I2 + 3 1

2 * 2 *
2(1* + i)(I 22 P K, = 2(1*)2 3

: h0  (1* - i) [ (I*)2 - (1*)2

M 2h21* (I - I*) P ; N h (I* - I*) P2

1 0 3 3 0 3

14



From Eq. (2.42),

when n = 0, DI a o (0)(-1) = 0 ; i.e. a o / 0 in general;

when n = 1, Di a, (1)(0) = 0 ; i.e. a, / 0, in general;

when n = 2, D1 a2 (2)(1) + L1(ao) = 0, and

a2  L ao (2.43)
D1 .*2 - 1

Similarly,

a3  (-Q + L al (2.44)
D .3-2

a4 = - [(2*I*E1 - 2Q, + L1 )a 2 + M1 a0] (2.45)
D, * 4 * 3

[(3-.2.E - 3Q1 + Lj)a 3 + (-J1 + M1) all] (2.46)

D 1  5 4

The general form for the first ten terms can be written as (where it

is understood aj= 0 for j < 0):

an = - [{n-2)(n-3)E 1-(n-2)Q 1 + Li) an-2

+ {(n-4)(n-5)F 1 -(n-4)J + M I an-4

+ {(n-6)(n-7)G 1-(n-6)K 1 + Nj} an-6

+ (n-8)(n-9) H1 an_ 8]/[DI.*n(n-l)] (2.47)
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It is seen that the odd coefficients can be related to a, and the

even coefficients to ao. The solution for h,(t) is written as

hi(t) = I antn
n=o

=a o [ F1(t)] + a, [G1(t)) 
(2.48)

where F1(t) contains the even coefficients 
and G1(t) the odd coeffi-

cients. The constants ao and a, are determined from the 
initial con-

ditions as follows:

ao = h1(O) = I. 1,(0) (2.49)

a* h1(0) = I 1(0) 
(2.50)

The expression for wl(t) is given by:

hi(t) (2.51)

I* + Pt2
1

In a similar way, the series solution for h2(t) can 
be written

as:

h2(t) = bn tn
n=

= b [ F2(t) ] + b [ G2(t) ) (2.52)

where F2(t) and G2(t) are similar to Fl(t) and G1(t). The constants

16



are related to the initial conditions according to:

bo = 2(0) 1= I 2(0) (2.53)
0 ' 2 2 2

b1 = h2 (0) = I 2(0) (2.54)

The solution for w2(t) is then given by

= h2(t)/* (2.55)

The expression for w3(t) results directly from the conservation of

h3(ho):

h(t) = ,h (2.56)
3 I* + P t2

3

c. Numerical Results.

In this section the results of numerical integration of the non-

linear differential equations of motion for the most general case are

presented. The purpose of the numerical investigation is twofold:

first, to verify the analytical results obtained and, second, to com-

pare-the motion for different cases considered. The numerical

integration is carried out using the IBM 1130 electronic computer.

The RKGS and RKSCL subroutines are used to integrate three nonlinear
12

equations with time varying coefficients. The subroutine RKGS uses

the Runge-Kutta method for the solution of initial value problems.

The purpose of the Runge-Kutta method is to obtain an approximate

solution of a system of first order ordinary differential equations

17



with given initial values. It is a fourth order integration proce-

dure which is stable andself starting; that is, only the functional

values at a single previous point are required to obtain the func-

tional values ahead. For this reason it is easy to change the step

size at any step in the calculations. The entire input of the

procedure is: (1) lower and upper bound of the integration interval,

initial increment of the independent variable, upper bound of the

local truncation error; (2) initial values of the dependent varia-

bles and weights for the local truncation errors in each component of

the dependent variables; (3) the number of differential equations in

the system; (4) as external subroutine sub-programs, the computation

of the right-hand side of the system of differential equations; for

flexibility in output, an output subroutine. The subroutine RKSCL

establishes weighting factors for the error function.

A typical time response of the components of transverse angular

velocity for a nearly spherical hub is shown in Figs. 2.2 and 2.3.

End mass extension rates of c = 4 and c = 1 ft/sec respectively are

considered where extension is assumed to occur only along the '2'

axis. For numerical integration Eqs. (2.1) and (2.16) are used to

obtain the results. The approximate analytical solution given by Eqs.

(2.32) and (2.39) and the series solution, given by Eqs. (2.51) and

(2.55) with ten terms present, are compared with numerical integration

results. It is observed that the analytical solution corresponds more

closely with numerical integration results when the extension rate is

18



increased. The series solution can be used only in the initial.part

of the extension where the analytical solution also gives essentially

the same result. The series solution is limited by its radius of

convergence as shown for each case. Fig. 2.4 shows the case of Fig.

2.3 where the hub is spherical (analytical and numerical integration

results are the same) and the same initial angular velocity compo-

nents. Fig. 2.5 is a comparison of the analytical.and numerical

integration results for different initial conditions than those shown

in Fig. 2.3. It can be seen with the numerical integration results

that even though the final magnitudes of the angular velocities are

small, the responses differ predominantly for the intermediate time

ranges.

In Figs. 2.6(a) and (b), the effect of varying the hub spin-

axis moment of inertia is shown using numerical integration. It is

observed that when the hub spin axis moment of inertia (I*) is

increased from a spherical one (13 I = 12 = 5 slug-ft ), the trans-

verse angular responses tend to become more oscillatory in nature

during the full deployment time.

The effect of varying the end mass is considered next and it is

seen (Fig. 2.7) that the transverse angular velocity amplitudes tend

to decay more rapidly when the end mass is increased. This type of

response is due to the increase in moment of inertia when the end

mass is increased.
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3. Uniformly Distributed Mass Moving

a. Analytical Solution for Asymmetrical Deployment

The telescoping system with the uniformly distributed mass mov-

ing along the '2' axis is shown in Fig. 2.1(b). The extension of the

telescoping system is considered to originate from the center of the

spacecraft hub. The moments of inertia during this deployment can be

expressed by,

1 2 p-3
I1 = I

12 1 (2.57)

I = 1 + 2 PZ3
3 3 3

where P = linear density = mass/unit length.

With Z = ct and K = 2c 3, Eq. (2.57) can be written as:

*3tI1 =I + t

12 1 I2 (2.58)

* K
13 = 13 + t

Following the same procedure as used for the case of the moving end

mass the angular momentum equations for h, and h2, from Eqs. (2.13) and

(2.14), can be developed to yield the following:
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. 2 Kt2  (1- 1 )(1 - I ) 2S * Kt 3 2 Kt
- + h h  = 0 (2.59)

. (I* + 13 + -- )Kt . (1 - I )(I-I h
Kt3  * Kt3  h2+ Kt3 2  Kt3  ho

(I+ ~ )(113 -) (13 ) + - )12* 22

- 3 3I

h -- 0 (2.61)

(I* + Kt )t
3

M 2
h + Kt ) =0 (2.62)

3

Eq. (2.61) can be written as

3a 3h 3a

,-- = (2.63)h (a + t3)t

where a3  = 31" (2.64)

Integrating Eq. (2.63)

= t3  (2.65)h! I  a + t3

where R, is a constant. Integrating again and introducing the initial
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conditions the solution for wm(t) can be obtained as:

( R a (t + a) 2 a -1 2t-a ii
- 6 n{t2'at+a2 }I3 tan

w1 (t) = + t/a (2.66)
1 + t 3/a3

The constant Ri cannot be determined from the initial conditions using

Eq. (2.66), since at t = 0, R1 is indetermina'te. A series solution

(about the ordinary point t = 0) of Eq. (2.61) can be developed to

yield:

w1(0) + R2 t [ 1 - 4t3 + t 6 -----

w1(t) = 1 + t3/a (2.67)

Here also the constant R2 cannot be determined from the initial condi-

tions using Eq. (2.67).

A different approach is now adopted using the parent equations of

Eqs. (2.59), (2.60), i.e. Eqs. (2.3) and (2.4), to evaluate R1 in Eq.

(2.66). The equation for hi is obtained from Eqs. (2.3), (2.6), and

(2.58) as below:

h = -a (t)h2

* Kt3(1- + Kt- I)
= -Kt hh (2.68)

3 3 2

For the case of a nearly spherical hub, Eq. (2.68) reduces to the

following equation, using Eq. (2.64),

22



ht3 = hoh2 (2.69)

I*(a3 + t3) e

Equating Eqs. (2.65) and (2.69) we obtain:

R1= -hoh 2 /I* (2.70)

Using the initial condition, h2(0), and recalling that ho= 1 3() =

I*m3(0), the constant may be evaluated by,

R, = - I* w3(0) w2(0) (2.71)

Using Eq. (2.71) in Eq. (2.66), the solution, al(t), results as:

S(0)-w3 (0)w2 (0)o)t- n { (t +'a) 2 } - a{tan-1( 2t-a+}1
(t) +6 t3/a 3 t2-at+a2  /3 a y3 6

1 + t3/a3
(2.72)

Eq. (2.62) can be written as

2 - 2 Kt2  (2.73)

h2 (I*+ Kt3)3

Integrating Eq. (2.73), we get

= S1  (2.74)

(I + Kt3)2
3

where S, is a constant.

Integrating again, and introducing the initial conditions, the solution

for w2(t) results as:
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S2(0) a3t a (a + t)2

,(t) = 02(0) + -- + t + -Zn { t2
3 a3 + t3 3 a2 - at +

a tan(2t - a) + (2.75)
T J/V3a. 6

b. Numerical Results

Figs. (2.8) and (2.9) represent a typical comparison of analyti-

cal with numerical results. Extension rates c = 4 and 1 ft/sec,

respectively, are assumed for an asymmetrical deployment only along

the '2' axis. The analytical result is obtained using Eqs. (2.72) and

(2.75). Numerical integration results are obtained using Eqs. (2.1)

and (2.58). The analytical approximation improves with the faster

deployment rate for the case of the nearly spherical hub. (The same

type of improvement with faster deployment has previously been 
noted

for the case of the moving end mass, Fig. 2.2). Because of the very

limited radius of convergence of the series solution, a comparison

with this method of solution was not performed for the case of uni-

formly distributed mass along the boom.

The response of both types of telescoping systems, when the uni-

formly distributed mass is replaced by an equivalent end mass, is

shown in Figs. 2.10(a) and (b). It is seen that initially both types

yield approximately the same responses but the amplitudes of trans-

verse angular velocities are rapidly reduced for the end mass system.
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This shows the effect of increased moment of inertia, as time

increases, due to the total mass being placed at the end of the boom.

