General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

FINAL REPORT

NASA GRANT: NSG-1414
THE DYNAMICS AND CONIROL OF
IARGE FIEXIBLE SPACE' SIRUCTURES
PART A: DISCREIE MODEL AND MODAL CONTROL

(NASA-CR-156975) THE DYNAMICS AND CONTROL

N78-23139
OF LARGE PY JXIBLE SPACE STRUCTURES. PART A:
DISCRETE MODEL AND MODAL CONTROL FInal.
Report (Howard Univ.) 59 p HC A04/MF A01 Unclas
CSCL 22B G3/18
HOWARD UNIVERSITYSCHOOL OF ENGINEERTNGDEPARTIENT OF ME CHANICAL ENGINEERTNGWASHINGTCN, D.C. 20059
FTNAL REPORT
NASA GRANT: NSG-14I4
THE DYNAMICS AND CONIROL OFLARGE FIEXIBIE SPACE STRUCTURES
PART A: DISCRETE MODEL AND MODAL CONTROL
by
May 1978

Nay 1978

Peter M. Bainum
Peter M. Bainum
Professon of Aerospace Engineening
Principal Investigator
and
R. Sellappan
R. Sellappan
Senior Graduate Resenwch Assistant
Senion Gnaduate Resesroh Assistant

ABSTRACT

Attitude control techniques for the pointing and stabilization of very lange, inherently flexible spacecraft systems are investigated. The attitude dynamics and control of a long, horogeneous flexible beam whose centen of mass is assumed to follow a circular orbit is analyzed. In this study, finst onder effects of gravity-gradient are included, whereas extemal perturbations and related orbital station keeping maneuvers are neglected. A mathematical model which describes the system rotations and deflections within the orbital plane has been developed by treating the bean as a number of discretized mass particles connected by massless, elastic structural elements. The uncontrolled dynamics of this syism are simulated and, in adoftion, the effects of the control devices are considered. The concept of distributed nodal control, which provides a means for controlling a system mode independently of all other modess is examined. The effect of varying the number of modes in the model as well as the number and locetion of the control devices are also considered.

TABIE OF CONIENTS

ABSTRACT ii
TABLE OE CONTENIS iii
NOMENCLAITURE v
IIST OF IILUSTRATTONS vii

1. INIRODUCITON 1
2. MAIN BODY WITH TWO ELEXIBIE BEAMS 6
2.1 Equations of Motion-Tonque Free System 6
2.1.1 Each beam modelled by an end mass 6
2.1.2 Each beam modelled by two masses 8
2.2 Equations of Motion-Gravitational Effects 10
2.2.1 Each bean modelled by an end mass 10
2.2.2 Each beam modelled by two masses 11
3. THREEE-MASS SYSTEM 12
3.1 Equations of Motion-Local Vertical 12
3.1.1 Expression for kinetic enengy 12
3.1.2 Expression for potential energy 13
3.1.3 Expression for elastic energy 24
3,1.4 Lagrange's equations of motion 15
3.I. 5 Iinearized equations of motion 16
3.1.6 Stability analysis 17
3.2 Equations of Motion-Iocal Horizontal 19
3.2.1 Linearized equations of motion 39
3.2.2 Stability analysis 20
4. MODE CONTROL CONCEPT 21
4.1 Dynamic Equations 21
4.2 Eigen-Analysis 22
4.3 Actuation 23
4.3.1 Munber of actuators equal to the number of modes 23
4.3.2 Number of actuators less than the number of modes. 24
5. MODAL CONIROL OF THE THPEE-MASS SYSTEM 27
5.1 Three-Mass System - Local Vertical 27
5.1.1 Uncontrolled motion 27
5.1.2 Number of actuatons equal to the number of modes. 29
5.1.3 Number of actuatons less than the number of modes. 31
6. CONCLIDING COMMENTS 34
6.1 Sumary of the Conclusions 34
6.2 Recommendations for Future Work 35
REFERENCES 36
COMPUTER PROGRAM 50

a	$=$ location of mass m_{a} (or m_{1}) from the origin point of the main body
b	$=$ location of mass m_{b} from the origin point of the main bocy
EI	$=$ bending stiffness of uniform beam
E	$=$ control vector (includes torques and forces)
f	```= scalar actuaton vaniables; also, feedback control gains```
$E^{(c)}$	$=$ control force vector acting on the discnete mass system
$f\left(n_{i}\right)$	$=$ residuel coupling coefficent
I_{1}, I_{2}, I_{3}	$=$ principal moments of inertia of the main body
K	$=$ stiffness matrix of the systen
L	$=$ Iength of the beam ($L=2 l$)
M	$=$ mass matrix of the systen
Mc_{c}	$=$ mass of the main hody
m	$=$ mass of the end mass
m_{i}	$=$ generalized mass for mode i; also refers to end masses
m_{0}	$=$ mass of the interion mass located in between m_{1} and m_{2}
N	$=$ mumber of modes
P	$=$ number of actuatons
q_{i}	$=$ modal coordinates
R	$=$ nadius of the orbit
$\stackrel{s}{3}^{1}$	$=$ najus vector from center of earth to mass, m_{i}
T	$=$ kinetic energy of the system; also, control transfomation mainix which provides transformation from discrete actuator variables to distributed actuaton variables ($f=$ TH)

Fig. 2.1 System configuration with main body and each beam modelled by an end mass 38
Fig. 2.2 System configuration with main body and each bean modelled by two masses 38
Fig. 2.3 Effect of gravitational forces on the system with main boay and each beam modelled by an end mass. 39
Fig. 3.1 Three-mass system configuration 40
Fig. 3.2 Possible approximation of a free-free beam by three discrete particles (finst two modes shown) 41
Fig. 3.3 Veriation of ω_{1} and ω_{2} with m_{0} (local vertical. system) 42
Fig. 3.4 Variation of ω_{1} and ω_{2} with m_{0} (local horizontal system) 43
Fig. 4.1 Mode control implementation 44
Fig. 5.1 Uncontrolled motion of the three-mass system ($\mathrm{F}_{1}=0$) 45
Fig. 5.2 Dymanic response of the systen with the number of actuators equal to the number of modes ($f_{i}=1$). 46
Fig. 5,3 Time history of the control forces with the number of actuators equal to the number of modes ($f_{i}=1$) 47
Fig. 5.4 Dymamic response of the system with the number of actuators equal to the number of modes ($f_{i}=0.1$) 48
Fig. 5.5 Time response of the system with the number of modes ($\tilde{f}_{i}=1$) 49

1. INTRODUCIION

In the recently completed "Outlook for Space Study" a number of proposed new space missions were shown to require lange-scele, Iight-weight space structures. Three representative proposed future missions utilizing such systems are:
(1) ocean data systems involving a 100 m . wide structure for the purpose of collecting data on the state of the oceans, pollution (both in the atrosphere and the oceans), and salinity.
(2) electronic mail systems requining a 50 m . diameter antennareceiver system to be placed in a synchronous equatorial orbit.
(3) a space-based solar power collector system, also operating in a synchronous equatorial orbit whene the amrays for collecting the incident solar energy would have the dinensions on the order of kilometens.

It is evident that a complete new technology must be considered and developed so that these structures can be delivered into orbit (using the Shuttle Transpontation System), deployed, and then fully assembled in a space environment. Because of their inherent size, the testing of such systens in a ground environment is not practical. Madeling techriques and scaling algorithrs must be developed so that the performance of these syctems can be accurately predicted prion to launch and assembly.

In many circumstances, it will be necessary to control the shapes of the antenna on collector surfaces to within centimeters on even millimeters by using a variety of sensor-actuator systems to be positioned throughout the flexible menbers. ${ }^{\text {I }}$

To address some of these unprecedented problems a special Industry Wonkshop on Large Space Structures ${ }^{2}$ was held at NASA Langley Research Center in Feb. 1976. Anong the principal conclusions was that technology development is most oritically needed in: the definition of large space structural configmations; improved modeling and scaling techniques; and the intenaction between the control system and structumal dynamic responses. It was also stated that some of these development techniques would utilize improved computerized analytical models. Concern was also expresseã over possible resonant interactions between some of the flexible structmal modes (with frequencies greatly reduced as compared with more conventional structures) and the frequencies associated with the attitude control systems. Analytic areas requiring model development also include the precision determination of gravity-gradient forces and moments acting on such lange stimuctures. ${ }^{2}$

The AIAA Symposium on Dynamics and Control of Large Flexible Spacecraft ${ }^{3}$ held at Virginia Polytechnic Institute and State University, June 1977 provided a review of the state of the art in this area. It reflected the tremendous strides made in modeling and analysis of spacecraft in the last two decades. Yet, the next two decades are likely to place a severe strain on the cument state of the art if some of the advanced concepts, such as solam popen satellites on space colonies, are to be converted into reality.

In this regard, this symposium raised as many questions as it answered and, in the process, it pointed to areas of future research.

It was stated in Ref. 2 (Page 12) that to assure the availability of the lange space structures technology to support future missions a comprehensive research and development program must be defined. Three of the objectives of such a program are: ${ }^{2}$
(1) development of active surface control techniques and systems which can measure and correct surface deformations to within millimetens of accuracy.
(2) development of attitude control tedniques for the pointing and stabilization of very lange, inherently flexible space structures.
(3) development of analysis and simulation techniques which can extend subscale ground test experience to high-confidence predictions of full-scale perfomance in the space environment. The present study represents a preliminary contribution to the accomplishment of the second stated objective.

In this repont, Chapter 2 deais with the development of a matheratical model which describes the rotation and deflection of a long, thin, flexible bean in the orbital plane. It is assumed that the beam is represented by a main body and a series of discretized pariicles and the model prevously developed Dy Meirovitoh and Nelson ${ }^{4}$ is used as a starting point, This model is extended to include first orden effects of gravity-gradient tonques.

The discrete models are developed under the assumptions, finst, that the beam is representied by a massless rod connected by two end masses, and, secendly, that the beam is represented by four discrete particles, two at the ends and two located at points taken half-way between the center of the undeflected beam and the end points. The equations are developed and linearized for the cases of small amplitude rotations and deflections. These equations are then cast in the proper form for the application of the mode control concept (Chapter 4) as expounded in a recent contract report by Rockwell International. 5

A more general case of a flexible beam system using three discretized masses without a central body is considered in Chepter 3. The nonlinear equations of motion are developed using the Lagrangian formulation. These equations are then linearized assuming smatl amplitude deformations about two equilibrium positions : (1) alignment along the local verrical and (2) alignment along the local horizontal on onbit tangent. Stability conditions fon system motion taken about these equilforium positions are obtained.