The total computer time for numerical integration of the general

torque free equations with step size of At = 1 sec varied from 135 to

145 secs for both the moving end mass and uniformly distributed mass

cases. The extension rates considered were c= 4 and 1 ft/sec for a

total boom length of 60 ft. The computer time for the evaluation of

each analytical solution for the above cases considered was about 20

to 25 secs.
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III. USE OF TELESCOPING SYSTEM FOR DETUMBLING

1. General Considerations

The dynamics of detumbling a randomly spinning spacecraft using

externally mounted, movable telescoping appendages are studied both

analytically and numerically. The appendages considered are of vary-

ing length and could represent extensible booms or a tether connected

to the main part of the spacecraft. Two types of telescoping append-

ages are considered: (a) the case where an end mass is mounted at

the end of an assumed massless member (end mass moving) as shown in

Fig. 3.1; and (b) where the appendage is assumed to consist of a uni-

formly distributed, homogeneous mass throughout its length (uniformly

distributed mass moving).

The extensible boom type appendages are assumed to originate from

the center of the hub along the three principal axes. The desired

final states of the system considered are: (1) zero inertial angular

velocity vector and (2) a final spin about one of the principal axes.

The necessary conditions for asymptotic stability during the detum-

bling sequences are determined using Lyapunov's second method.

2. End Mass Moving

a. Development of Kinetic Energy

The configuration of the system, where the end masses are assumed

to be attached to the end of massless rods along all three principal

axes is shown in Fig. 3.1. The end masses are assumed to be identical
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(i.e. mi = m). The rotational kinetic energy of the system can be

developed as:

T =  [{I* + 2m(£2 + t )} w2 + {I* + 2m(£ + lt)} w2

+ {I* + 2m(£t + 2)} W2 + 2m(£2 + j2 + (3.1)
3 1 2 3 1 2 3

Defining, I, = I* + 2m(Z + £ )

12 = I* + 2m( + £a) (3.2)12 2 3

I I* + 2m(LE + z ) ,

Eq. (3.1) can be rewritten as:

T = I +I 2 2 + 2m 2 + £2 + (3.3)
1 + 1 2  33 V1  2 3

If the extension rates are assumed to be constant, Eq. (3.3) can

be expressed:

T [ 2 + 2 + 2 13 ] + non-negative const. (3.4)

Here the moments of inertia are timevarying as the length of the

booms varies during extension.

b. Achieve Zero Inertial Angular Rate

1. Lyapunov Function-Kinetic Energy

The desired final state of the system is mi = 0. A suitable

Lyapunov function, in the state variables w , w and w is the system
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rotational kinetic energy which can be written as:

V = T [ + 12W 2 + w + non-negative const. (3.5)
11 22 3 3

The Lyapunov function, V, is positive definite in the state variables

selected; for asymptotic stability V will now be examined.

Differentiating Eq. (3.5) with respect to time, there results:

S( 2 2 + 21 + 2122 2 2 + 13 3w3 ) (3.6)

The equations of motion can be written, from Eq. (2.1), in the follow-

ing form:

h = W3h2 - 2h 3 = I1 1  1w 1  (3.7a)

h2 = wlh 3 - 3h = I2 2 + I2 w2  (3.7b)

h3 = w2hl - wlh 2 = 13W3 + 1333 (3.7c)

Multiplying Eq. (3.7a) by wl, Eq. (3.7b) by W2, and Eq. (3.7c) by w3,

we obtain the following:

I1 1W = (w3 h2 - W2h 3 ) 1l - 1Ilw

2

12w2W2  (wh3 - 3hi ) W2 - 12W2  (3.8)

3 3 3  (w2h - wh 2 ) - 3

Eqs. (3.8) can be combined to yield:

2 2 2

I W + I (132 + I 3 = - ( 1 1 + 2W2 +I 3  (3.9)
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Substituting Eq. (3.9) into Eq. (3.6), we obtain

= (11 + 2 + i ) (3.10)

From (3.10), we conclude that V is a negative definite function in the

state variables only if I , I2, i 3 > 0.

Here it is seen that when the rotational kinetic energy is used

as a Lyapunov function expressed in terms of the inertial angular

velocity components, that the necessary conditions for asymptotic

stability are satisfied for positive constant boom extension rates and

three orthogonallymounted sets of booms along the hub principal axes.

This means that as time becomes extremely large (and boom lengths

become infinite) it would be theoretically possible to de-spin a tum-

bling spacecraft and achieve a zero inertial angular velocity state.

(Of course, such a situation will, in practice, not occur due to finite

length appendages, but it will be of interest to simulate how much of a

random tumble could be removed by this process. The selection of rota-

tional kinetic energy as a Lyapunov function has also been used by
7

Edwards and Kaplan for the system treated in Ref. 6.)

2. Analytical Solution

The solutions for the angular momentum of a symmetrical spacecraft

(I1 = 12 = I) during deployment are obtained from Section II.1 as:

h (t) = q cos (ft b(t)dt + 9*) (3.11)
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h (t) * sin (ft b(t)dt + (3.12)

h3 (t) = h = const (3.13)

where b(t) = 13(t) - (t) h (3.14)
I(t) I 3 (t)

The moments of inertia about the principal axes are given by

(Fig. 3.1):

I = I* + 4m2 = I* + 2Pt2

12 = I* + 4m 2  = I* +2Pt 2  (3.15)

1 = I + 4m 2  = I + 2Pt 2

3 3 3

Using Eq. (3.15) in Eq. (3.14) we obtain:

ho. 1 1
b(t) = d + t - d2 + t 2  (3.16)

where d, = /I*/2P and d = /I/2P (3.17)

Introducing Eq. (3.16) in Eqs. (3.11), (3.12), and (3.13) and after

performing the integration, the solutionsfor the angular velocities

are obtained as:

* ho 1 t t 1 t
o cos - { tan tan )+ V 0

(t) + 2Pt 2  (3.18)
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ho. 1 -' t 1 -1 t
qo sin [ - tan - tan } + o ]O

0 si 2P 1  T2  T2 (3.19)
W2 (t) = I* + 2 Pt 2

13 3(0)
W(t) = I* + 2Pt 2

where q* and * are determined from the initial conditions. We observe

here for large values of t, the solutions for the angular velocities

lead to the form:

(t) = const/(I* + 2Pt 2) , i = 1,2,3 (3.21)
i

This equation indicates that the magnitudes of the angular velocities

decrease during extension of the appendages, with the square 
of the

elapsed time.

3. Numerical Results

A typical detumbling maneuver for an initially slowly tumbling

spacecraft is illustrated in Figs. 3.2 and 3.3. In this example

because of symmetry the uncontrolled torque-free motion (Fig. 3.2) can

be theoretically predicted. With an extension rate of 4 ft/sec after

60 ft. of extension along all three principal axes the angular veloc-

ity components have been reduced by more than a factor of 10 and, if

240 ft. of boom could be extended, by a factor of over 300, to a value

comparable with the orbital angular rate. Removal of this residual

angular velocity could then be achieved by activating 
on-board
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damping devices.

When the initial angular velocity is increased by an order of

magnitude the uncontrolled situation (Fig. 3.4) can be recovered as

shown in Fig. 3.5. For the same extension rate and end-masses the

order of magnitude reduction in the total angular velocity vector is

similar to that shown in the slow tumbling case.

The effect of extension rate on detumbling is illustrated in

Figs. 3.6(a) - (c). For small extension rates (up to 1 ft/sec) the

oscillatory nature of the transverse motion is not removed until

after the first cycle; the advantage of considering higher extension

rates (at the expense of on-board power) for an initial fast tumbling

is apparent. It should be noted that at a given time in these figures

different boom lengths are represented according to the extension rate.

Numerical examination of other cases for asymmetrical hubs also

verifies the practicality of using movable appendages for the initial

detumbling of randomly spinning spacecraft. (Figs. 3.7(a) and (b)).

The numerical simulation results for an asymmetrical spacecraft are

compared with the closed form solution for a symmetrical extension and

it is observed that the closed form solutions are only applicable when

the asymmetry is small.

c. Achieve Final Spin About One of the Principal Axes

1. Lyapunov Function-Modified Kinetic Energy

The desired final state of the system is; m = 0, w2 = 0 and

3 = (3f = . Using the state variables wj, . 2 , and W3 - n '
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the Lyapunov function is defined as the modified rotational kinetic

energy, which can be written as:

V = 1 1w 2+ o2 + I (3 - Q)2 ] (3.22)

Here V is positive definite in the state variables selected. Differ-

entiating Eq. (3.22) with respect to time, we get

V = .[ I10 + I2W + 3 (3 - )2

(3.23)

+ 211j1w + 2 12 W 2 w2 + 2 13 (W3 0 )3 ]

Using Eq. (3.9) in Eq. (3.23), we obtain,

V = -(I + 2 + I ) + 2 - (133 ± 13Q 3) (3.24)

For symmetry about the '3' axis during extension:

h3 = 13 3 + I3, = 0 (3.25)

Eq. (3.25) is used in Eq. (3.24) to obtain:

V = - [ i + i 2 + 13 (W - P2) ] (3.26)

After rewriting Eq. (3.26) in terms of the state variables,

1 1 2+ I22 3+ I (W3 -)2] -I3  (3 - ) (3.27)

Also from Eq. (3.25), the solution for m3(t) is given by,

W3 (t) = I(3(0)/I3  (3.28)
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We conclude from Eq. (3.27) that V is negative definite in the state

variables

only if W3 > ., II, 12 > 0, and 13 > 0 for 03 > Q

Thus for the case where a spin about one of the principal axes

is a desired final condition, a modified form of the kinetic energy

can be used as a Lyapunov function. Here the final state can be

achieved by extending all telescoping booms until the desired spin

rate is reached and then continuing the extension of the set of booms

along the nominal spin axis until the transverse components of angu-

lar velocity reach an acceptably small amplitude (within the limita-

tions of boom length). It should be noted that if we allow W3 < Q and

13 / 0, there will be a difference in sign between the third and

fourth terms in Eq. (3.27).

2. Analytical Solution

The time at which 3 = W3f = will be denoted by T3 f.

At t = Tf,

S= 12 = I + 2P (T3f)
2  (3.29)

13 = 13 + 2P (T3f)
2  (3.30)

For t < T3f, the solutions for the angular velocities can be obtained

from Eqs. (3.18), (3.19) and (3.20).
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For t > T3f,

I4 = const = I* + 2P (t3f)2 (3.31)

I* = I* + P(T3f)2+ Pt2 = I* + pt2 (3.32)

where I* = I* + P(T3f) 2  (3.33)

From Eq. (3.14), and using Eqs. (3.31) and (3.33), we obtain

-*

b(t) = 3f { 13 -1} (3.34)
I + Pt2

Introducing Eq. (3.34) into Eqs. (3.11) and (3.12), the solutions for

the angular velocities for t > T3f are,

I -1 t -1 )
qocos[w 3f[ {tan ( )-tan/ )-t+T3 f 0 1

ff f
W1(t)

(If + Pt2) (35)

13 t T3f
q sin[w 3 [ {tan-l( ) -tan-1( ) }-t+T 3 ]+ to]

fiI *p VI */P PI -f/P
f f

(I + Pt2 )

f (3.36)

and from Eq. (3.13),

w3(t) = (3f =  const (3.37)
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Here q0 and to are to be determined from Eqs. (3.18) and (3.19) at

t = T3f and should not be confused with q* and 4 which are determined

at t = 0.

For large values of t, Eqs. (3.35) and (3.36) reduce to the form,

qo0 cos (w3f x const x t + const)

1 + Pt2  (3.38)
I* + Pt2

qo sin (w3f x const x t + const)
2 I* + Pt 2
f

The above two equations indicate that the frequency of oscillation

approaches a constant value and the magnitude of the oscillation

decreases with the square of the elapsed time.

The time t = T3f at which the extension of the booms along '1'

and '2' axes are stopped can be determined from h3 = 0, yielding the

result:

13 W3(0) - W3 f
T3f 1 ) (3.40)

2c m (3f

3. Numerical Results

Figs. 3.8 and 3.9, with extension rates c = 4 and c = 1 ft/sec,

respectively, illustrate a recovery maneuver which would result in a

final spin about the '3' body axis with a small transverse residual.

The booms are extended so that the modified rotational kinetic energy
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is positive definite and its total time derivative is negative defi-

nite during the maneuver. All booms are extended until T3f at which

time. 3 = w 3f. Then, only booms along the ± '3' axis are extended to

reduce the transverse residual components.

A comparison of the recovery maneuver of an asymmetrical space-

craft with that of a symmetrical spacecraft to achieve a final spin

along the '3' axis is shown in Figs. 3.10(a) and (b). The calculated

T3f for the symmetrical spacecraft is used for stopping the booms

along the '1' and '2' axes. It is observed that using this logic the

final w3f reaches a lower value (1.8 rad/sec) when compared with the

desired final value (2.0 rad/sec). Also we notice from Fig. 3.10(a),

the response of w (t) for the asymmetrical case differs from that of

the symmetrical case. This is due to the increase in the order of

the system equations for the asymmetrical extension (i.e. - three

first order differential equations must now be considered). It should

be pointed out that after T3f, for the asymmetrical case, the time

response of W3 is not exactly a straight line as apparently 
indicated

in Fig. 3.10(a) but also consists of small amplitude oscillations

superimposed about this straight line solution. For larger asymmet-

ries this oscillation would become apparent within the plotting scale

shown and the difference between W 3 f achieved and desired would also

increase using the open loop control logic of switching the extension

sequence at a pre-set T3f.
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3. Uniformly Distributed Mass Moving

a. Achieve Zero Inertial Angular Rate

1. Analytical Solution

The desired final state of the system is wi = 0. The booms con-

sidered are assumed to have a uniformly distributed mass along their

lengths. The same procedure as adopted in the case of end mass moving

can be applied here to obtain the solutions for the angular velocities.

Here we present only the final results.

The solutions for the.angular velocities are given by:

qo cos { /t b(t) dt + o I

w1(t) = o (3.41)
I* + 2 Kt3

q* sin { I t b(t) dt + * }

2(t) (3.42)
SI + 2 Kt3

I* W3(0)
(t) * 2t3 (3.43)

3(t 13 + 2 Kt3
* 2

where ft b(t) d(t) 3ho 1 , (d3 + t)
2  1

S2K 6d n {d2 - d t + t2  + d /
3 3 3dy

2t - d3  1 (d + t)2  1 tan 2t - d4

tan'1 { - £n{ I- tanr }]
d /3 6d2  d2-dt + t2  d2/ d 1T

(3.44)
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d = 31 and d= 31* (3.45)
3 2K 4 2K

b. Achieve Final Spin About One of the Principal Axes

1. Analytical Solution

The desired final state of the system is ol = 0, 02 = 0 and

, = W3f = ". For t < T3f, the solutions for the angular velocities

can be obtained from Eqs. (3.41), (3.42) and (3.43). For t > T3f,

the solutions for the angular velocities can be obtained as:

qo cos{ It b(t) dt + 0o }

3f
(t) = (3.46)

I* + 1 K t 3

f 3

qo0 sin{ t b(t) dt + Po }
T3f

w2 (t) * 1 (3.47)
I + - K t 3

*3(t ) = W3f =  const (3.48)

where: If* = I* + (T 3 f)3 (3.49

ft3 1 (ds + t)2
t  b(t)dt = 3f 1 K 6d2  d 2 -dt+ t2

T3f 
5 5
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+ tan 2t -d5 -t + IT (3.50)
d 2 d } 3f]

d25 J ds

I = * + K (T3 )3 (3.51)
3 3 3 3

d3 = 3 f (3.52)
K

The time T3f, at which the booms along the '1' and '2' axes are stopped,

can be obtained as:

T 13 w3(0) - 13f 1/3 (3.53)
T2f [ 2K (]
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FIG. 3.1. SYSTEM GEOMETRY FOR END MASS EXTENSION MANEUVER USED
TO RECOVER A TUMBLING SPACECRAFT.
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IV. TIME OPTIMAL CONTROL

1. Combination of Booms and Control Jets

(Norm Invariant Principle)

In this section, we shall consider the control of a norm-

invariant system which has the property that the Euclidean length of

the state vector is constant when the control is zero. Here we state

the problem and the control law to achieve-the time optimal control

of the system from Ref. 9.

Problem:

Given the controllable norm-invariant system

X(t) = g [ X(t); t ] + u(t); X(O) = 5 (4.1)

Assume that the dimension of u(t) is the same as the dimension of X(t)

and that II u(t) I m* for all t. Then determine the control which

forces the system (4.1)from the initial state 5 to 0 and which mini-

mizes the cost functional

J = ITf dt = Tf, Tf - free (4.2)
0

Control Law:

The unique time optimal control 5*(t) that is, the control which

minimizes the cost J of Eq. (4.2) is given by,

X*(t)
u*(t) = -m* (4.3)

ll*(t) I

where X*(t) is the solution of Eq. (4.1) with u(t) = u*(t). The

minimum value of J* of the cost J, that is, the minimum time t*,
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required to force 5 to 0 is given

* = t* = I 1 (4.4)
m*

The above theory, which deals with the time optimal control of

norm-invariant systems, is applied to the case of an unsymmetrical

spacecraft tumbling in torque-free space. The angular momentum

equations given by Eqs.(2.1) can be rewritten as:

h = ( 1 1) h2h313 12

l l ) h3h1
Ih2 =  13 (4.5)

1 1
h3 = ( ) hIh 212 Il

we find that, dllh(t)ll = <h(t), h(t)> = 0 (4.6)
dt Ilh(t)l I

and so the system represented by Eq. (2.1) is norm-invariant.

Eqs.(2.1) describe the motion of the spacecraft in the absence

of any applied torques. A torque vector, u(t), can be generated by

means of gas jets, reaction wheels, gravity-gradient arrangements,

etc. At any rate, if 5(t) is a control torque, whose components are

i(t), i = 1,2,3, the equations of motion become:
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1(t) : It - 1t h2(t) h3 (t) + T t )

h2(t ) = [ 1 i h3(t) h1(t) + T2(t) (4.7)

I (t) I3(t)

(t) = [ 1 1 h(t)h2(t)+ 3(t)

We can immediately conclude that, if the constraints 
on the control

torque u(t) are of the form,

t m* (4.8)
II-(t)ll 1' 2(t) ) 3 -

the torque components for time optimal control are:

m*II(t)w1(t)

- jh(t)

T2(t) = - m*12(t)w2(t) (4.9)

I I(t)ll

m*I3(t)W 3(t)
(t) - t)

where ljj(t) is defined as:

llI(t)l = /  (t)  )(t) + I (t) 2(t) + I(t) (t)(4.10

This means that, in order to reduce the angular momentum vector R(t)

to zero in the shortest possible time, the torque vector u(t) must

point in the opposite direction to the angular momentum 
vector h(t)
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9

and the torque u(t) must be as large as possible.

For the case of symmetrical spacecraft (11(t) = 12(t)), the tor-

que components required to reduce the transverse angular momentum to

zero are given by:

m* Wi(t)
rl(t ) = _

W (t) + w2(t)

(4.11)

m* 2 (t)

T2(t) = -

V e (t) + w (t)

where / t2 (t) + r2(t) < m* (4.12)
1 2

Here we conclude that for a symmetrical spacecraft with w3 
= const..and

T3(t) = 0, the control torques required to reduce the transverse

angular momentum are not explicitly dependent on the type of extension.

It is doubtful that boom extensions alone could be used to effect time

optimal control.

In general, we can say that in. the event of control jet failure

the booms could certainly be used as a back-up reusable system for

de-tumbling (even if they cannot directly implement time optimal

recovery).

2. Extension of End Masses

The extension of four end masses, along the symmetry axis of the

spacecraft, is shown in Fig. 4.1. This scheme is considered as a

possible means of reducing the transverse angular velocities in a time
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optimal manner. The end masses are assumed to be equal and they are

placed very close to the symmetry axis such that d/Li << 1. The

control variable are the extension rate iL(t) and 12(t).

The moments of inertia about the principal axes can be written

as

11 = 12 = I* + 4m(L~ + t Z) = I

(4.13)

13 = 1

The equations of motion can be developed, with W 3 
= w0 = const,

as:

(I* ) 4m 2 2

-8m (ziI + 
t2i2) I (4.14)

* ) 2

2 =  (I-3 4m (Z + 2)(01 + 2)

8m (/1l + z2Z2 ) 2 (4.15)

Eqs. (4.14) and (4.15) can be rearranged to yield:

W = WW2 + g(t)(w1 - wow 2 ) + h(t) W1 (4.16)

W2 = -WWI + g(t)( 2 + Wo I
) +h(t) (t2 (4.17)
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where - I) (4.18)

I*

h(t) = - (1(t) (t) + 2(t) 2(t) ) (4.20)

and we observe, h(t) = g(t) (4.21)

Using the transformation,

01 COS ot -sin wot 1
iI (4.22)

Q2 sin mot cos Wot LW2

Eqs. (4.16) and (4.17) become

[Q(t)] 0 (w-wo) 01 (t) Q 1
S=  + g(t) 2() (4.23)

Comparing Eq. (4.23) with the standard form (Ref. 8, p. 599, Eq.