The mode control concept ${ }^{5}$ for contrniling a spacecrafi by independently controlling motions of the rigid body and the vibrational modes is presented in Chapter 4. Development of the mode control concept is based on two coordinate transformations.

In Chapter 5, the mode control concept described in Chapter 4 is applied to the Iinearized equations developed in Chapter 3 for the threemess system. The uncontrolled dynamics, as well as the dynamics of the
system with two actuatons (equal to the number of vibrational modes), on one actuator, are simmated numerically using closed form expressions.

The concluding conments from this study and suggestions for future work are summarized in Cnapter 6.

2. MATN BODY WITH TWC FTEXTBIC BEAMS

2.1 Equations of Motion-Torque Free System

2.1.1 Each beam modelled by an end mass

The configuration of the system considered is shown in Fig. 2.1. The system center of mass is assumed to move in a circulan orbit and the system is constrained to move in the orbital plane. The system consists of a main body (M_{e}) with two beams attached to the main body. Each bean, modelled by an end mess (m_{i}), is attached to the main body as show in Fig. 2.1. The equations of motion for the system will be derived by use of the Lagrangian fommation. One generalized coondinate of the systan will be the angle θ wich represents the rigid body pitch angle. The other generalized coordinates will be the deflections v_{1} and v_{2} of the end masses, m_{1} and m_{2}, respectively, relative to the undeformed (but rotated) body z axis.

The total kinetic enengy of the system, in terms of the notational and translational energies, is

$$
\begin{equation*}
T=T_{r}+T_{t}+\text { const. due to cincular onbital motion } \tag{2.1}
\end{equation*}
$$

The rotational kinetic energy of the main body is

$$
\begin{equation*}
T_{r}=\frac{1}{2} I_{2} \dot{\theta}^{2} \tag{2.2}
\end{equation*}
$$

and the translational enengy, due to the end masses, can be written as ${ }^{6}, 7$

$$
\begin{equation*}
T_{t}=\frac{m}{2} \Sigma\left(\bar{V}_{i} \cdot \bar{V}_{i}\right)-\frac{m^{2}}{2 \sqrt{1}}\left(\Sigma \bar{V}_{i} \cdot \Sigma \bar{V}_{i}\right) \tag{2,3}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{v}_{i}=\left.\dot{\bar{r}}_{i}\right|_{\text {body }}+\bar{\omega} x \bar{r}_{i} \tag{2*4}\\
& \bar{M}_{\mathrm{M}}=\mathrm{m}_{c}+2 n ; \mathrm{m}_{1}=m_{2}=m \tag{2.5}
\end{align*}
$$

The coordinates of the two masses m_{1} and m_{2} with respect to point 0 (Fig. 2,1) are given in terms of the position vectors,

$$
\begin{align*}
& \bar{r}_{1}=v_{1} \hat{j}+a \hat{k} \tag{2.6}\\
& \bar{r}_{2}=-v_{2} \hat{j}-a \hat{k} \tag{2.7}
\end{align*}
$$

After substitution of Eqs. (2.2) - (2.7) into Eq. (2.1), the resulting expression for the kinetic energy is

$$
\begin{align*}
T= & \frac{I}{2} I_{2}{ }^{1} \dot{\theta}^{2} \\
& +\frac{m}{2}\left[\dot{v}_{I}{ }^{2}+{\dot{v_{2}}}^{2}+\left({v_{1}}^{2}+v_{2}^{2}\right) \dot{\theta}^{2}+2 \dot{\theta} a\left(\dot{v}_{1}+\dot{v}_{2}\right)\right] \\
& \left.-\frac{m^{*}}{2}\left[\dot{(}_{I}-\dot{v}_{2}\right)^{2}+\left(\dot{v}_{I}-v_{2}\right)^{2} \dot{\theta}^{2}\right]+ \text { const. } \tag{2.8}
\end{align*}
$$

where

$$
I_{2}^{\prime}=I_{2}+2 \mathrm{ma}^{2} \text { and } \mathrm{m}^{*}=\mathrm{m}^{2} / \bar{M}
$$

Initially the effect of gravity-gradient forces will be neglected so that the potential enengy consists of the elastic energy, pius a constant due to the assumed cincilan orbital motion of the mass center.

$$
\begin{equation*}
V=U+\text { const. }=\frac{k}{2}\left(v_{I}^{2}+v_{2}^{2}\right)+\text { const. } \tag{2.9}
\end{equation*}
$$

where k is the stiffness of each beam ($k=3 E I / a^{3}$).
The Lagnangian equations of motion for the system have the form

$$
\begin{equation*}
(d / d t)\left(\partial I / \partial \dot{q}_{i}\right)-\left(\partial I / \partial q_{i}\right)=0 \tag{2.10}
\end{equation*}
$$

Where q_{i} assumes the values: θ, v_{1}, and v_{2}. The Iangrangian hes the form

$$
I=I-V=T-U+\text { const. }
$$

where T is the kinetic energy and U is the elestic potential energy of the system.

Considering only the linear terms, the equations of motion can be represented in matrix form as
$\left[\begin{array}{ccc}I_{2} & m a & m a \\ m a n & m^{\prime}-m^{*} & m^{*} \\ m a & m^{*} & m-m^{*}\end{array}\right]\left\{\begin{array}{c}\ddot{\theta} \\ \ddot{v_{1}} \\ \ddot{I}^{\prime} \\ \vec{v}_{2}\end{array}\right\}+\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k\end{array}\right]\left\{\begin{array}{c}\theta \\ v_{1} \\ v_{2}\end{array}\right\}=\{0\}$
If the control forces (including the control torques also) acting on the system are represented by, F, then Eq. (2.11) is reduced to the standard form

$$
\begin{equation*}
M \ddot{X}+K X=F \tag{2.12}
\end{equation*}
$$

For the special case, when the deflections of the end messes are assumed to be antisymnetric ($v_{1}=v_{2}=v$), Eqs. (2.11) and (2.12) reduce to the following equation:
$\left[\begin{array}{cc}I_{2}^{\prime} & 2 m a \\ 2 m a & 2 m\end{array}\right]\left\{\begin{array}{c}\ddot{\theta} \\ \ddot{V}\end{array}\right\} \quad \because\left[\begin{array}{ll}0 & 0 \\ 0 & 2 k\end{array}\right]\left\{\begin{array}{l}\theta \\ v\end{array}\right\}=\left\{\begin{array}{l}T_{\theta} \\ F_{V}\end{array}\right\}$

2.1.2 Each beam modelled by two messes

The mathenatical model for the system considered now consists of a main body and two flexibIe beams which are attached to the mait body. Each bean is modelled by two masses as shown in Fig. 2.2. For simiticity, it is assumed also that the elastic motion of the beams is antisymetric, that is $v_{a}=v_{a}^{\prime}$ and $v_{b}=v_{b}^{\prime}$.

With these pestrictions, the kinetic energy expression takes the form

$$
\begin{align*}
& \mathrm{T}= \frac{1}{2} \\
& I_{2} \dot{\theta}^{2}+m \quad\left[\left(\dot{v}_{a}+\dot{\theta} a\right)^{2}+\dot{\theta}^{2}\left(\mathrm{v}_{\mathrm{a}}{ }^{2}+\mathrm{v}_{\mathrm{b}}{ }^{2}\right)+\left(\dot{v}_{\mathrm{b}} \dot{+\dot{b}}\right)^{2}\right] \tag{2.14}\\
&+ \text { const. }
\end{align*}
$$

The elastic strain energy is

$$
\begin{equation*}
u=k_{11} v_{a}^{2}+2 k_{12} v_{a} v_{b}+k_{22} v_{b}^{2} \tag{2.15}
\end{equation*}
$$

Fon small displacements, the equations of motion car be written as

$$
\left[\begin{array}{ccc}
I_{2}^{\prime \prime} & 2 m a & 2 m b \tag{2.16}\\
2 \pi \mathrm{ma} & 2 \mathrm{~m} & 0 \\
2 m b & 0 & 2 \mathrm{~m}
\end{array}\right]\left\{\begin{array}{c}
\ddot{\theta} \\
\ddot{v}_{a} \\
\ddot{v}_{b}
\end{array}\right\}+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 k_{11} & 2 k_{12} \\
0 & 2 k_{12} & 2 k_{22}
\end{array}\right]\left\{\begin{array}{c}
\theta \\
v_{a} \\
v_{b}
\end{array}\right\}=\left\{\begin{array}{c}
T_{\theta} \\
F_{v_{a}} \\
F_{v_{b}}
\end{array}\right\}
$$

where

$$
I_{2}^{\prime \prime}=I_{2}+2 m\left(a^{2}+b^{2}\right)
$$

Eq. (2.16) is in the form of Eq. (2.12) where $X=\left(\theta v_{a} v_{b}\right)^{T}$ and $F=$ $\left(T_{\theta} F_{v_{a}} F_{V_{b}}\right)^{T}$.

The stiffness matrix [s] for the beam modelled by n masses can be obtained from the flexibility matrix [α] using the relation $[s]=[\alpha]^{-1}$. The displacements (v_{i}) in terms of the flexibility influence ${ }^{8}$ coefficients $\left(\alpha_{i j}\right)$ and the forces $\left(f_{i}\right)$ which are associated with the displacements can be written as

$$
\begin{aligned}
& v_{1}=\alpha_{11} f_{1}+\alpha_{12} f_{2}+\ldots+\alpha_{1 n} f_{n} \\
& v_{n}=c_{n 1} f_{1}+\alpha_{n 2} f_{2}+\ldots+\alpha_{n n} f_{n}
\end{aligned}
$$

In matrix form, we can write

$$
\begin{equation*}
\{v\}=[\alpha]\{£\} \tag{2.17}
\end{equation*}
$$

For the case where each beam is modelled by two masses, the stiffness matrix becomes ($b=a / 2$)

$$
[s]=\left[\begin{array}{ll}
k_{11} & k_{12} \tag{2.18}\\
k_{12} & k_{22}
\end{array}\right]=\frac{48 E I}{7 a^{3}}\left[\begin{array}{cc}
2 & -5 \\
-5 & 16
\end{array}\right]
$$

2.2 Equations of Motion - Gravitational Effects

2.2.1. Each beam modelled by an end mass

The configuation of the system with main body and two flexible beans atiached to the main body is shown in Fig. 2.3. Fiere, each beam is modelled by an end mass and the elastic motion is assumed to result only from antisymmetric benaing ($v_{1}=v_{2}=v$. The kinetic energy of the system can be writien :

$$
\begin{align*}
T= & \frac{I}{2}\left(I_{2}+2 m a a^{2}\right) \dot{\theta}^{2}+m\left[\dot{v}^{2}+v^{2} \dot{\theta}^{2}+2 \dot{\theta} \dot{\mathrm{v}}\right] \\
& + \text { const. due to circular orbital motion } \tag{2.19}
\end{align*}
$$

The elastic strain energy is represented by

$$
\begin{equation*}
\mathrm{U}=\mathrm{kv} \mathrm{v}^{2} \tag{2.20}
\end{equation*}
$$

The potential energy due to gnavity forces is expressed as

$$
\begin{equation*}
V=V_{0}-\mu m\left(\frac{1}{\left|\overline{r_{1}}\right|}+\frac{1}{\left|\bar{r}_{2}\right|}\right) \text {; where } \mu=G M_{\text {earth }} \tag{2.21}
\end{equation*}
$$

where the potential aue to the main body ${ }^{9}$ is

$$
V_{0}=-\frac{3}{4} \omega_{0}^{2}\left(I_{1}-I_{3}\right) \cos 2 \theta
$$

and the radial distances of m_{1} and m_{2} from the center of the earth are

$$
\begin{aligned}
& \left|\bar{r}_{1}\right|=\left[r_{0}^{2}+a^{2}-2 r_{0} a \cos \{\pi-(\theta+v / a)\}\right]^{\frac{1}{2}} \\
& \left|\bar{r}_{2}\right|=\left[r_{0}^{2}+a^{2}-2 r_{0} a \cos (\theta+v / a)\right]^{\frac{1}{2}}
\end{aligned}
$$

By use of the binomial theorem and neglecting terms of order $\left(1 / r_{0}\right)^{3}$ and higher, one can develop for the gravitational potential, V, the expression

$$
\begin{align*}
V= & -\frac{3}{4} \omega_{0}^{2}\left(I_{I}-I_{3}\right) \cos 2 \theta-\mu \frac{2 m}{r_{0}} \\
& -\omega_{0}^{2} \frac{m a^{2}}{2^{2}}\{1+3 \cos 2(\theta+v / a)\} \tag{2.22}
\end{align*}
$$

Lagrange's equations of motion can be obtained and then linearized as

$$
\left[\begin{array}{cc}
I_{2}^{\prime} & 2 m a \tag{2.23}\\
2 m a & 2 m
\end{array}\right]\left\{\begin{array}{c}
\ddot{\theta} \\
\ddot{v}
\end{array}\right\}+\left[\begin{array}{cc}
3 \omega_{0}^{2}\left(I_{1}^{\prime}-I_{3}\right) & 6 \omega_{0}^{2} m a \\
6 \omega_{0}^{2} m a & 6 \omega_{0}^{2} m+2 k
\end{array}\right]\left\{\begin{array}{l}
\theta \\
v
\end{array}\right\}=\left\{\begin{array}{l}
T_{\theta} \\
F_{v}
\end{array}\right\}
$$

where

$$
I_{1}^{\prime}=I_{I}+2 m a^{2}
$$

2.2.2 Each beam modelled by two masses

The equations of motion, with the assumptions stated for the oase where each beam is modelled by two masses ($m_{a}=m_{b}=m$), can be developed in a manner similer to that used in Section 2.2.1. Here only the final matrix form of the linemized equations is presented:

$$
\begin{align*}
& {\left[\begin{array}{ccc}
I_{2}^{\prime \prime} & 2 m a & 2 m b \\
2 m a & 2 m & 0 \\
2 m b & 0 & 2 m
\end{array}\right] \quad\left\{\begin{array}{c}
\ddot{\theta} \\
\ddot{v_{a}} \\
\ddot{a} \\
v_{b}
\end{array}\right\}} \\
& +\left[\begin{array}{ccc}
3 \omega_{0}{ }^{2}\left(I_{1}{ }^{\prime \prime}-I_{3}\right) & 6 \omega_{0}{ }^{2} m a & 6 \omega_{0}{ }^{2} m b \\
6 \omega_{0}{ }^{2} m a & 6 \omega_{0}{ }^{2} m^{2 k k_{11}} & 2 k_{12} \\
6 \omega_{0}{ }^{2} m b & 2 k_{12} & 6 \omega_{0}{ }^{2} m+2 k_{22}
\end{array}\right]\left\{\begin{array}{c}
\theta \\
v_{a} \\
v_{b}
\end{array}\right\}=\left\{\begin{array}{c}
T_{\theta} \\
F_{v_{a}} \\
F_{v_{b}}
\end{array}\right\} \tag{2.24}
\end{align*}
$$

where

$$
I_{1}^{\prime \prime}=I_{1}+2 m\left(a^{2}+b^{2}\right)
$$

3. THREE-MASS SYSTEM

3.1 Equations of Motion-Local Ventical

The long beam modelled by three masses as illustrated in Fig. 3-1 consists of two end masses ($m_{1}=m_{2}=m$) and an interior (point) mass, m_{0}. The system centen of mass is assumed to move in a circular onbit and the system is constrained to move in the oribital plane. The equations of motion are derived using the Lagrangian formulation." The genenalized coordinates ϕ_{1} and ϕ_{2} represent the relative mgulaw motions of both end masses reletive to the undeflected onientation of the beam.

3.1.1 Expression for kinetic energy

The total kinetic energy of the syster can be written as

$$
\begin{equation*}
T=T_{n}+T_{t}+T_{C} \tag{3-1}
\end{equation*}
$$

The rotational and orbital energies are

$$
\begin{equation*}
T_{T}=0 ; T_{c}=\frac{1}{2} \stackrel{M}{M} R_{0}^{2} \tag{3.2}
\end{equation*}
$$

and the translational energy is obtained as ${ }^{6,7}$

$$
\begin{equation*}
T_{t}=\frac{I}{2} m \Sigma\left(\bar{V}_{i} \cdot \bar{V}_{i}\right)-\frac{m^{2}}{2 \bar{M}}\left(\Sigma \bar{V}_{i} \cdot \Sigma \bar{V}_{i}\right) \tag{3.3}
\end{equation*}
$$

where $\bar{M}=2 m+m_{0}, \omega_{0}=$ onbital angulan velocity and $R=$ orbital radius

The velocities $\overline{\mathrm{V}}_{1}$ and $\overline{\mathrm{V}}_{2}$ can be obtained from Eq. (2.4) as (Fig. 3-1)

$$
\begin{align*}
& \bar{V}_{1}=\omega_{y_{1}} \hat{j} \times\left(\xi_{1} \hat{i}+\zeta_{1} \hat{k}\right) \\
& =\omega_{y_{1}} \hat{j} \times\left(\alpha_{1} \sin \dot{\varphi}_{1} \hat{i}+\ell_{1} \cos \phi_{1} \hat{k}\right) \tag{3,4}
\end{align*}
$$

$$
\begin{align*}
\bar{v}_{2} & =\omega_{y_{2}} \hat{j} \times\left(-\xi_{2} \hat{i}-\zeta_{2} \hat{k}\right) \\
& =\omega_{y_{2}} \hat{j} \times\left(-l_{2} \sin \phi_{2} \hat{i}-l_{2} \cos \phi_{2} \hat{k}\right) \tag{3.5}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{\mathrm{y}_{1}}=\omega_{0}+\dot{\phi}_{1} ; \omega_{\mathrm{y}_{2}}=\omega_{0}+\dot{\phi}_{2} \tag{3.6}
\end{equation*}
$$

By substitution of Eqs. (3.2) - (3.6) in Eq. (3.1), we find that

$$
\begin{align*}
T= & \frac{1}{2} M^{*}\left[\left[\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \sin \phi_{1}+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \sin \phi_{2}\right\}^{2}\right. \\
& +\left\{\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \cos \phi_{1}+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \cos \phi_{2}\right\}^{2} \\
& \left.+\bar{m}_{0}\left\{\left(\omega_{0}+\dot{\phi}_{1}\right)^{2} \ell_{1}^{2}+\left(\omega_{0}+\dot{\phi}_{2}\right)^{2} \ell_{2}^{2}\right\}\right] \\
& +\bar{M} R^{2} \omega_{0}^{2} / 2 \tag{3.7}
\end{align*}
$$

where $M=m^{2} / \bar{M}$, the system reduced mass, and $\bar{m}_{0}=m_{0} / m$. It should be noted that the last term in Eq. (3.7) is a constant for the case of a oirculen orbit and does not affect the equations of motion.

3.1.2 Expression for potential energy

The potential enengy V of the system in an inverse square force field is given by

$$
\begin{equation*}
V=-\mu\left\{\frac{m}{\left|\overline{r_{1}}\right|} \div \frac{m}{\left|\bar{r}_{2}\right|}+\frac{m_{0}}{\left|\bar{r}_{0}\right|}\right\} \tag{3.8}
\end{equation*}
$$

where $\mu=G M$ is the earmis gravitational constant, and $\left|\bar{r}_{i}\right|$ is the distence of m_{1} from the center of the sphemical earth. Then $\left|\bar{n}_{i}\right|$ mey be expressed, in terms of $R=|\vec{R}|$ and the coordinates of m_{i} in the local vertical system with origin at the center of the beam, as

$$
\begin{equation*}
\left|\bar{r}_{1}\right|=\left[\left(R \div \zeta_{1}+\zeta_{\mathrm{cm}}\right)^{2}+\left(\xi_{2}+\xi_{\mathrm{cm}}\right)^{2}\right]^{\frac{1}{2}} \tag{3.9}
\end{equation*}
$$

$$
\begin{align*}
& \left|\vec{r}_{2}\right|=\left[\left(R-\zeta_{2}+\zeta_{\mathrm{cm}}\right)^{2}+\left(-\xi_{2}+\xi_{\mathrm{cm}}\right)^{2}\right]^{\frac{1}{2}} \tag{3.10}\\
& \left|\vec{r}_{0}\right|=\left[\left(R+\zeta_{\mathrm{cm}}\right)^{2}+\xi_{\mathrm{cm}}^{2}\right]^{\frac{r_{2}}{2}} \tag{3.11}
\end{align*}
$$

where the coordinates of the system center of mass measured with respect to point, m_{0}, on the beam are given by

$$
\begin{equation*}
\xi_{\mathrm{cm}}=-\mathrm{m}\left(\xi_{I}-\xi_{2}\right) / \bar{M} ; \zeta_{\mathrm{cm}}=-\mathrm{m}\left(\zeta_{1}-\zeta_{2}\right) / \bar{M} \tag{3.12}
\end{equation*}
$$