(7.378))

x(t) 0 x (t) u (t)
S+K (4.24)

Lx M o0 x(t) Iu (t)L
2 2 2
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we can write,

.(g(t) 01(t) ) = K u (t)
dt

(4.25)

d (g(t) o2 (t) ) = K u2 (t)dt

For time optimal control

u1(t) =  ±1
(4.26)

U2(t) = 1

Expanding Eq. (4.25), using Eqs. (4.19) and (4.20) with Eq. (4.26),

the following result is obtained.

4m 2 2 ±1
1 _(2l(t)+12(t))Q(t)+2(zI(t)tl(t)+Z22()(t))Ql(t)] = ±1 (4.27)

4- 2 24m - - 1 - (4.28)
i- [(21(t)+£2(t) )(t+2 (t1(t)i,(t)+Z2t)2t))Q2(t)]= 1 (4.28)

From the above equations, we observe that the control variables Z1(t)

and £2(t) are nonlinearly coupled with the state variables and the

solution for Zi(t) becomes trivial. It can be concluded that the time

optimal control of this type of system using only boom extension rates

can not be established by analytic means. However it may be possible
13

to consider this problem by using techniques of dynamic programming.
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I

Extension rates: £1(t), 2(t); d << 1

Symmetry about '3' axis is maintained

Masses are equal: m1 = m2  m

ORIGINAL PAGE IS
OF POOR QUALITY

FIG. 4.1. EXTENSION OF END MASSES ALONG '3' AXIS.
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V. HINGED SYSTEM

1. Derivation of Kinetic Energy

The hinged system to be studied is shown schematically in Fig.

5.1. The co-ordinate system representation is shown in Fig. 5.2. The

system consists of a spinning spacecraft with masses attached to mass-

less booms of constant length Z, which in turn are attached to the main

spacecraft at radius ro. The end masses are released at t = to and

thereafter swing out from the spin axis. The angles between the booms

and the spin axis are denoted by a, and a 2 as shown in Fig. 5.2 and

are initially zero. A special case of this type was considered in

Ref. 2 (where it was assumed that the transverse angular velocities

during deployment remained at zero) but here-we consider the general

three dimensional deployment dynamics.

The development of the kinetic energy of this type of hinged

system from first principles is considered below:

The total kinetic energy of the system, in terms of rotational and

translational energies, can be written as,

T = Tr + Tt + const. due to (circular) orbit motion (5.1)

1 2 2 2
where Tr : (1I 2 + 12W 2 + 13 2 (5.2)

2
Tt = M Vm/cm + y mi Vmi/cm (5. 3)

(M = mass of main body)
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From the definition of center of mass of the system:

n
m j ri/o
cm/ = n 

(5.4)

M+ mi
i=1

where point 'o' is the center of coordinate system and the masses are

assumed to be equal (mi = m). The velocity of the various components

relative to the system center of mass may be expressed:

Vmi/cm = Vmi/O + Vo/cm (5.5)

VM/cm = VM/o + Vo/cm (5.6)

The components appearing in Eqs. (5.5) and (5.6) can be further repre-

sented as:

Vmi/o = ri (5.7)

Vo/M = 0 (5.8)

_ m ri
Vo /cm - Vcm/o = - rcm/o - + Imi (5.9)

M + mi

Upon substitution of Eqs. (5.7), (5.8) and (5.9) into Eq. (5.3), the

translational energy may be expressed as

Tt = IVo/cml 2 + 1L mi IVmi/o 2

+ mi IVo/cmI 2 + Y mi (Vmi/o) . (Vo/cm) (5.10)
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After some algebraic manipulations, we obtain,

m m
Tt = 2i (Vi Vi) - 2M (  Vi " i i) (5.11)

where Vi = ri + wx ri

M = M + mi

Thus, the total kinetic energy of the system is given by:

T = (IIW + 122 + 133 (Vi Vi)

n - n -
- Vi . Vi) + const. (5.12)

2M I=1 I I=1

As an example, we consider the case from Ref. 2 where m = m/2,

a, = a2 = a, 13 = I and W3 = 0. The kinetic energy is then obtained

as (neglecting orbital motion)

T- I + [ 2 2 + (r 0 + Z sin ) 2]
2 2 0

m2  t2 sin2a 2 (5.13)
2 (M + m)

which corresponds identically with Eq. (18) of Ref. 2, which was

presented without development.

Next, a more general case of the hinged deployment system con-

sidered is shown in Fig. 5.3. Here there is no restriction on the

location of the hinge points. The co-ordinates of the two masses are

given by
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x1 = 0 x2 = 0

yl =  + sin a, Y2 = -(ro + sin a 2 ) (5.14)

z, = a. - £ cos a, zi = a - cos a2

Here 'a,' is the offset of the hinge point from the '2' axis. Upon

substituting Eqs.(5.14) into Eq. (5.12), and after algebraic simplifi-

cations, the resulting equation for kinetic energy is:

T = U 2 I + I2 + Ii ]2 2+ 2 3

+ E 2(r +a2+L 2 )+2£ {ro(Sina +sina 2)-a,(cosal+cSa2)}} m

+ {2a-2a (cosa +cosa2 )+£2(cos2aj+cos 2
2 )} w~

+ {2r2+2rot(sina 1+sinaz)+f
2 (in 2al+sin 202)} w~

- {2Z {a,(sincL-sina 2 )-ro(COSal-COSa2)}

- 2Z2(sinal cosal- sint 2 COSa2)) w2 3

+{212(at - a2) + 2£ (Xl (ro sinai - acosai)

a2(ro sina2 - a cosa2)}} W + Z 2 (2 + ]2)]

m2 {2(2a 2 + t2 ) + 2Z2Cos (al+ a2)-4a,(cosa +cosa 2)}w~
2(M+2m)

+ {2a,- e(cosaj+cosa2)} 2 w2 + e2(sina-sina2)2 2
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-2(sinsin - sinc 2 ) {2a, - t(cosal + COSa 2)} W2w 3

+2Z{(M&1 - *2) + Z cos (a, + a2)(L - 2)

- 2a, (cosal al - cosa 2 a2 )} W1

+ L2{' + t 2 - 2aa2 COS(au + a2)}] + const. (5.15)

2. Development of Equations of Motion (Neglecting External Torques)

The equations of motion in the five variables wm, W2, W3, a, and
14

a2 are developed using the Quasi-Lagrangian formulation for wi'

i = 1,2,3 and the general Lagrangian formulation for the variables

al, a 2. The equations of motion for this system can be represented

by:

d aT aT aT
Sa i -w3 a2 + 2  = 0 (5.16)

d aT l aT aT 0 (5.17)dt 2 aw3 3 al

d aT aT aT
dt a 3 -02 aw +b I a1 2 - 0 (5.18)

d aT aT aF 0 (5.19)
dt aa aal al

d aT aT + - = 0 (5.20)
dt ar2 aa 2  a 2
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where T = Total kinetic energy of the system

F = Rayleigh dissipation function.

Making the approximation: m2/M << m or (m/M << 1) and letting F = 0

(for the case of no assumed energy dissipation), the equations of

motion are obtained as follows:

I 1-(I ) +m[2(r 2+a2+£2 )+2e {ro(sa +sa )-a,(ca +ca )}21

-m{2a -2a.(ca+ca2)+2(c2a+c2 2)-2r2-2ro(Sa1+sa2)
} W2W3

+ 2m { ro(call + cac2 2) + a*(sal&l + Sa2a 2)} WI

+ mf {a, (sa -s 2)-r 0 (Cc1-C 2 )- e (s2a 1-s2) 2 )} ( W - 2)

+ me' { (al - 2) + (&1)2 (roca1 + asa1) + l(rO S al- a*cal)

- (a2)2 (r0Ca2 + a*sa 2) - a2 (rosc 2  - a*ca 2)} = 0 (5.21)

I 2 -(131 1N3W1+m{2a -2a.(cc +ca2)+t2(C2al+C2 I 2)}2

-m{a*(sal- Sa2 ) - r0 ( - ca2 ) - (s2ai - s2a 1 )} w 3

+ mt{a,(sal - sa2) - r0 (Cal - Ca 2 ) - e (s2 2a - s2a2)} 1"i2
2

- m {Z2 (S2al + S 2 a2) - 2 (a2 + Z 2 ) +2ta (cal + ca2)} W3W1
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+ m{ 2aL (Sa 1 i + sa2&2) - Z2(s2ai1 1 + s2a 2a2)} W2

+ mLi{ L (& - a 2) -2a(cal&1 - Ca2&2 ) + t (c2il&1 - C2a 2&2)}l3 = 0

(5.22)

13z3 - (II - 12) 032 + m{ 2r2 + 2rol (sa1 + Sa2) + 
2 s2al+s 2a2)} 03

-m{a(sa1 - Sa2 ) - r0 (Ca - Ca2 ) - (s2a - s22)} w2

- m {2(rg +£ 2) + 2Zro (Sal + Sa 2 ) - 2 (C 2 a + C 2 2)} W12

-mZ {a.(sal - Sa2) - r0 (Cal - Ca 2 ) - 2 (s2l1 - s2a2 )} w3w1

-mt {2ro(sa - sa 2) - L (c2alic - c2a 2&2) + t (a1 - 2)} w2

+ m {2roL(cal1 1 + Ca2a2 ) + 12 (s2 1a1 + s2a2c 2 )} 3 = 0 (5.23)

La + (L+ s - aca )

2 2
- (roca1  + s2a,) 03 - (a*s 1 - s2a1 ) -2

- (rCa1 + asa1 ) w2 + (aca + rSal - cc2CCal)32= 0 (5.24)

81



L a2 - (£ + r 0 Sa2 - a*ca 2 ) w1

-(rca 2 + s2 c) 2 - (asa. - s2a ) 2
0 2 2 2 -3 2  2

-(r ca 2 + a*sa ) w2 - (a*ca2 + rS2 s - £c 2 a2 )w3  = 0 (5.25)

where sa- sinai and cai  cosai

3. Numerical Results

The five nonlinear equations of motion for the hinged system are

used to study the torque free motion of the system. The equations have

been coded for computer simulation and the results are expected in the

near future.
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FIG. 5.1. HINGED DEPLOYMENT SYSTEM.
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FIG. 5.2. COORDINATE SYSTEM FOR FIG. 5.1.

83



,-- °-
2

x, = 0 X2 = 0

yl = ro + e sin al Y2 = -(ro + L sin a2)

S = a - cos a z2 =a, - cos a2

FIG. 5.3. MORE GENERAL CASE OF HINGED DEPLOYMENT SYSTEM.
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VI. CONCLUDING COMMENTS

As a result of the present analysis and numerical results, the

following conclusions can be made:

.1. For both types of telescoping systems, closed form analytical

solutions for the transverse components of angular velocities as a

function of time are obtained for the special case where the space-

craft hub (main part) has a nearly spherical mass distribution and

where the telescoping system is assumed to originate from the hub

mass center along one of the transverse axes only.

2. When the telescoping system is assumed to consist of two

identical sets of two orthogonally mounted booms in a plane normal to

the spin axis, the spin axis remains an axis of mass symmetry and, for

this special case, the analytical solutions are identical to those
3

obtained previously. For this special situation it is seen that the

amplitudes of the transverse components of the angular 
momentum

remain constant (but at an accelerating frequency) during deployment.

3. For the more general case where the hub is not spherical a

series solution is obtained about t 
= 0, an ordinary point of the

time dependent coefficients, in the differential equations of the

rotational motion of the telescoping system. However, the radius of

convergence of such a solution is limited due to the other singular

points in the coefficients.

4. The approximate analytical solution for the nearly spherical

hub and the series solution for the general case are compared with
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numerical integration results. It is observed that the analytical

solution corresponds more closely with numerical integration results

when the extension rate is increased. The series solution can be

used only in the initial part of the extension where the analytical

solution also gives essentially the same result.

5. With fast extension rates and large end masses, the numerical

study shows that the oscillatory nature of the responses of the trans-

verse angular velocity components can be reduced rapidly.

6. As an application for spacecraft rescue and recovery, when

booms are extended along all the principal axes to detumble a symmet-

rical spacecraft, exact closed form analytical solutions are obtained

for all three angular velocities of the spacecraft.

7. The necessary conditions for asymptotic stability during the

detumbling sequences can be obtained using Lyapunov's second method.

The conclusions are that: (1) as time becomes extremely large (and

boom lengths become infinite) it would be theoretically possible to

despin a tumbling spacecraft and achieve a zero inertial angular velo-

city state (of course, such a situation will, in practice, not occur due

to finite length booms); (2) the final spin about one of the princi-

pal axes can be achieved by extending all telescoping booms until the

desired spin rate is reached and then continuing the extension of the

set of booms along the nominal spin axis until the transverse compo-

nents of angular velocity reach an acceptably small amplitude.

8. Numerical examination of other cases for asymmetrical hubs
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also verifies the practicality of using movable appendages for the

initial detumbling of randomly spinning spacecraft.

9. Simple boom extension maneuvers alone can not be used to

detumble a randomly spinning spacecraft to achieve a desired final

state in a time optimal manner.

10. The constraints on the telescoping system.as used for

detumbling are: (1) the limitations on the extension rate, size of

end mass masses and the length of booms that are practicable; (2) the

limitations on the rate of initiable tumble that could be handled by

the system without compromising its structural integrity.
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VII. FUTURE WORK - PART II

It is proposed that this effort will be a continuation of the

research accomplished during the first year (May 1974-May 1975) on the

dynamics of spin stabilized spacecraft with movable appendages. Part

I concentrated on the analysis of the motion of a spinning spacecraft

during the deployment of two types of movable appendages - the tele-

scoping rod type of varying length during deployment and fixed length

appendages whose orientation with respect to the main hub can vary.

In addition the use of these appendages to detumble a spacecraft with

a random spin to achieve final states of (1) close to zero inertial

angular rate and (2) a final spin rate about one of the principal axis

was also considered. In the effort proposed for Part II the following

will be treated: effect of energy dissipation during deployment; use

of appendages to detumble spacecraft when the appendages may not be

deployed along principal body axis of inertia; examination of linear

optimal control theory as applied to the deployment maneuver by

selecting different integrand functions in the cost functional; and an

examination of the effects of first order perturbations such as due to

solar pressure, gravity-gradient, and small amplitude flexibility of

the appendages.

With reference to Table I, the items denoted by an asterisk were

not treated during the first year, Part I. This Plan of Study has

been modified slightly in accordance with technical discussions held

at NASA-Langley. The proposed items for future study, as indicated
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by asterisks will now be discussed.

The effect of damping during deployment can be studied by incor-

porating additional degrees of freedom in the mathematical model of

both types of appendage systems. For example, a pendulous type of

nutation damping mechanism on the main hub could be considered and the

Lagrangian equations of motion for the hinged system modified directlyto

include generalized coordinate(s) associated with the damper motion.

The Eulerian equations of motion as derived for the telescoping system

would also require appropriate redevelopment since the center of the

spacecraft hub would no longer be the instaneous system center 
of mass.

The effect of energy dissipation during a general deployment maneuver

could be evaluated using.numerical integration techniques. For

deployment with a small nutation angle - i.e., transverse momentum

components small when compared with the total momentum, approximate

analytical approximations such as energy sink will be studied.

In the area of detumbling (a randomly spinning spacecraft) the

use of telescoping appendages offset from the principal axes will be

considered. An attempt will be made to reformulate a modified

Lyapunov function, either in terms of cross products of inertia using

the original hub symmetry axes system or in terms of the instantaneous

principal moments of inertia. Numerical simulation of this more com-

plicated system will be performed and results compared with those for

the simpler system. In addition the use of the hinged type system in

conjunction with a pair of telescoping booms along the "3" axis could

be examined.
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The difficulty in determining a control sequence of extension

rates for different pairs of telescoping booms which would yield a

time-optimal recovery of a tumbling spacecraft is seen in Section IV.

The problem has been that when the equations are written in standard

state form--e.g. for a case of two sets of booms parallel to the spin

axis - (where symmetry about this axis is maintained during extension),

the control function (two different extension rates) is non-linearly

coupled with the state variables.

Instead of considering only time optimal contol of a tumbling

spacecraft, it was suggested at NASA-Langley that linear 
optimal con-

trol theory might be applied where now the integrand function in the

cost functional would contain a quadratic form in the state variables

plus some function of the control. After appropriate linearization of

the system an attemptwill be made using the matrix Riccati equation to

yield solutions for boom extension rates.

A time optimal control solution for this problem can be obtained

numerically using the techniques of dynamic programming (gradient
13

techniques). This approach was recently employed by Kunciw in

analyzing the optimal detumbling of the system treated in Ref. 7. A

dynamic programming solution as applied to the present problem will be

considered, especially if the application of linear optimal control

techniques does not yield meaningful physical results.

As time permits at the end of the study, it is planned to briefly

examine the effect of such perturbations as gravity-gradient torques,
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solar pressure, and first order flexibility. It is hoped that this

effort would establish limits on the rate of tumble that could be

handled by extendible appendages without compromising their structural

integrity.

It is felt that by analyzing the dynamics, control and perturba-

tions of such types of systems with various types of appendages, a

valuable insight into the dynamical behavior of more complex systems

can be obtained.
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TABLE I - TIWO YEAR PLAN OF STUDY

THE DYNAMICS OF SPIN STABILIZED SPACECRAFT
WITH MOVABLE APPENDAGES

CONTENTS

A. MOTION DURING DEPLOYMENT

Spinning spacecraft - small transverse momentum

1. Hinged Type
- development of equations of motion

2. Telescopic Type

a. End mass moving b. Uniformly distributed mass moving

- Analytical solution for spherical Hub

- Series solution for non-spherical Hub

*3. Effect of Dampers

B. USE OF APPENDAGES TO DETUMBLE SPACECRAFT

1. Telescopic Type
- derivation of kinetic energy

a. Achieve zero inertial angular rate

- Lyapunov Function - Kinetic Energy

b. Achieve spin about principal axis

- Lyapunov function - Modified kinetic energy

*2. Telescoping appendages offset from hub principal axes

*3. Appendages + "3" axis boom

C. OPTIMAL CONTROL

*1. Application of linear optimal
control theory using different performance indices

*2. Use of gradient technique
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D. EFFECT OF PETURBATIONS

*1. Gravity-gradient

*2. Solar pressure

*3. Flexibility with small amplitude

*Proposed for study in second year (Part II)

93



REFERENCES

1. Vigneron, F., "Stability of a Freely Spinning Satellite of

Crossed-Dipole Configuration," CASI Trans. Vol. 3, No. 1, 1970,
pp. 8-19.

2. Lang, W. and Honeycutt, G.H., "Simulation of Deployment Dynamics

of Spinning Spacecraft," NASA-TN-D-4074, August 1967.

3. Hughes, P.C., "Dynamics of a Spin-Stabilized Satellite During
Extension of Rigid Booms," CASI Trans. Vol. 5, No. 1, March 1972,
pp. 11-14.

4. Sherman, B.C. and Graham, J.D., "Coming Motion of a Spinning

Rigid Body with Slowly Varying Inertias," AIAA Journal, Vol. 4,
No. 8, 1966, pp. 1467-1469.

5. Barba, P.M., Furumoto, N., and Leliakov, I.P., "Techniques for

Flat-Spin Recovery of Spinning Satellites," AIAA Guidance and
Control Conference, Key Biscayne, Fla., August 20-22, 1973,
Paper No. 73-859.

6. Kaplan, M.H., "Techniques for Detumbling a Disabled Space Base,"
24th Congress of the International Astronautical Federation,
Baku, U.S.S.R., October 7-13, 1973.

7. Edwards, T.L. and Kaplan, M.H., "Automatic Spacecraft Detumbling
by Internal Mass Motion," AIAA Journal, Vol. 12, No. 4, 1974,
pp. 496-502.

8. Athans, M. and Falb, P.L., Optimal Control--An Introduction to
the Theory and its Applications, McGraw-Hill, 1966, pp. 595-601.

9. Athans, M. Falb, P.L. and Lacoss, R.T., "Time-Fuel-and Energy-
Optimal Control of Nonlinear Norm-Invariant Systems," IEEE
Transactions on Automatic Control, Vol. AC-8, July 1963, pp. 196-

202.

10. Sen, S. and Bainum, P.M., "Motion of a Dual-Spin Satellite
During Momentum Wheel Spin-Up," Journal of Spacecraft and Rockets,
Vol. 10, No. 12, Dec. 1973, pp. 760-766.

11. Puri, V. and Bainum, P.M., "Planar Librational Motion of a
Gravity-Gradient Satellite During Deployment," Astronautical
Research 1971, D. Reidel Publishing Co., Dordrecht, Holland,
1973, pp. 63-80.

94



REFERENCES

12. IBM 1130 Scientific Subroutine Package Programmer's Manual, IBM
Technical Publications Department, White Plains, N.Y.; pp. 92-94.

13. Kunciw, B.G., "Optimal Detumbling of Large Manned Spacecraft

Using an Internal Moving Mass," Ph.D. Thesis, Dept. of Aerospace
Engrg., The Pennsylvania State University, June 1973.

14. Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill Book

Co., 1970, pp. 157-160.