The expression for V, after omitting the terms of onder $1 / R^{3}$ and highen in the binomial expansion of $1 /\left|\vec{r}_{i}\right|$, becomes

$$
\begin{align*}
V= & -\omega_{0}^{2} M *\left[\left\{\left(\ell_{1} \cos \phi_{1}+\ell_{2} \cos \phi_{2}\right)^{2}-\frac{1}{2}\left(\ell_{1} \sin \phi_{1}+\ell_{2} \sin \phi_{2}\right)^{2}\right\}\right. \\
& \left.+\bar{m}_{0}\left\{\left(l_{1}^{2} \cos ^{2} \phi_{1}+\ell_{2}^{2} \cos ^{2} \phi_{2}\right)-\frac{1}{2}\left(\ell_{1}^{2} \sin ^{2} \phi_{1}+\ell_{2}^{2} \sin ^{2} \phi_{2}\right)\right\}\right] \tag{3.13}
\end{align*}
$$

3.1.3 Expression for elastic energy

The elastic energy ${ }^{10}$ is obtained by assuming that the end masses move as cantilevens with respect to the reference point, m_{0}, on the beam (Fig. 3.2). Thus the elastic energy in terms of elastic defomations ξ_{1} and ξ_{2} is expressed as

$$
\begin{align*}
U & =\frac{1}{2}\left[k_{1} \xi_{1}^{2}+k_{2} \xi_{2}^{2}\right] \\
& =\frac{I}{2}\left[k_{1} \ell_{1}^{2} \sin ^{2} \phi_{1}+k_{2} \ell_{2}^{2} \sin ^{2} \phi_{2}\right] \tag{3.14}
\end{align*}
$$

Fon the laten approximate modelling of the elastic deflections of a freefree beam it will be convenient to assume that $\lambda_{1}=\ell_{2}=\ell$ such that m_{0} and the system center of mass will be coincident when $\phi_{1}=\phi_{2}=0$ (see Fig. 3.2).
3.1.4 Lagrange's equations of motion

The general equations of motion are developed using the lagrangian formulation for the variables $\phi_{i}, 1=1,2$. The Lagrange's equations are

$$
\begin{equation*}
\frac{d}{\partial t}\left(\frac{\partial T}{\partial \phi_{i}}\right)-\frac{\partial T}{\partial \phi_{i}}+\frac{\partial V}{\partial \phi_{i}}+\frac{\partial U}{\partial \phi_{i}}=\Gamma_{\phi_{i}} \tag{3.15}
\end{equation*}
$$

The equations of motion are obtained, using Eqs. (3.7), (3.13) and (3.14) in Eq. (3.15), as

$$
\begin{align*}
& M *\left[\ddot{\phi}_{1} \ell_{1} \sin \phi_{1}+\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \cos \phi_{1} \dot{\phi}_{1}+\ddot{\phi}_{2} \ell_{2} \sin \dot{\varphi}_{2}\right. \\
& \left.+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \cos \phi_{2} \dot{\phi}_{2}\right\} \ell_{1} \sin \phi_{1} \\
& +\left\{\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \sin \phi_{1}+\left(\omega_{0}+\dot{\phi}_{2}\right){\phi_{2}}_{2} \sin \phi_{2}\right\} \ell_{1} \cos \dot{\phi}_{1} \dot{\phi}_{1} \\
& +\left\{\ddot{\phi}_{1} \ell_{I} \cos \phi_{1}-\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \sin \phi_{1} \dot{\phi}_{1}+\ddot{\phi}_{2} \ell_{2} \cos \phi_{2}\right. \\
& \left.-\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \sin \phi_{2} \dot{\phi}_{2}\right\} \ell_{1} \cos \phi_{1} \\
& \left.-\left\{\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \cos \phi_{1}+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \cos \phi_{2}\right\} \ell_{1} \sin \phi_{1} \dot{\phi}_{1}\right\} \\
& \left.+\frac{m_{0}}{m}\left[\ddot{\phi}_{1} e_{1}^{2}\right\}\right] \\
& -M *\left[\left\{\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \sin \phi_{1}+\left(\omega_{0} \dot{\dot{\phi}_{2}}\right) \ell_{2} \sin \phi_{2}\right\} \ell_{1} \cos \phi_{1}\left(\omega_{0}+\dot{\phi}_{1}\right)\right. \\
& \left.-\left\{\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \cos \phi_{1}+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \cos \phi_{2}\right\} \ell_{1} \sin \phi_{1}\left(\omega_{0}+\dot{\phi}_{1}\right)\right] \\
& +2 \omega_{0}^{2} M^{*}\left[\left[\ell_{1} \cos \phi_{1}+\ell_{2} \cos \phi_{2}\right\} \ell_{1} \sin \phi_{1}\right. \\
& +\frac{1}{2}\left[\ell_{1} \sin \phi_{I}+\ell_{2} \sin \phi_{2}\right\} \ell_{I} \cos \phi_{1} \\
& \left.+\frac{m_{0}}{m}\left(\frac{3}{2}\right) l_{1}{ }^{2} \sin _{1} \cos \phi_{1}\right] \\
& +k_{1} \ell_{1}{ }^{2} \sin \phi_{1} \cos \phi_{1}=T_{\phi_{1}} \tag{3.16}
\end{align*}
$$

$$
\begin{align*}
& M *\left[\ddot{\phi}_{1} l_{1} \sin \phi_{1}+\left(\omega_{0}+\dot{\dot{\phi}}_{1}\right) \ell_{1} \cos \dot{\phi}_{1} \dot{\phi}_{1}+\ddot{\phi}_{2} \ell_{2} \sin \phi_{2}\right. \\
& \left.+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \cos \phi_{2} \dot{\phi}_{2}\right\} \ell_{2} \sin \phi_{2} \\
& +\left\{\left(\omega_{0}+\dot{\dot{\phi}}_{1}\right) \ell_{1} \sin \phi_{1}+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \sin \dot{\phi}_{2}\right\} \ell_{2} \cos \phi_{2} \dot{\phi}_{2} \\
& +\left\{\ddot{\phi}_{1} \ell_{1} \cos \phi_{1}-\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \sin \phi_{1} \dot{\phi}_{1}+\ddot{\phi}_{2} \ell_{2} \cos \phi_{2}\right. \\
& \left.-\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \sin \phi_{2} \dot{\phi}_{2}\right\} \ell_{2} \cos \phi_{2} \\
& -\left\{\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \cos \phi_{1}+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \cos \phi_{2}\right\} \ell_{2} \sin \phi_{2} \dot{\phi}_{2} \\
& \left.+\frac{m_{0}}{m}\left\{\ddot{\phi}_{2} e_{2}{ }^{2}\right\}\right] \\
& -M^{*}\left[\left[\left(\omega_{0}+\dot{\phi}_{1}\right) \ell_{1} \sin \phi_{1}+\left(\omega_{0}+\dot{\phi}_{2}\right) \ell_{2} \sin \phi_{2}\right\} \ell_{2} \cos \phi_{2}\left(\omega_{0}+\dot{\phi}_{2}\right)\right. \\
& \left.-\left\{\left(\omega_{0}+\dot{\phi}_{I}\right) \ell_{1} \cos \phi_{1}+\left(\omega_{0}+\dot{\dot{\phi}}_{2}\right) \ell_{2} \cos \phi_{2}\right\} \ell_{2} \sin \phi_{2}\left(\omega_{0}+\dot{\phi}_{2}\right)\right] \\
& +2 \omega_{0}{ }^{2}{ }^{M *}\left[\left\{\ell_{1} \cos \phi_{1}+\ell_{2} \cos \phi_{2}\right\} \ell_{2} \sin \phi_{2}\right. \\
& +\frac{1}{2}\left\{\ell_{1} \sin \phi_{1}+\ell_{2} \sin \phi_{2}\right\} \ell_{2} \cos \phi_{2} \\
& \left.+\frac{m_{0}}{m}\left(\frac{3}{2}\right) l_{2}{ }^{2} \sin \phi_{2} \cos \phi_{2}\right] \\
& +k_{2} \ell_{2}{ }^{2} \sin \phi_{2} \cos \phi_{2}=T_{\phi_{2}} \tag{3.17}
\end{align*}
$$

3.1.5 Ifinearized equations of motion

Eqs. (3.16) and (3.17) are linearized about the local vertical for small amplitude motions such that $\sin \phi_{i} \approx \phi_{i}$ and $\cos \phi_{i} \simeq 1$. Also as indicated in section 3.1.3, we now assume, in order to model a free-free beam, $l_{1}=l_{2}=2$ and $k_{1}=k_{2}=k$.

By letting $\phi_{1}=v_{1} / l$ and $\dot{\phi}_{2}=v_{2} / l$, the Iinearized equations of motion can be represented as

$$
\left[\begin{array}{cc}
M^{*} & \left(I+\bar{m}_{0}\right) \\
M^{*} \\
M^{*} & M^{*}\left(I+\bar{m}_{0}\right)
\end{array}\right] \quad\left\{\begin{array}{c}
* \\
v_{1} \\
. \\
v_{2}
\end{array}\right\}
$$

$+\left[\begin{array}{cc}3 \omega_{0}^{2} M *\left(2+\bar{m}_{0}\right) \div k & 0 \\ 0 & 3 \omega_{0}{ }^{2} M *\left(2+m_{0}\right)+k\end{array}\right]\left\{\begin{array}{c}v_{1} \\ v_{2}\end{array}\right\} \quad=\left\{\begin{array}{c}E_{v_{1}} \\ E_{v_{2}}\end{array}\right\}$

The control forces that are assumed to act on m_{1} and m_{2} ane represented by $F_{v_{1}}$ and $F_{v_{2}}$, respectively. For the special case of a two-mass system with $m_{0}=0$, Eq. (3.18) reduces to

$$
\left[\begin{array}{cc}
\frac{m}{2} & \frac{m}{2} \\
\frac{m}{2} & \frac{m}{2}
\end{array}\right]\left\{\begin{array}{c}
\ddot{v_{1}} \\
\bullet \\
v_{2}
\end{array}\right\}+\left[\begin{array}{cc}
3 \omega_{0}{ }^{2}+k^{\prime} & 0 \\
0 & 3 \omega_{0}{ }_{m}+k
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
\vdots \\
v_{2}
\end{array}\right\}=\left\{\begin{array}{l}
F_{v_{1}} \\
F_{v_{2}}
\end{array}\right\}
$$

The charecteristic equation for this two-mass system is obtained as

$$
s^{2}+\left(3 \omega_{0}^{2} \div k / m\right)=0
$$

This equation shows that the system is forced to oscillate in an antisymmetric mode if the flexible beam is modelled only by the two end masses.

3.1.6 Stabilety analysis

The characteristic equation for the three-mass system from Eq. (3.18) is

$$
\begin{align*}
& \left(M^{*}\right)^{2}\left(2 m_{0}+m_{0}^{2}\right) s^{4} \\
+ & 2 M^{*}\left(1+m_{0}\right)\left\{3 \omega_{0}^{2} M^{*}\left(2+m_{0}\right)+k\right\} s^{2} \\
& \left\{3 \omega_{0}^{2} M^{*}\left(2+m_{0}\right)+k\right\}^{2}=0 \tag{3.19}
\end{align*}
$$

The magritudes of the two naturai frequencies, ω_{1} and ω_{2}, as a function of the centrel mass, m_{0}, with $\bar{M}=2 m+m_{0}=$ constant, as obtained by solving Eq. (3.19), is given in Table 3.1.

m_{0}	ω_{1}	ω_{2}
$\frac{1}{3} \bar{M}$	$\left[3 \omega_{0}^{2}+(3 k / \bar{M})\right]^{\frac{1}{2}}$	$\left[3\left\{3 \omega_{0}{ }^{2}+(3 \mathrm{k} / \overline{\mathrm{M}})\right\}^{1 / 2}\right.$
$\frac{1}{2} \bar{M}$	$\left[3 \omega_{0}^{2}+(2 k / \bar{M})\right]^{1 / 2}$	$\left[2\left\{3 \omega_{0}^{2}+(2 \mathrm{k} / \overline{\mathrm{M}})\right\}\right]^{\frac{1}{2}}$
$\frac{3}{5} \bar{M}$	$\left[3 \omega_{0}^{2} \div(5 k / 3 \bar{M})\right]^{\frac{1}{2}}$.	$\left[\frac{5}{3}\left[3 w_{0}^{2}+(5 k / 3 \bar{M})\right\}\right]^{1 / 2}$
$\frac{2}{3} \bar{M}$	$\left[3 \omega_{0}^{2}+(3 \mathrm{k} / 2 \overline{\mathrm{M}})\right]^{\frac{1}{2}}$	$\left[\frac{3}{2}\left\{3 \omega_{0}{ }^{2}+(3 \mathrm{k} / 2 \overline{\mathrm{M}})\right\}\right]^{\frac{1}{2}}$

Trale 3.1 Variation of ω_{1} and ω_{2} with m_{0}
The following system parameters and initial conditions are assumed for numerical study: $L=2 \ell=100 \mathrm{~m}$; orbital altitude $=463 \mathrm{~km}: 250$ nautical miles) ; EI $=7.707197 \times 10^{3} \mathrm{~N}-\mathrm{m}^{2} ; \mathrm{k}=3 E I / l^{3} ; \overline{\mathrm{M}}=1000 \mathrm{~kg} ; \mathrm{v}_{1}(\mathrm{D})=0.01 \mathrm{~m}$ and $v_{2}(0)=\dot{v}_{1}(0)=\dot{v}_{2}(0)=0$. Structural parameters ane taken for a beam made of wrought aluminum (2014 T6) and cylindricel in shape. The outer diameter of the beam is 50 nm and the thickness is 5 mm . The variation of the two natural frequencies, ω_{1} and ω_{2} with m_{0} is shown in Fig. 3.2. Also shown in the figure are the variations of ω_{1} and ω_{2} with m_{0} when $k=0$, indicated by ω_{10} and ω_{20}.

We observe that ω_{10} remains constant at $\sqrt{3} \omega_{0}$ (which is the frequency at which a rigid dumbell satellite will oscillate), but w_{20} decreases with an increase of m_{0}. For the general case, ω_{1} increases with m_{0}, but ω_{2} decreases up to a certain value of m_{0} but then increases with an increase of m_{0} :

3.2 Equations of Motion - Iocal Horizontal

3.2.1 Inearized equations of motion

In onden to develop the small amplitude equations of motion for the case where the beam is nominally aligned along the local horizontal, we begin by replacing ϕ_{i} in Eqs. (3.16) and (3.17) by ($\pi / 2+\phi_{i}$). After appropriate simplification and subsequent linearization the equations of motion may be represented in matrix form as:

$$
\begin{align*}
& {\left[\begin{array}{cc}
M_{*}\left(1+I_{0}\right) & M^{*} \\
M^{*} & M^{*}\left(1 \bar{m}_{0}\right)
\end{array}\right]\left\{\begin{array}{c}
\ddot{v_{1}} \\
\ddot{v_{2}}
\end{array}\right\}} \\
& +\left[\begin{array}{cc}
-\left\{3 \omega_{0}{ }^{2}{ }_{M *}\left(1+\bar{m}_{0}\right)-k\right\} & -3 \omega_{0}^{2}{ }^{2} * \\
-3 \omega_{0}{ }^{2} M^{M} & -\left\{3 \omega_{0}{ }^{2} M^{\left.\left(1+\bar{m}_{0}\right)-k\right\}}\right.
\end{array}\right]\left\{\begin{array}{c}
v_{1} \\
v_{2}
\end{array}\right\}=\left\{\begin{array}{c}
F_{v_{1}} \\
F_{v_{2}}
\end{array}\right\} \tag{3.20}
\end{align*}
$$

For the two-mess systen with $m_{0}=0$ Eq. (3.20) reduces to

$$
\left[\begin{array}{cc}
\frac{m}{2} & \frac{m}{2} \\
\frac{m}{2} & \frac{m}{2}
\end{array}\right]\left\{\begin{array}{c}
\ddot{v}_{1} \\
\ddot{v_{2}}
\end{array}\right\}+\left[\begin{array}{cc}
-\left(\frac{3}{2} \omega_{0}^{2} m-k\right) & -\frac{3}{2} \omega_{0}^{2} n \\
-\frac{3}{2} \omega_{0}^{2} m & -\left(\frac{3}{2} \omega_{0}^{2} m-k\right)
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right\}=\left\{\begin{array}{l}
v_{v_{1}} \\
F_{v_{2}}
\end{array}\right\}
$$

The chanacteristic equation for the two-mass system is

$$
s^{2}+(\mathrm{k} / \mathrm{m})-3 \omega_{0}^{2}=0
$$

The system behaves like a dunbell for $k>3 \omega_{0}{ }^{2} \mathrm{~m}$ and is unstable for $k \leq 3 \omega_{0}{ }^{2}$.

3.2.2 Stability analysis

The characteristic equation for the three-mass system can be developed from Eq. (3.20) as

$$
\begin{align*}
& \left(M^{*}\right)^{2}\left(2 \bar{m}_{0}+m_{0}^{2}\right) s^{4} \\
& \quad+\left[6\left(M^{*}\right)^{2} \omega_{0}^{2}-2 M^{*}\left(1+\bar{m}_{0}\right)\left[3 \omega_{0}^{2} M^{*}\left(1+m_{0}\right)-k\right\}\right] s^{2} \\
& \tag{3,21}\\
& \quad+\left[\left\{3 \omega_{0}^{2} M^{*}\left(I+m_{0}\right)-k\right\}^{2}-3 \omega_{0}^{4}\left(M^{*}\right)^{2}\right]=0
\end{align*}
$$

The variation of ω_{1} and ω_{2} with m_{0} is show in Table 3.2 with $\bar{M}=$ $2 m+m_{5}=$ constant.

n	ω_{1}	ω_{2}
$\frac{1}{3} \bar{M}$	$\left[(3 k / \bar{M})-3 \omega_{0}^{2}\right]^{\frac{1}{2}}$	$\left[3\left[(3 \mathrm{k} / \overline{\mathrm{M}})-\omega_{0}^{2}\right]^{\frac{4}{2}}\right.$
$\frac{1}{2} \bar{M}$	$\left[(2 k / m)-3 \omega_{0}^{2}\right]^{\frac{1}{2}}$	$\left[2\left\{(2 \mathrm{k} / \overline{\mathrm{M}})-1.5 \omega_{0}^{2}\right\}\right]^{\frac{1}{2}}$
$\frac{3}{5} \frac{7}{\mathrm{M}}$	$\left[(5 k / 3 \bar{M})-3 \omega_{0}{ }^{2}\right]^{\frac{1}{2}}$	$\left[\frac{5}{3}\left[(5 k / 3 \bar{M})-1.8 \omega_{0}^{2}\right\}\right]^{\frac{1}{2}}$
$\frac{2}{3} \bar{M}$	$\left[(3 k / 2 \bar{M})-3 \omega_{0}{ }^{2}\right]^{\frac{1}{2}}$	$\left.\left[\frac{3}{2}(3 \mathrm{k} / 2 \overline{\mathrm{M}})-2 \omega_{0}^{2}\right\}\right]^{\frac{1}{2}}$

Table 3.2. Variation of ω_{1} and ω_{2} with m_{D}.
The variation of the two natural frequencies, ω_{1} and ω_{2}, for the three-mass system with m_{0} is shown in Fig. 3.3. For the assumed system numerical parameters, both ω_{1} and ω_{2} deconease with an increase of m_{0}.

4. MODE CONIROL CONCEPT

A concept is presented in a recent Rookwell Intemational Report (Ref. 5) for controlling a flexible space structure by independently controlling motions of the stmuctures's rigid body and vibrational modes. The mode control concept leads to cniteria for locating actuators and algonitins for thein combined use, Develoment of the mode control concept is based on two coordinate trensformations. Discrete displacements and discrete Fonces are transfonmed to modal coondinates and distributed actuator variables, thereby completely uncoupling the system equations. In this chapter, the mode control concept is outlined briefly fon our specific application but more complete details are available in Ref. 5 .