95



COMPUTER PROGRAMS

1. End Mass Moving - Numerical Integration

C PROGRAtl FOR GEN. EULERIAN FORMULATION

C TELESCOPIC TYPE A. END MASS MOVING

SUBROUTINE RGSO1(T,W,DW)
DIMENSION W(3),CW(3)
REAL I, 1 2, 13,Ll L2,L3, 110,120,1 30,MI,M2,M3
COMMON 11,I2,13,110,120, 130,M ,M2,M3,C1,C2,C3

C
C
C

LL=C14T
L2=C2*T
L3=C3*T
DLI=Cl
DL2=C2
DL3=C3
Al=M L 1 L 1
A2=M2*L2 L2
A3= 3* L 3 L3
I 1=110+2.0*(A2+ 3)
12=120+2.0 (A3+A 1)
13=130+2.0* ( AI+A2)
B1=M1i L1I*0L1
B2=i2*L2*DL2
B3=M3*L3*L)L3
I11=4.04(82+3)-

D12=4.0 (833+B1 )
DI3=4.0 (Bl+B2)
D W(1)=( (12-13)*',' (2)* l3)-011 1 ))/11
Oh(2)=((I3-I1)*w. (3)*W(1)-DI2 ',i(2))/I2
DW(3)=((11-12)*W(1)*:W(2)-013*-(3))/I3
RETURN

END

SSUROU I NE_ RGS02 (T, , D o W,I HL F,, P)
CIMENSION W(3) ),O ~ (3),DUYYY(3)
REAL 11,12,13
COMMON 11,12,13
DArA DEG/57.2957795/

CALL RGS01 (T,, DUMY)
H1=I *4A(1)
H2=I 2*,( 2)
H3= 13*1(3)
THETA=ATN2(SQRT(HI4*HI+H2*H2),Ii3)*DEG
TP=T+0.00005
WRITE(5,1) TP,W, THETA,DW, IlILF
RETURN
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1 FORMAT (IX,F9.4,7F13.7,110)

END

EXTERNAL RGS01,RGSO2
DIMENSION PARM(5),w(3) ,DW(3),SIZE(3),WORK(8,3)
DATA N/3/
REAL 11, 12,13,110, 120,130,M1,M2,M3
COMMON I, 12,13,110, 120,20,3 ,M ,M2,M3,C ,C2,C3

C
C DATA CARDS -- 10 COLUMNS FOR EACH VALUE
C 1- TVAX,INITIAL STEP, TULERENCE
C 2- MASSES
C 3- INITIAL I'S
C 4- C'S
C 5- INITIAL W'S
C 6- TYPICAL SIZES OF W'S
C

READ(2,91) TMAX,STEP,TOL
READ(2,91) Ml,M2,M3
READ(2,91) 110,120,130
READ(2,91) CI,C2,C3
READ(2,91) W
READ(2,91) SIZE
WRITE(5,92) TMAX,STEP, TOL
WRITE(5,93) Ml,M2, M3
WRITE(5,94) 110,120,130
WRITE(5,95) C1,C2,C3
WRITE(5,96) w
WRITE(5,97) SIZE
WRI TE 5,98)-.- -- -- ~ ~ -- ~ -----

PARM(1)=0.0
PARM(2)=TMAX
PARM(3)=STEP
CALL RKSCL(N,SIZE,D TOL, PARM)
CALL RKGS(PARM,W,DW,N,IHLF,RGSOI,RGSO2, ORK)

. WRITEC'5,99)IHLF
CALL EXIT

C
91 FORMAT( BF10.0 )

92 FORMAT( 'ITMAX=',F8.2,10X,'STEP=' F8.4,1OX,'TOL=',F8.6)
93 FO<MAT('OMASSES',3F10.6)
94 FORMAT (' UIN IT ,3F 0 i 6) - - -- - .
95 FORMAT('OC ',3F10.6)
96 FORMAT('O ',3F10.6)
97 FOCRMT ('OSIZE ',3F 10. )
98 FCRMAT( 1' ',T6,'T',TI7, 'W1',T30,'2 ,T43, W3'

2T55,'THETA' ,T69, 'D1 ',T81, ' W2' ,

3T94,'DW;3',T108,'IHLF',/)
99 FORM4T('OIHLF=',13)

END
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2. End Mass Moving - Analytical Solution

C ANALY. CAL. W1,W2. A. END MASS MOVING
REAL I0,M
REAU(2,51) W10,W20
READ(2,51 ) 0WlO,D;20
REAO(2,51) I10,;M,C

51 FCRMAT(5Fl6.0)
wRITE(5,52) w10 , 20
,RITE(5,53) OD i0,G1e20
wRITE(5,54) 10,M,C

52 FORMAT(' l.iO=' ,Fl5.6,10X,'W20=',FI5.6)
"53 FOCR -AT('ODW1O-',F .6,1iX, W20 =' ,F15.6)
54 FOCR AT('OIO=',F8.4,1OX,'M=',F8.4,10X,'C=',F8.4)

WRITE(5,5)
5 FORIMA T ( ' I -T6,i , 117W1 T 3 0 2 )

T=O.O
STEP=1 .0 ..

15 P=2.04 OIC*C
AL=SQRT(2.0 1O/P)
Bl=SQRT(0.5*I0/P)
CI=T/Al
D1=ATA..(C1)
E1=BI*Dl
Fl=P/IO 0
G1=1.O+Fl*T4T
wl= (10+2. 0DW 101O(T-EL))/G1
A2=SQRT(1i/P)
B2=10/P
C2=T/A2
02=ATAN(C2)
E2=02/,A2
F2=T T+B2
G2=T/F2
w2=,20+0.5DW20R2 (G24 E2)
WRITE(5,10) T,WL, 2

10 FOR;AT(1X,F9.4,2Fl3.7)
T=Ti ST P
IF(T-60.0) 15,15,20

20 CU I -IuE
CALL EXIT
END

98
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3. End Mass Moving - Series Solution

c SER IES SOLN. CAL . wl ,W2 . A. END VASS MOV ING
REAL 110 ,120,110,11, 12,11-
READ(2,21) -11O1,3-0-,tM,IcTF-
READ(2,21 ) W10,W..20,DWIO,D4.,20,HO

21 F0RX A 'T(8F10.0)-
WRITE(5,51) 110, 120,130,M*,C,TF
WRITE( 5.51) We,10,W20,DlW1O,D!W2O,HO

51 FORP ,4r(8F1C).b)____
C

P =2 . 0 " -,:C C
C 

SC CONSTAAT FOR I CT)
ADl11 10*1I20O,: I 30, I30* 1I20+ 130)
AE 1=120*'( I30'-130*( 110+ 120+-130) +2.0* I10*130,,1120+ 130) )-P
AF1=12O*(I30::I30+Il0%( 120f-130) )4*P
AG1I23-- (110+120+3.0*130) :(P*443.0)
AH1=1 20* (P**4.0)
Al 1=2. J,- 1 10* 1 30* 120x: 12)::,P
AJ1=2. 0-" ( 110+ 130 )*1 20* 1 20--P*P
AKI=2.0*(120*120)*(P*"3.0)
AL1=( 130-I 10)*(1 30*1 30-120*120)*:HO*HO
AM1=2.0*130*( 130-1 10)*P*'HO*HO
AN1=( 130-1Il0):,*-P*I1CH0

C
A1= -(CA L1 )/(CAD01 2.*0 *1 .0)
A2=-(2.0*1.04:AE1-2.0%'A"Il+ALI)/(AD144.0*3.0)
43=-AIU *,/ (AD 1"4. 0-'3.*0)
A4=-(4 .03.0 AEI-Lt.0-AI 1+.Al 1CD1,6. 0-5.0)

A6=-A'41/ ( D1*6. 0'3.)

A8=-(4.0*:3.0' AFl-4.0*AJ1+.A;11)/(ADI*8.04-7.0)
A9=-C2.1.0*0AGI-2.0*AK1+4J1 )/(AD1-'8.0*7.0)

A12=(4.30*7.0AG1-4&.oA\1+4.LI)/(ADI)10.0-'9.0)

A12=(2.0*3.0*AG1-4.OA1+1)/(D140.09.0

C
A 1I-C + A L 'L)/ I -A b . 0 -2 .0

I2=-(3.o*12.0,::AE-3.o'-Al+AL1)/(ADI*5.0*4,.o)

64=- ( 5 .0*4 .0AF I .0"AI 1+4L~ 1/AD1*7. 0*6. 0

FB=-(-AK1+2.1)AFI 7.0 j+i~)/170 6.0)

B7=-(7.0*b;0*AE1-7.0*411+ALI)/(ADI*8.0*7.0)
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B8=-( 5.0*4.0"AFl-5 .OAJ1+M1)/AD1*80*7O)
B9=-(3.0*2.0*A 1-3.0*AK1+AN1 )/(AD1*19.0* -8.0)

5FORMAT( I1 I I,T6, IT@ ,T17, 'Wi' ,T30, 'W2' ).

STEP=1.0
AI.O=I10*11 _________

A1i=110*DrI10
15 AA12=Al* T--2.0)

A A 13=(A 2* A I+ A 3 )*(1 *4.*0.)-
-AA14=(A4*(A 2*Al+A3)+A5*Al+A6)*(T*6.0)
A151=A7*A4'-CA2*.LAI+A3)+A7*A5*A1+A7*A

6

A152=A8* (42*Al+A3) +A9*AI
-''AAl5 (A15l Al52)*-(T-"*.0)-..--- --

A161=AIO*A7*(AA*:A2*Al+A3*44)+410*A7'A5~*4
A162=AiO*IA7:-A6+A11* (A4*I 2*AI+A4*,A3+A5*AI+A6)-
A163=Al2-("'2*A1+A3)+Al3
AA16=(Ai61+, 162+AI63)*(T**10.0)
A1 7 =1.*0+A A 12+A A 13+ A 414+ A A 1 5 + AA16

B1L=Bl*(T44.2.0)
B12=(f2*B1+B3)*(T*:-4.0)
B13=-(B84*(B2*f1+1P3)+B5 B 1 + B 6 T*46 0)

B142=B8*U32*Bl+f33)+G9*-Bl

Bi5=1.0+311+Bl2+B33+Bl4

Hl H1Al04 17+4 1 *T*P,15--. .