4.1 Dynamic Equations

A flexible space structure is modelled as many rigid bodies interconnected by massless, elastic structural elements. Then small amplitude motions are described by the Iinear differential equation

$$
\begin{equation*}
M \ddot{X}+k X=f(c) \tag{4.1}
\end{equation*}
$$

where X is an $N X I$ vector of discrete coordinates measuming the angulan and trenslational displacements of each body relative to its inertially fixed rest postition, M is the real $N \mathrm{~N}$ N mass matrix, K is a reel, symmetric $N \times N$ stiffness matrix, and $f^{(c)}$ is an $N \times I$ vector of the control forces.

4.2 Eigen-Analysis

The eigenvalues (modal frequencies), $\omega_{1}, \cdots-, \omega_{N}$, and associated $N \times 1$ eigenvectors (mode shapes), $\phi^{(1)},---, \phi^{(N)}$, are obtained from the homogenous part of Eq. (4.1). The orthogonality properties of the modes provide that

$$
\begin{align*}
& \phi^{(i)^{T}} M \phi^{(j)}= \begin{cases}0 & i \neq j \\
m_{i} & i=j\end{cases} \tag{4.2}\\
& \phi^{(i)^{T}} K \phi \phi^{(j)}=\left\{\begin{array}{cc}
0 & i \neq j \\
m_{i} w_{i} & i=j
\end{array}\right. \tag{4.3}
\end{align*}
$$

where m_{i} is reiemed to as the generalized mass for mode i. Next, a coondnate transformation is performed utilizing an $N \mathrm{~N} N$ matrix, $\Phi_{\text {, }}$, constructed from the N eigenvectons

$$
\Phi=\left[\phi^{(1)}: \phi^{(2)}: \cdots \cdots \phi^{(N)}\right]
$$

A transformation is introduced by assuming that a given displacement profile may be expressed in tems of a series of the shape functions (mode shapes) multiplied by time-dependent weighting factons (model coordinates q_{i}; i.e. $X=\phi^{(1)} q_{1}+\phi^{(2)} q_{2}+\cdots+\phi^{(N)} q_{N}$, or

$$
\begin{equation*}
X=\Phi q \tag{4.4}
\end{equation*}
$$

Substitution of Eq. (4.4) into Eq. (4.1) and premutiplication by Φ^{T} produces

$$
\begin{equation*}
\Phi^{T} M \Phi \ddot{q}+\Phi^{T} K \Phi q=\Phi^{T} f^{(c)} \tag{4.5}
\end{equation*}
$$

Finally, the transformed equation of motion is obtained with the aid of the onthogonality conditions, Eqs. (4.2) and (4.3), as

$$
\begin{equation*}
\ddot{q}+\left[\omega_{i}^{2}\right] q=\left[I_{i} m_{i} \quad{ }^{T} \underline{\Phi}^{T}(c)\right. \tag{4.6}
\end{equation*}
$$

The advantages of the modal formulation are that the left-hand side of each scalar equation associated with Eq. (4.6) is uncoupled in q_{i} and criteria can be easily developed for truncation purposes. Generally, $f^{(c)}$ has low Erequency components. Thus a few low frequency modal equations can be used to predict the response of a dymamic model which has been modelled initially with a langen number of discrete coondinates.

4.3 Actuation

4.3.1 Number of actuators equal to the numben of modes

The discrete control forces, $f^{(c)}$, are transformed into generalized control forces, $\mathrm{F}^{(g)}$, by

$$
\begin{equation*}
f^{(g)}=E^{1 / m_{i}} \quad \exists \Phi^{T} f^{(c)} \tag{4.7}
\end{equation*}
$$

Independent actuation of all of the N Hodal equations can be achieved if N actuators are used in such a way so as to produce a generalized force in any given mode without forcing the other modes. Then we obtain $f^{(g)}=u$ if we let

$$
\begin{equation*}
\mathrm{P}^{(\mathrm{c})}=\mathrm{MQu} \tag{4.8}
\end{equation*}
$$

where u_{i} represent the independent actuator variables. After cubstitution of Eq. (4.8) into Eq. (4.6) one armives at

$$
\begin{equation*}
q+a_{i}^{2} \quad q q=u \tag{4.9}
\end{equation*}
$$

The mode control inplementation fon this case, where the number of independent actuatons is equal to the number of modes of the systen, is shown in Fig. 4.1.

4.3.2 Number of actuatons less than the number of modes

In most instances, independent control of all the N modes c/f a dymamio model using N actuetons is impractical since N is usum $7 y$ e. very large number. Additionally, control is often required of only a few of the lower frequency modes. For these reasons, it is necessamy to modify the foregoing procedure to establish a means of independently controlling oniy a selected small number of the system's modal coordinates.

Here an expample is illustrated taking the number of actuatons (P) as 2 and the number of modes (N) of the system as 3 such that $P<N$. [The general theory is available in Ref. 5.] The contro] force for this case can be written as

$$
f^{(c)}=\left\{\begin{array}{c}
f_{I}(c) \tag{4.10}\\
f_{2}^{(c)} \\
f_{3}^{(c)}
\end{array}\right\}=\left[\begin{array}{ll}
I & 0 \\
0 & I \\
0 & 0
\end{array}\right]\left\{\begin{array}{l}
f_{I} \\
I_{2}
\end{array}\right\} \quad=\begin{aligned}
& \text { I }
\end{aligned}
$$

where f_{1} and f_{2} represent the scalar actuaton variables. The generalized control force, Eq. (4.7), is

$$
\begin{equation*}
f^{(g)}=\left[\quad I / m_{i} \quad \exists \Phi^{T} F I\right. \tag{4.11}
\end{equation*}
$$

A transfomation of the form

$$
\begin{equation*}
\mathrm{I}=\mathrm{Tu} \tag{4.12}
\end{equation*}
$$

is required to produce independent generalized control forves.

Here T provides a transformation from discrete actuator variables to distributed actuator variables such that u_{i} produces independent actuation of the $i^{\text {th }}$ model equation. Eqs. (4.11) and (4.12) are combined to yield

$$
\begin{equation*}
\underline{E}^{(g)}=\left[^{1} / m_{i}\right] \Phi^{T} F T u \tag{4.13}
\end{equation*}
$$

Eq. (4.13) can be written, with $N=3$ and $P=2$, as

$$
\begin{align*}
& \left\{\begin{array}{c}
\mathrm{I}_{1}{ }^{(g)} \\
\mathrm{f}_{2}{ }^{(g)} \\
\mathrm{I}_{3}{ }^{(g)}
\end{array}\right\}=\left[\begin{array}{ccc}
I_{/} / m_{1} & 0 & 0 \\
0 & I / m_{2} & 0 \\
0 & 0 & I / m_{3}
\end{array}\right]\left[\begin{array}{ccc}
\phi_{11} & \phi_{21} & \phi_{31} \\
\phi_{12} & \phi_{22} & \phi_{32} \\
\phi_{13} & \phi_{23} & \phi_{33}
\end{array}\right] \mathrm{X} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}} \tag{4.14}
\end{align*}
$$

Expanding Eq. (4.14), we obtain

$$
\left\{\begin{array}{l}
f_{1}(g) \\
f_{2}(g) \\
f_{3}(g)
\end{array}\right\}=\left[\begin{array}{lll}
\frac{1}{m_{1}}\left(\phi_{12} T_{11}+\phi_{21} T_{21}\right) & \frac{1}{m_{1}}\left(\phi_{11} T_{12}+\phi_{21}\right. & \left.T_{22}\right) \\
\frac{1}{M_{2}}\left(\phi_{12} T_{11}+\phi_{22} T_{21}\right) & \frac{1}{m_{2}}\left(\phi_{12} T_{12}+\phi_{22} T_{22}\right) \\
\frac{1}{m_{3}}\left(\phi_{13} T_{11}+\phi_{23} T_{21}\right) & \frac{1}{m_{3}}\left(\phi_{13} T_{12}+\phi_{23} T_{22}\right)
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}
$$

The transfomation matrix, T, is obtained by noting that for independent control of the first two modes, we need

$$
\begin{equation*}
f_{1}^{(g)}=u_{1} ; f_{2}^{(g)}=u_{2} \tag{4.16}
\end{equation*}
$$

After a comparison of Eqs. (4.15) and (4.16) for $f_{1}{ }^{(g)}$ and $f_{2}{ }^{(g)}$, we can obtain T. Knowing T, the residual coupling coefficients, $f\left(x_{7}\right)$ and $f^{\left(r_{2}\right)}$, for the third mode can be obtained by rewriting Eq. (4.15) using Eq. (4.16) as

$$
\left\{\begin{array}{l}
f_{1}^{(g)} \tag{4.17}\\
f_{2}^{(g)} \\
f_{3}(g)
\end{array}\right\} \quad=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
f^{\left(r_{1}\right)} & f^{\left(r_{2}\right)}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}
$$

Thus, $f^{\left(r_{1}\right)}$ and $f^{\left(r_{2}\right)}$ are obtained from the last row of Eq. (4.15) after the detemmination of T.

An interesting (and useful) result of this example is that, for the general case, only modes $i=1$ to P are needed $t d$ determine T, and only $\phi^{(i)}$ and T are needed to obtain the residual coffing elements for $q_{i}\left(i=P+l_{1}, \ldots, N\right), C T h u s$, for the case whene $P<N$, jnhependent control of modes $i=1$ to P possible and the response of the modes, $N P$, depends on the residual coupling due to the P aduatons. The mode control concept described in this chapter will be applied to a tong beam in space modelled by the three-mass system with the numben of acthatons equal to on less than the nuber of modes of the system.
5. MODAL CONIROL OE THE THREE-MASS SYSTEM
5.1 Three-Mass System-Local Vertical

The modal control of the three-mass system (Fig. 3.1) is now considered. The lineanized equations of motion [Chapter 3, Eq. (3.18)] are

$$
\left[\begin{array}{ll}
a & b \tag{5.1}\\
b & a
\end{array}\right]\left\{\begin{array}{l}
\ddot{v}_{1} \\
\ddot{v}_{2}
\end{array}\right\}+\left[\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right\}=\left\{\begin{array}{l}
F_{v_{1}} \\
F_{v_{2}}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& a=M+\left(1+m_{0}\right) ; \quad b=M \\
& c=3 \omega_{0}^{2} M^{*}\left(2+m_{0}\right)+k
\end{aligned}
$$

The uncontrolled dynamics of the system is considered finst and then the mode control concept outlined in Chapten 4 is applied to obtain the controlled system response.