11=1 1O+P*T4rT

C CONSTANTS FOR H2(T)
AD2=I134*120*1.30*1 30
AE2= (2 .04110?I 20*1I30+1 204 I30*1 30) *P

AF2=I20*1IlO+2.O*130)*P*P

AH2=2 .O*( ii b+[ 30-)*12 0*1 30*P
AJ2=2.0*(1i0+3.C*130)*120 4 P-P
AJ2=4.0*2 20::c(P*3 .0)
AK2=(130-110)*(130-120)*HO*HO
AL2=( 130-I 1O)*'P*H0X-10

C ___

Ci 4 K 2 CA D?2 .010)
C2=- (2.0*1. 0*AF?+2 . O4AH2+4K2) /(AD2--4. 0*3.*0)
C3= -(AL2)/(A D2 4 . 0:;3. 0

-C4=-(4.0*3.0-AE2+4.0*-AH2+A K2)/(AD2*-6.0*5.0)
C5 -2 0 10-F + . * I + L ) ( [2 6 0 5 0

C6-6.*5. 0*AF2 +6 .O'AH2+A'K2 )/( AD2*48 .0*7.0)
C7=(4.*3.x-A2+40'- 2+L2)/C(AD2*E.0*7.0)

C8=-(2.O*1.0*AG,2+2.0*-AJ2)/(AD2*8.0*7.0)
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C
Dl=-(AH24AK2)/ (AD2&-3.0*2.0)

D2-3. 042. 0*AE2+3.0'4AH2+AK2 )/( AD2*5.0*4.0)
0D3=-(A124-AL2)/ (AD2*5.0-4 4.0)
D/=-(5.0*4.0*AE2+-5.0*AH2+AK2)/(AD2*7.0*6.0)

D5=-( 3.O*-2.0*-Ar2+3.0*A12+AL2 )/( AD2*7.0*6.0)
_D6=-AJ2/ (AD2*7.04:6.0)--. -

C--_
A 20= 120 v4 20

A21=120*-UW20 . _ _. . ..-..

C 12 =Cl 1 T *'2. 0)
.-.-.C13=(C2e:Cl+C3)*(r**4.o)

Ci*4 (C4**2*-,CiC3)±c*Cj)&,(T**6.0)
C151=C6*C4*(C2*c -I+C3)+C6*C5*CI

__--Cl52-=C-7*(C2,*C43)4C08*CI
C 15= (C15 1 +C152) T~~ .-

C1b=1.0+CI2+C13+Cli4+C15

D12=(CD2*D1+D3 )1* CT4*4 .0)
0 13= (D ',( D2 * I+ D 3 ) +D 5 D I+ D 6)*( T*6.0)
D14=l.0+DII+Dl2+013 --

C
H 2= A20* C16+ A21* T *014-
12=120)
W2=H2/12

WRITE (5,10) T ,Vi'l,W
10 F0RMAT( 1X,F9.4t,2Fl3. 7)

T=T+ST~cP
IF(T-TF) 15,15,20

20 CC4T INuE
CAL L EX IT
ENDL

ORIGINAL PAGE IS
OF POOR QUALITY

101



4. Uniformly Distributed Mass Moving - Numerical Interation

C PRCGRA~. FCR GEN. EULFR__IAN _FCRLULATC I-IC -

C LN1FCEYLY CIST PASS PCVINC -NLYERICAL

SLERCLTINE RCSOI(T,h, k )
CIN ENSICN V(3),C ,(3)

REAL 11,12,13,L,LF 11O, 12 0 , 130

CCV CN 11, 12,13, I1C, 120, 130,4,CEN,C,L LF

A-= i2 . 0 /3.C) E N (( A4 L ) *-3-A 3)2 . CCEN(LF- L) A  2

pB=2.C4CEN:C ((A+L) :*2-A- 2 )

1 1 = 1C +_ _ _ G _------

12= 12C
13=13.C+AA

C (1 = (( 2 13) (2 (3 11 - -(1)) 1 1

C,(2)=(( I3-1 1) ,(3 (1)- 12'- (2))/12

CV,(3)= ( (11-12) ::v (1 )~ , (2)-CI3 i (3))/13

RETURN

C
C

E NC _ _ _

SL RCLTINE PGS02(T , 0 ,. 1HLF ,NP ....

C IE S IC k (3), C (3),CUPPY( )

REAL 11,12,13
CCV" C 11,12,13

CATA CEG/57.29577S/

C
C
- -- - CALL RGSC1(TwDL vI VY) -- - - - - . - -C , C S C I ( T , N ,D L V V Y

13- 1 (3)
T.ETA=ATN2(SCRT(H1~41+1+12*2), 3) DEG

TP=T-4C.CCCC5
ARIfET S,1) TU R, N.,1LF

- . .-- - -------- - ---- -~- ~-C

1 FCRET (1X,F9.4,7F13.7,11C)
ECC
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EXTEPNAL ,SC IRC, 
v -

CIrENSICN PARV(5) ,(3) ,CW3 , -S) Z E( 3 ) ,C , 3 )

CAl A N/3/
REAL 11,12,13?,11 C,120, 130,L,LF

CCVVCN 11,12, 13, I IC,120,1 30,6,DEN,C,L,LF

C

C -CAIA CARCS -- IC CCLLES FCR EACF VALLE

C 1- TVAX,1NITIAL STEP, TCLERENCE

C 2- DENSITY, A(RACIUS CF SATELLITE)

C 3- If IIAL I' S

C 4- C,LF
C 5- INITI.AL_ .'_S .- ... ...

C 6- TYPICAL SIZES CF k'S

REAC(2,91) TVAX,STEP,TOL

READ(2,91) CENA EN A-
REtD(2,9- ) IIC, 1 2 C,1? 0

REAC(2,91) C,LF

REAC(291 ) .. ..

READ(2,91) SIZE

i\RITE(5,G2) TVAX,STEF,TCL

hRITE(5,93) CEN,A_

lRITF(5,94) 110,12C0, 130

iRITE (5,95)C,LF

, R I.T E_( 5 ,96) -

HRITE(5,97) SIZE

hRITE(S,9S)
PAR ( 1)=0.C

. . .--~P A R R C 2 t -- T i' A X

PARV(3)=STEP
CALL RKSCL(N,SIZE,Ci',TOLoARV)
CALL RKGS(PA r ,W , C, , ,hI LF,RGSO1, RGS02 , CRK)

hRITE(S5,99)ILF
CALL EXIT Z

91 FCRYAT( 8FIC.C

92 FCRYAT( '1 AX=' ,F8.2, X ,'STEP._,F. 4 !ICX TCL , 6 - )

93 FCR AT( 'CCEN
=' ,F8.4,10X,

' = ' ,F8.4)

94 FCRAT('01NIT I',3FIC.6)

95 FCR-'T ('CC IF' i..F 2  X, 'LF= , FE. )

.96 FCRYAT('O ',3FIC.6)

97 FCRtVAT('CSIZE ',3FIC.6)

SS FCRYAT( '1' ,T6, ' ,TI7,' 1 ',T3C,'W2',T43 t3

... 2 i 55 ,'T HE T ,T T69,' C ,T 81, ' CW2

3TS4,'C'3',T1 0 ,'IFLF',/)

9 9 FCRrAT ( 'C0ILF = ' , I 3)

C
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5. Uniformly Distributed Mass Moving - Analytical Solution

. A S V - -- --- i -t
C AI-tL C AL. 1,k2. t.L.lFCP. CIST. ASS CVIAGN

REUL IC

pEC(2,51) C,hC ------

PEPC(2,51) CV.l CZ 2C
RPE C(2,51) IC ,C ,CTF

51 FCP:'E (SF .C) -- --

C CENS11Y CF 1'CC
hRITE (5,52) l1C,12C

V~ RITE(5,53) C . C, E'2C __

kFITE(5,54) IC,C,C,TF

52 FC ' 1(' hlC=',F15.6,10X, '2C ',F15.L)

5c FCR bT( ' CC I C = , F S .6 1 CX, M.~2CF - ' F 1 5. 6 ) ..

4 F CRt 1 'CI C= ,F8.4 1 CX 'C = '=  FE .4 r CX, 'C=' ,FE .4 1CX,' TF=', F .

hRITE(5,5)
. FCRPAT (' ' IT ', 6' C, 'LT2 ' ,) - _2

I=C .C
5 1EP=1.C

RPITE(5,61)E
61 FCR'T (1X,F . 4 )

C EX1 R TERNS ,ITI- PI RE LEFT

e=c(e~" 3.C), ' 1)/(E**3.0 " T::3"C)

F= ((PtT)*e2.C)/(E : 2.C-E*T4Tt42. ).

Cl= ( /3.C) LCG(F)

E=22.C/42.C
Cl= (2.C*T-E) /(1.732 E)
.. . . .C 2 _ .( ) 4- t C .. .. .. .

C3= (2.C )/1.732

C4 = C 3 ? _ __ - ................ . .

E 1=C 2 0/3.C
I2=h2 C+E 14 ( +CI+C 1 4

RIRTE 5 ,1C) T, hl,h2

SiC FC VA 1 ( 1X; ,-9 F ,2F 3.l)
1=1lSITEP
IF T- IF) 15,15,.2C

2C CCIINLE
CbLL EXIT
ENE
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6. Detumbling--To Achieve Final Soin Alonq One of the Principal

Axes (End Mass Moving - Numerical Integration)

EXTERNAL RGS1,.RGS02
DIMENSION PARI1(5),I(3).D (3), IZE(3), ORK(8,3)
REAL I1 , 12 , 13 , I10, 120.I30,MM 12, M3

COMMON I I12, 13, 110 120, 130,l,M2,1i3,C IC2,C3

C
. C
* C DATA CARDS -- 10 COLUtMS FOR EACH VALUE

; C 1- TM-1X, IHITIAL STEP, TOLERENCE

: C 2- MIASSES
: C 3- INITIAL I'S

; C 4- C'S
; C 5- INITIAL W'S

; C 6- TYPICAL SIZES OF W'S

; C
CALL INOUT(2,5)
N= 3

; TYPE 'RKGS JOB'

; READ(2,91) TIIAX,STEP, TiOL

; READ(2.91) M , M2,M3
; READ(2,91) 118, 20.130

SREAD(2..91) C1,C2,C3
READ(2,91 ) 1J

; READ(2,91) SIZE
S RITE(5,92) TIA, STEP, TOL

LIRITE(5,93) M11,M2,M3
; JRITE(5,94) 118,120,130
S URITE(5,95) C1,C2,C3

; WRITE(5, 9) W
; RITE(5,97) SIZE

; PARM(1) =0.8
; PARM(2) =TIAX
; PARI(3) =STEP
; CALL RKSCL(N,SIZE,DU ,TOL,PARM)

L LRITE(5,- )
CALL RKGS (PARM. U, DN H. I HILF, RGS I , RGS2, ORK)

; URITE(5,99)IHLF
; CALL EXIT

-; C
91 FORrAT( OFI0.0 )

92 FORIAT( 'IL ' , F S .210 X.'STEP=', FS. 4.10X,'TOL='
, F S. 6 )

; 93 FOR.I T('OMASSES' 3F0. 6)

; 941 FORAI T('1O IT I',3FI0.6)
95 F[,CRMAT(" C ',310. 5;

S SG FOIlr iT('OtU '3FlI0.6)
; 97 FORMAT('OSI

ZE ',3FI0.6)
* 98 FORMAT(' I',T6,'T',T17,'Ul',T30,'U2'

, T 4 3 , ' U 3 ',

; 2T55, 'THETA', T69, 'DUlJ' T8S1 'DUJ2,

; 3T94,'DlJ3' ,T1 ,' IHLF',/)

; 99 FORiMAT('OIHLF=',13)
SC
* END
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; C PROGPRAM FOR GEN. EULERIAI4 FORMUJLATION
; C TELESCOPIC TYPE A. END t1MSS MOVING DETUIIBL ING

SUBROUTINIE RGSOI (-T, I.. ,I)
; DIlENSION U(3). DI(3)
REAL I1.12,13.L1.L2.L3,1 18.120,13 ,M1I, '2,M3
COMII ON 11 12,13,] 10,120, 130. MI,112,t13,C1,C2,C3

C
C

IF(T.GT.2.5) GO TO 20
L1=C :T
L2=C2xT
DLI=C1
DL2=C2
GO TO 30

C
; 20 LI=C1:,2.5

L2=C21:2.5
DLI=0.0
DL2=0.0

; 30 CONHT HLIE
L3=C3T
DL3=C3
A I =H I:L 11t I
A2=M12:tL 2.:L2
A3=M3*L3*L3

S 1I1=116-2. 0*(A2+A3)
1212=20+2.0, (n+A 1 )
13=130+2.0i (A1+A 2)
B I =1-11:L 1 4DL 1

B2 =12*L2"DL2
B _3 =r 3M :L 3 :DL 3
S D11=4.0(BE2'+B3)

- D12=4.0E: (E3+Bl'
DI3=4.0t(B1 +E2)
DIJ( 1) =( (I2- I3)lJ(2) *tJ(3)-DI ! h(I(1))/I1

SD (2) =(( I 3-1)*lJ (3) : ( 1) -D!:,: 2 )/ 12
SDJ(3) = (( I1- 12) ( 1) *J(2) -D I .(3)) /13
RETLIRN

END

PARAHETER DEG=57.2957795
SLIBRILITI HNE RGS02 (T, IDL. IHLF, N. P)

DIMEIISION l3).. (3) DLMMY(3)
REAL 1, 12, 13
COIMFON 1I1.12, 13

C
C

; CALL RGSO l(Tl,DUIIIiY)

H2=12t-1(2)
; H3 =13: (3)
; THETA =TA,12(SORT(H I: HI+H2*H2) .H3)DEG
; TP=T+0. 00005

; IRI TE (5, 1) TP,t, THETA, DW, IHLF
RETURN

I FORMIAT (lX.F9.4,7F13.7,I10)

END
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7. Subroutine RKSCL

SU22OUTIME. RKSCL(NU, UMAG, DU, TOLD P)

RELU-GC) U ,P4
C

WHORMi =0.

LDO I 1=1, H
UNFJORM =UHORII + 1 . @AJVr ()

I CONT16z3JE
UNOFII = 1.0tiMORM
DO 2 1=1. N

DUCU) = UH140l/jHG(I)

P(4) = H>QjilO!WVTO*TL/15.0

* END
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8. Subroutine RKGS

SUBROUTItiE RKGS(PRIT,YDERY,NDI- IHLF. FCT, OUTP. RUX) RKGS

it" " RKGS 3

DO I I=1,NDIM RKGS 4

1 AUX(8, )j=.066666 D EP Y ( I) RKGS 5

X=PFRVT( 1) RKGS 6

tXEiM=PR T (2) RKGS 7

H=F'P-iT (3) RKGS 8

PRMT(5) =0. RKGS 9

CALL FCT(X,Y,DERY) RKGS 10

C ERROR TEST RKGS 11

IF (H.(XEiD-X)) 38.37,2 RKGS 12

C PREP'RRATiOiNS FOR RUN GE-KUTTA I-ETHOD RKGS 13

2 A(1)=.5 RKGS 14

A(2) = .2928932 RKGS 15

A(3)=1.707107 RKGS 16

A(4)=. 1666667 
RKGS 17

B(1)=2. 
RKGS 18

8(2). 
RKGS 19

8(3)=1. 
RKGS 219

B(4)=2. RKGS 21

C(1)=.5 RKGS 22

C(2)=.292 932 RKGS 22

C(3)=1.707107 RKGS 24

C(4)=.5 - RKGS 25

C PREPARATiOiiS OF FIRST RUNGE-KUTTA STEP RKGS 25

-DO 3 1=1,NDIH RKGS 27

AUX(1, 1)=Y(I) RKGS 28

AUX(2. I)=DERY(1) RKGS 29

RUX(3, 1)=0. 
RKGS 30

3 AUX(6,i)=0. 
RKGS 31

IREC=0 
RKGS 32

H=H+H 
RKGS 33

]HLF=-1 RKGS 34

ISTEP=0 
RKGS 35

IEND=O 
RKGS 35

C. START OF A RULNGE-KU-RA STEP RKGS 37

4 IF((X+H-XEND)< H)7,6.5 RKGS 37

5 Hi=XKED-X 
RKGS 39

6 IEND =  RKGS 40

C RECORDING OF INITIAL VALUES OF THIS STEP RKGS 41

7 CRLL OUTP (XY, ERY, REC, NDI -1, PRi T) RKGS 42

IF(F'RIIT(5) )40.8.40 RKGS 43

8 ITEST=O RKGS 44

9 ISTEP=iSTEP+1 
RKGS 45

C START OF INNERMOST RUNGE-KUTTA LOOP RKGS 46

J=1 

4
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to AJ4A(J) RKGS 47

BJ=B(J) RKGS 4!3

CJ=C(J) RKGS 49

DO 11 i=1,NDI!1KG 5

R W=MEFRY( I) RKGS 51

R2=AJwfP1-Bi'QUX(6. I)) RKGS 52
Y(I)Y~i+R2RKGS 53

1020F20P202 RKGS 54

11 AUX(6. L=HU>K(.I)+R2-Cj*Rl RKGS 55

1FCJ-4) 12.15,15 RKGS 56

12 i=i+1 RKGS 57

IF(J-3) 13. 14.13 RKGS 53

13 X=X+.5-yn RKGS 59

14 CALL FCTCX.Y.DERY) RKGS 60

COTO 10 RKGS 61

C END OF !NNFE-:3T RUNGE-KUTTA LOOP RKGS 62

C TEST OF PLLUPPCY RKG5 63

15 IF(ITEST) 16,liE.20 RKGS 64

C IN CASE KEST0~ THERE IS NO POSSIBILITY FOR TESTING OF ACCURACEY RKGS 65

16 DO 17 j1,011-1 RKGS 66

17 AUX(A4. i)-Y) RKGS 67

ITtiT=l RKGS GS

ISTFP=ISQPi+il iLP-2  RKGS 65

10 IHLF=UIHLF+1 RKGS 70

X=X-ii RKGS 71

H =* RKGS 72

DO 19 I=10N~ RKGS 73

'V(I) =Au>(i. ) RKG5 74
I:ERY04AR~U.M'2,I) RKGS 75

19 AUX(MMUM3Ld,.I) RKGS 76

GOTO 9 RKGS 77

C IN CASE iTEST=1 TESTING OF ACCURAiCY IS POSSIBLE RKGS 7S

20 J1IMM=ISTEP/2 RKGS 79
IF(ISTEP jii-.-iD-j1OCD)21,23,21 RKGS 60

21 CALL FCT(X., .DERY) RKGS 2

DO 22 K1i,001! RKGS 32

A~UX(5, 1) =Y( ) RK GS S3

22 ALlX7. I)DERY(I) RKGS 04

COTO 9 RKGS 85

C COilPUTATION OF TEST VALUE DELT RKGS S6

23 DELThO. RKGS 8

DO 24 WW1lI~I RKGS B

24 DELT=DELT+AUX(3.I)*AES(AUX(4,1)-Y(l)) RKGS 69

1F(i'ELT-PRfiT(4) )2S.28.25 RKGS 90
C ERROR IS TOO ?REAiT RKGS 91

25 IF(iHLF-10)2S.lG,3G PRKG5 92

26 DO 27 W.NADiQ1 RK 93

27 U:x.iHJ\r, RKGS 9 4
ISTEP~l~ci lTE- RKGS 95F

X=X-HRKGS 96

I EN Wi 0FKS W7

COTO IS RKG5 9S

c RESULT VALUES ARE GOOD RKGS 99

28 CA~LL FCT(XY.DERY) RKG~S 100

%IGT1AL PA:GE 2.0
O' PCOR QUALITY,



RKGS 101

1)0 29 I-1,NDIIM PKGS 102

AUX(1, 1)=Y(1) RKGS 103

AUX(2, 1) =DEP'r(l) RKGS 104

AUX(,I)AUX",I)RKGS 105

29 DERY(I) = UX(7, 1) RK~GS 107
CALL OUTP (')--H, Y. D:E:Y, IHLF, ND Il-1. Pf11T-) 10

I F(PRIT (5) ) -l0, 3 0, -40 RKGS 105

30 DO0 31 1=1,H'iHI RKGS 110

31 DEPYCI)=AUX(2, I) RKGS 112

IREC= I~HE RKGS 112S
I F( 1ENlD)3329 RKGS 114

C INCKENT GETS -,,OUeLED RNS 1
RKGS 115

32 IHLF=IHLF-I KS 1
ISTEP= 1STEP/2 G'17
H=HiH RKGS 117

I F (i HL F ) 4, RKGS 119

33 11-110D =STE P/2 PKGS 115

4 1F~PIi~i~I~L;~A~4
RKG'S 12~

~ 1(PLI-U~FHT 4)RKGS 1221
35 IHLF=IHLF-1 R KGS 122.:

ISTEP=ISTEP/2 R KG - 123

H=fl+H- RKGS 124
GOTO 4 RKGCS 12

C F;E U HS TO CALLING PROGRAMi RKG5 12
3G IFILF= 11 Ri G 12

CALL FtCT(XY,DERY) RKGS 12

GOTu 39 RKGS 125

*37 1HLF=I12 RKGS 1 30I

GOTO 39 R KGS 131 -
39 1f-LP~13 RKGS 1 3
39 CALL OUTP(X.Y,DERY. IHLF,NDliH,PRH-T) 

-:GS13

40 RETURN 
RKGS 134

END 
RKGS 135

110