5.1.1 Uncontrolled motion

Using the Laplace transform method with $\mathrm{F}=\mathrm{D}$, Eq. (5.1) can be whitten as

$$
\left\{\begin{array}{c}
v_{1}(s) \\
v_{2}(s)
\end{array}\right\}=\frac{1}{\left(s^{2}+\overline{c a}\right)^{2}-(\overline{c b})^{2}}\left[\begin{array}{cc}
s^{2}+\overline{c a} & \overrightarrow{a b} \\
\overrightarrow{c b} & s^{2}+\overline{c a}
\end{array}\right]\left\{\begin{array}{l}
s v_{1}(0)+\dot{v}_{1}(0) \\
s v_{2}(0)+\dot{v}_{2}(0)
\end{array}\right\}
$$

where

$$
\bar{c}=c /\left(a^{2}-b^{2}\right)
$$

The solution to Eq. (5.2) is obtained, under the assumption that

$$
\begin{gather*}
\dot{v}_{1}(0)=\dot{v}_{2}(0)=v_{2}(0)=0, \text { but } v_{1}(0) \neq 0, \text { as } \\
v_{1}(t)=\frac{1}{2}\left[\cos \omega_{1} t+\cos \omega_{2} t\right] v_{1}(0) \tag{5.3}\\
v_{2}(t)=\frac{1}{2}\left[\cos \omega_{1} t-\cos \omega_{2} t\right] v_{1}(0) \tag{5.4}
\end{gather*}
$$

where

$$
\omega_{1}=[c /(a+b)]^{\frac{1}{2}} ; \omega_{2}=[c /(a-b)]^{\frac{1}{2}}
$$

The motion of the center of the beam, m_{0}, is obtained from Eq. (3.12), and noting that $\xi_{i}=\ell \sin \phi_{i}=v_{i i}$,

$$
\begin{equation*}
\xi_{\mathrm{cm}}=-(\mathrm{m} / \mathrm{M}) \cos \omega_{2}+v_{1}(0) ; \zeta_{\mathrm{cm}}=0 \tag{5.5}
\end{equation*}
$$

The uncontrolled motion of the system with the assumed systen parameters and initial conditions stated in Section 3.1.6 is obtained as

$$
\begin{align*}
& v_{1}(t)=5(\cos 0.023635 t+\cos 0.040937 t) \mathrm{mm} \tag{5.6}\\
& v_{2}(\overleftarrow{t})=5(\cos 0.023635 t-\cos 0.040937 t) \mathrm{mIn} \tag{5.7}\\
& \xi_{\mathrm{cm}}=-\frac{10}{3} \cos 0.040937 \mathrm{tm} \tag{5.8}
\end{align*}
$$

The time response of the beam end deflections, v_{1} and v_{2}, is shown in Fig. 5.1. When $m_{0}=0$, the derlections v_{1} and v_{2} ane the same indicating that the system behaves like a dumbell satellite. The presence of m_{0} produces the second frequency, ω_{2}, and the deflections due to ω_{2} are superimposed on v_{1} and v_{2} as seen from Eqs. (5.3) and (5.4).

5.1.2 Number of actuators equal to the number of modes

Considering the homogeneous part of Eq. (5.1), the eigen values are

$$
\begin{equation*}
\lambda_{1}=\omega_{1}^{2}=c /(a+b) ; \lambda_{2}=\omega_{2}^{2}=c /(a-b) \tag{5.9}
\end{equation*}
$$

The coondinate transfomation matrix, Φ, is determined from the eigenvectors as

$$
\dot{\sigma}^{\prime}=\left[\begin{array}{cc}
I & I \tag{5.10}\\
1 & -I
\end{array}\right]
$$

The generalized mass matrix, from Eq. (4.2), is

$$
\left[m_{i} \quad\right]=\Phi^{T} M \bar{\Phi}=\left[\begin{array}{cc}
2(a+b) & 0 \tag{5.11}\\
0 & 2(a-b)
\end{array}\right]
$$

The modal equation given by Eq. (4.9) fon this case becomes

$$
\left\{\begin{array}{l}
\ddot{q}_{I} \tag{5.12}\\
\ddot{q}_{2}
\end{array}\right\} \div\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left\{\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right\}=\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}
$$

We assume a proportional displacenent and rate feedback for u_{1} and u_{2} in the form:

$$
\begin{align*}
& u_{1}=-f_{1} q_{1}-\dot{I}_{2} \dot{q}_{1} \tag{5.13}\\
& u_{2}=-f_{3} q_{2}-f_{4} \dot{q}_{2} \tag{5.14}
\end{align*}
$$

The equation for q_{1} with control u_{1} is writien as

$$
\begin{equation*}
\ddot{q}_{1}+\bar{x}_{2} \dot{q}_{1}+\left(\lambda_{1}+f_{1}\right) q_{1}=0 \tag{5.75}
\end{equation*}
$$

The solution of Eq, (5.15) is

$$
\begin{equation*}
q_{1}(t)=e^{\frac{-f_{2}}{2}} t\left[\cos \omega_{12} t+\frac{f_{2}}{2} \frac{1}{\omega_{12}} \sin \omega_{12} t\right] q_{1}(0) \tag{5.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{12}=\left[\lambda_{1}+f_{1}-\left(\bar{f}_{2}^{2} / 4\right)\right]^{\frac{1}{2}} ; q_{1}(0)=v_{1}(0) / 2 \tag{5.17}
\end{equation*}
$$

similarly,

$$
\begin{equation*}
q_{2}(t)=e^{-\frac{f_{4}}{2} t}\left[\cos \omega_{34} t+\frac{f_{4}}{2} \frac{1}{\omega_{34}} \sin \omega_{34} t\right] q_{2}(0) \tag{5.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{34}=\left[\lambda_{2}+\mathrm{F}_{3}-\left(\mathrm{F}_{4}^{2} / 4\right)\right]^{\frac{1}{2}} ; \mathrm{q}_{2}(0)=\mathrm{v}_{1}(0) / 2 \tag{5.19}
\end{equation*}
$$

The discrete coordinates, v_{1} and v_{2}, are related to the modal coordinates, q_{1} and q_{2}, using Ens. (4.4) and (5.10),

$$
\begin{equation*}
v_{1}=q_{1}+q_{2} ; v_{2}=q_{1}-q_{2} \tag{5.20}
\end{equation*}
$$

The control forces are obtained from Eq. (4.8) as

$$
\begin{align*}
& F_{v_{1}}=\frac{-m}{2}\left[\left({ }^{\frac{F}{I} 1+\frac{I_{3}}{3}}\right) v_{1}+\left(\frac{\left.\Psi_{1}-\frac{\tilde{F}_{3}}{3}\right) v_{2}}{}\right.\right. \\
& +\left(\frac{f_{2}+f_{4}}{3}\right) \dot{v}_{1}+\left(f_{2}-\frac{f_{4}}{3}\right) \dot{v}_{2} \tag{5.21}
\end{align*}
$$

$$
\begin{align*}
& \left.+\left(\frac{f_{2-} f_{4}}{3}\right) \dot{v}_{1}+\left(\frac{\Psi_{2}+\frac{\tilde{I}_{4}}{3}}{3}\right) \dot{v}_{2}\right] \tag{5.22}
\end{align*}
$$

As a special case, when ${\underset{\underline{I}}{2}}=\tilde{I}_{4}$ and also, $\omega_{12}=\omega_{34}$, we note that $q_{1}(t)=q_{2}(t)$ nod that the displacement $v_{2}(t) \equiv 0$ and $v_{1}=2 q_{1}$ for the assumed initial conditions. This condition is achieved if $f_{3}=f_{1}+$ $\lambda_{1}-\lambda_{2}$ and $f_{2}=f_{4}$. Thus, by properly selecting the feedback control gains, it may be possible to control a portion of the beam such that it will not be subject to any deflections.

The uncontrolled motion of the system, obtained by setting $\bar{f}_{i}=0$, $i=1,2,3,4$ in Eqs. (5.16) and (5.18) and in tum in Eqs, $(5,20)$, is illustrated in Fig. 5.1. The dynamia response of the controlled system with $E_{i}=1$ is shown in Fig. 5.2. It is observed that the tip deflection amplitude, v_{1}, is reduced to 0.01 min from an initi-1 yalue of 10 nm within 12 secs. The initial control forces $F_{V_{1}}$ and $F_{v_{2}}$ are calculated to be -2.22 N and-1.1IN, respectively. The time history of the control forces is shown in Fig. 5.3. The initial amplitude of the control forces can be reduced by reducing the feedback gains. Fig. 5.4 illustrates the time response of the system with $f_{i}=0.1$, a value which is $1 / 10$ of the previously considered value For In $_{i}$. In this case, the time requined to neach a deflection mplitude of 0.01 mm from an initial value of 10 mm for the tip deflection v_{1} is about 120 secs. Thus a reduction in the control force increases the time constants of the system proportionaily, as expected fon a linear system.

5.1.3 Number of actuators less than the number of nodes

Following Section 4.3.2, we obtain the equations for q_{1} and q_{2} as

$$
\begin{align*}
& \ddot{q}_{1}+\lambda_{1} q_{1}=u_{1} \tag{5.23}\\
& q_{2}+\lambda_{2} q_{2}=\{(a+b) /(a-b)\} u_{1} \tag{5.24}
\end{align*}
$$

Eq. (5.23) an be controlled independently as in Section 5.1.2. Using $u_{1}=-f_{1} \underline{1}_{1}-f_{2} \dot{q}_{1}$, Eq, (5.24) becomes

$$
\begin{equation*}
\ddot{q}_{2}+\lambda_{2} q_{2}=-g\left(f_{1} q_{1}+f_{2} \dot{q}_{1}\right) \tag{5.25}
\end{equation*}
$$

where

$$
g=(a+b) /(a-b)
$$

(Note that as long as $m_{0}>0$, $a>b$, see Eq. (5.1).) Using Laplace transform tecmiques, the response of the mode q_{2} due to the residual coupling of the actuator P_{1} is

$$
\begin{align*}
& q_{2}(t)=q_{2}(0) \cos \omega_{2} t+\frac{g f_{2} q_{1}(0)}{\omega_{2}} \sin \omega_{2} t \\
& \therefore \frac{-g}{I_{2}}\left[A_{11} \sin \left(\omega_{2} t+\phi_{1}^{*}\right) \div A_{12} e^{\frac{-f_{2} t}{2}} \sin \left(\omega_{12} t+\phi_{2}^{*}\right)\right] \alpha_{1}(0) \tag{5.26}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{11}=\frac{1}{\omega_{2}} \sqrt{\frac{\left(f_{1}-\omega_{2}\right)^{2}+\left(1+\frac{\tilde{f}_{1}}{f_{2}}\right)^{2} \omega_{2}{ }^{2}}{\left(\frac{f_{2}^{2}}{4}+\omega_{12}{ }^{2}-\omega_{2}{ }^{2}\right)^{2}+\left(f_{2} \omega_{2}\right)^{2}}} \\
& A_{12}=\frac{1}{\omega_{12}} \sqrt{\left.\frac{f_{2}^{2}}{4}-\omega_{12}^{2}-\left(1+\frac{f_{1}}{F_{2}}\right) \frac{f_{2}}{2}+f_{1}\right\}^{2}+\omega_{12}{ }^{2}\left\{\left(I+\frac{f_{1}}{I_{2}}\right)-f_{2}\right\}^{2}}{\left.\frac{f_{2}}{4}+\omega_{12}{ }^{2}-\omega_{2}\right)^{2}+\left(f_{2} \omega_{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{1}{ }^{*}=\tan ^{-1}\left\{\frac{\left(1+\frac{f_{1}}{f_{2}}\right) \omega_{2}}{f_{1}-\omega_{2}^{2}}\right\}-\tan ^{-1}\left\{\frac{f_{2} \omega_{2}}{\frac{f_{2}^{2}}{4}+\omega_{12}^{2}-\omega_{2}^{2}}\right\} \\
& \left.\phi_{2} *=\tan ^{-1}\left\{\begin{array}{l}
\omega_{12}\left\{\left(1+\frac{f_{1}}{f_{2}}\right)-f_{2}\right\} \\
\frac{f_{2}}{4}-\omega_{12}^{2}-\left(1+\frac{f_{1}}{I_{2}}\right) \frac{f_{2}}{2}+f_{7}
\end{array}\right\}-\tan -1 \quad \frac{-f_{2} \omega_{2}}{\frac{f_{2}}{4}-\omega_{12}^{2}+\omega_{2}^{2}}\right\}
\end{aligned}
$$

For large t, $q_{-1}(t)$ is completely damped out [Eq. (5.16)] but $q_{2}(t)$ oscillates at the frequency, ω_{2} FSq. (5.26)].

The control force, $E_{V_{1}}$, is obtained as

$$
\begin{equation*}
F_{T_{1}}=-m\left[f_{1}\left(v_{1}+v_{2}\right)+f_{2}\left(\dot{v}_{1}+\dot{v}_{2}\right)\right] \tag{5.27}
\end{equation*}
$$

The time response of the systen with the number of actuatons less than the number of modes is shown in Fig. 5.5. The figure shows that the v_{2} response becomes oscillatory as time increases even though its initial value was zero. The maximum amplitude of the oscillation for v_{2} reaches value of 10 mm . It should be noted that as time increases both v_{1} and v_{2} oscillate at the same frequency - i.e. That of the (second) uncontrolled mode.

6. CONCLUDING COMMENIS

6.1 Sumary of the Conclusions

As a consequence of the present analysis and numenical results, the following conclusions can be made:

1. The equations of motion ane developed fon a lange space stmucture systen consisting of a main body with two attached flexible beams, where each bean is modelled by an end mass or by two masses, (It is assumed that the system center of mass moves in a circular orbit and the elastic displacement of the beams are anti-symmetric.) It is seen that the stiffness matrices will contain contributions due to both the elastic strain energy coefficients and also the gravitational restoning effects.
2. The three-mass systen is stable about the local vertical for smail amplitude motions but it behaves like a rigid dumbell satellite When the central mass is removed. It is also found that the two-mass system is stable about the Iocal horizontal system tif the stiffness of the bean is greater than a certain value of the nestoring effect proauced by the grevitational forces on the end messes ($k>3 \omega_{0}{ }^{2} \mathrm{~m}$).
3. Closed-form analytical solutions are obtained (the local verticel systenl for the tip displacements of the long beam which is modelled by the three masses.
4. The modal control concept is very usenul for independent control of the system's lower Erequency modes.

For the three-mass system where only two modes are pnesent, it is possible to keep one portion of the beam without any displacement by properly selecting the feedback control gains for the assumed initial conditions of the systen.
5. When the three-mass system contains only one actuator, the modal control produces a. complete control of the first mode, but the second mode is not controlled. This indicates the disadvantage of the fiode control concept when all the modes can not be completely controlled.

6.2 Reconmendations fon Future Wonk

As a result of this investigation the following topics are suggested for future work:

1. In Chapter 3, the long beam is modelled by thee discrete masses. For a better understanding of the system response, the modelling of the Beam by a greaten humben of discrete mass points should be considered.

2, The study could be extended to considen the three dimensional motion of the beam by following the approach described in this repori for planar motion.
3. Optimal control theory could be usea to obtain control laws by minimizing certain cost functionals involving the state vaniables and elenents of the control vector.
4. The mode control concept could be apolied to consider the control of a continuum model of the beam and the system response obtained from this model could be compared with the system response obtained here for the discretized model of the long beam.
5. The deformation of the beam due to extemally induced solar radiation effects should be considered both during steady-state and controlied responses.

REFERENCES

1. Outlook for Space, NASA Reporis SP-386, 387, Januery 1976.
2. Inaustry Workshop on Targe Space Structures, NASA Contractor Repont CR-2709, Contract No. NAS-1- 12436, for NASA - Langley Research Center, May 1976.
3. Proceedings of the ATAA Symposium on Dynamics and Control of Lenge Flexible Spacecraft, June 13-15, 1977, Vinginia Polytechnic Institute and State University, Blasksbung, Virginia, Edited by L. Meirovitch.
4. Meirovitch, L. and Nelson, H.D., "On the High-Spin Motion of a Satellite containing Elastic Parts;" J. Spacecraft and Rockets; Vol. 3, No. 11, November 1966, pp. 1597-1602.
5. Advanced Tech. Lab. Program for Large Space Structiones, Rockwell Internetional SD-76-SA-0210, Noveriber 1976, Appendix B, Modal Control of Flexible Spaceonaft.
6. Haseltine, W.R., "Nutation Damping Rates fon a Spinning Satellite," Aerospace Fngineering, Vol. 21, No. 3, March 1962, Pp. 10-17.
7. Bainum, P.M. and Sellappan, R., "The Dynamics of Spin Stabilized Spacecreft with Movable Appendages," Part II, Final Report, NASA Grant MSG-1181, Dept. of Mechanical Engineering, Howerd Univensity, Washinton, D.C., May 1976.
8. Hurty, R.C. and Rubinstein, M.F., Dymamics of Structures, PrenticeFiall Inc., 1964.
9. Rainum, P.M., "On the Motion and Stability of a Multiple Connected Gravity-Gradient Satellite with Passive Damping," Ph.D. dissertation, Catholic University, Washington, D.C. a. 1966; also the Uohns Hopkins Univensity- Applied Physics Laboratory Technical Report TG-872, January 1967.
10. Meirovitch, I., Analytical Methods in Visnations, The Macmillen Co., New Yonk, 1967, pp. 263-270.

Fig. 2.1. System configuration with main body and each bean modelled by an end mass.

Fig. 2.2. System configuration with main body and each beam modelled by two masses.

Fig. 2.3. Effect of gravitational forces on the system with main bocy and each beam modelled by an end mass.

Fig, 3.1. Three-mass system configuration

FIRST MODE

Fig. 3.2. Possible approximation of a free-free beam by three discrete particles (first two modes shown).

Fig. 3.3. Variation of ω_{1} and ω_{2} with m_{0} (local vertical system).

Fig. 3.4. Variation of ω_{1} and ω_{2} with mo (local homizontel system).

Fig. 4.I. Mode control implementation.

Fig. 5.1. Uncontrolled motion of the system ($f_{i}=0$).

Fig. 5.2. Dynamic response of the system with the numben of actuators equel to the number of modes ($f_{i}=1$)

Fig. 5.3. Time history of the control forces with the number of actuators equal to the number of modes $\left(\bar{I}_{i}=1\right)$

Fig. 5.4. Dynamic response of the system with the numier of actuatons equal to the numben of modes ($f_{i}=0.1$).

$$
v_{1}(t)=q_{1}(t)+q_{2}(t)
$$

Force
(iv)

Fig. 5.5. Time response of the system with the number of actuators Iess than the number of nodes $\left(f_{i}=1\right)$

```
1/28/78 10:50:5
!JOB [READ IN AT 10:49:55] SELLAPPAN
IFORT/A/B/E/P/SFORT.LS/L
ILISTING
C....t<m-=-**-**-m---0--m FORTRAN STATEMENT
    C MODAL CONTROL
        EXTERNAL RGS01,RGS02
        DIMENSION PARM(5),X(4),DX(4),SIZE(4):WORK(8,4)
        COMMON F1,F2,F3,F4,G
        CALL INOUT (2,5)
        CALL OPEN (1,'SELLAPPAN', 3,IER)
        IF(IER.NE.1) STOP UNABLE TO OPEN FILE
        READ(2,91) TMAX,STEP,TOL
        READ(2,91) X
        READ(2,91) SIZE
        READ(2,91) F1,F2,F3,F4,G
        71 FORMAT( BF10.0)
        PARM(1)=0.0
        PARM(Z)=TMAX
        PARM(3)=STEP
        N=4
        WRITE(5.92) TMAX,STEP,TOL
        92 FORMAT( '1TMAX=',FB.2,10X,'STEP=*,FB.4,10X,'TOL=',F8.6)
        EALL RKSCL(N,SIZE,DX,TOL,PARM)
        CALL RKGS(PARM,X,DX;N,IHLF,RGSO1,RGSO2,WORK)
        WRITE(5.99)IHLF
        99 FORMAT('OTHLF=',I3)
        CALL EXIT
        END
    COMPILATION SUCCESSFILL -- OBJECT CODE IN FILE NAMED 001.RR
    IFORT/A/B/E/P/S FORT.LS/L
    !LISTING
```


COMDILATION SUCCESSFUL - OBJECT CODE IN FILE NAMED $002 . P B$
FFORT/A/B/E/P/S FORT.LS/L
ILISTING

COMPILATION SUCCESSFUL - OBJEET CODE IA FILE NAMED 003.RB
IRLDR TMP/S SYS/E 001 DO2 003 DP0:SSP.LB FORT.LB
ILOADED
IDELETE/V SELLAPPAN
DELETED SELLAPPAM
ICREATE SELLAPOAN
IEXEC

