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ABSTRACT

1F Attitude control techniques for the pointing and stabilization

i ; of very large, inherently flexible spacecraft systems are investigated.

The attitude dynamics and control of a long, homogeneous flexible beam

_ whose center of mass is assumed to ,follow `a eiecular orbit is analyzed.

In this study, first order effects of gravity-gradient  are included, whereas

externaa perturbations and related orbital station keeping maneuvers are
^j

i neglected.	 A mathematical model which describes the system rotations

and deflections within the orbital plane has been developed by treating
all

as a number of discretized mass	 connected by massless,ih .beam	 particles

elastic s^ic`^^ elements. 	 The uncontrolled dynamics of this s7; s gem

+f are simulated and, in adaiEzo , the effects of the control devices are

considered. The concept of distributed r^adal. co*?tr+ol, which provides a

means for controlling a system mode independently . of all other ill:.-les,. is _.M

examined.	 The effect of varying -the number of modes in the model as well

,. as the number and . location. of the control devices are also considered.
y
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.	 'NONWCLATLM

a	 = location of mass ma (or ml) from the origin piait

of the main body

b	 = location of mass mb from the origin point of the

main body

EX	 = bending stiffness of uniform beam

F	 = control vector (includes torques and forces)

f	 scalar actuator variables; also, feedback control

gains

f(c)	 = control force vector acting on the discrete mass system

f(ri)	 residual coupling coeffi_cent .
	 i

1 1 j 2 ,13	 = principal maments of inertia of the maim body

K	 = stiffness matrix of the systezi

L	 - length of the beam (L = 22)

M	 = Mass I trix of the systeM

III	 = mass of the main. body

M	 = mass of the end mass

m^	 = generalized mass for mode i; also refers to end masses

mfl	 = mass of the interior mass located in between mi and m2..

N	 = nuirber of modes

F	 = number of actuators

q	 = modal coordinates

R	 = radius of the orbit

ri	 = radius vector from center of earth to mass, mi

T	 = kinetic energy of the system; also contw of transformation
mattrix which provides transformation from discrete actuator
variables to distributed actuator variables (f.= TO
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I
I

To orbital energy of the system

Tr rotationalrotationalenergy of the system

Tt translation energy of the system

Tb torque acting on the main body

U elastic energy of the system

U. independent distributed actuator variables

V potential energy due to gravity forces

V1 
'V	 =

2 deflections of the end masses (m^'	 M2	 M)

Va-IVb	
= deflection of masses,ma z,: .vid m., respectively

X	 = state vector of the system (discrete coordinates)

x 	 = local vertical coordinates in the orbitplane U 	 along

the local Vertical with the origin at the system center

of mass)

pitch angle of the main body

W1 2 "" Wn eigen Va1UeS(TfK)(JXal freqUencieS)

W orbital angilar velocity

(1)	 (N) eigen, vectors (mode shams)

0 coordinate transformation matrix which provides .trans-

formation -Lrcn discrete coordinates to =dal cocr--dinates-

^1 1 ^2 relative angular motions of both end masses rely.Uve

to the undeflected configuration of the bean

coordinate system with origin at the interior poazit of the

beam, 3n, (parallel to the x, z axes)

Vi
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I 1.	 INTRODUCTION

i
In the recently completed "Outlook for Space Study"1 a number	 ?

i of proposed new space missions were shown to require large-scale,

}	 . liEht weight space structures.	 Three representative proposed future 	 j

V
missions utilizing such systems are:

' (1) ocean data systems involving a 100 m. wide structure

for the -purpose of collecting data on the state of the 	 s

oceans, pollution (both in the atmosphere and the oceans),

^ and salinity.

(2) electronic mail systems re z tL ing a 50 m. diameter antenna-

receiver system to be placed in a synchronous equatorial
jl

^ orbit.

(3) a space-based solar power collector system, also operating

in a synchronous equatorial orbit where the arrays for

collecting the incident solar energy would have the dimensions

E

a

on the order of kilometers.

It is evident that a complete new technology must be considered and

developed so that these structures can be delivered into orbit (using 	 j

the Shuttle Transportation System), deployed, and then AL11y assembled

in a space environment.	 Because of their inherent size, the testing

of such systeLs an a ground environment is not practical.	 lbdeling

techniques and scaling algor:,' 	 -;s must be developed so that the perfoxrance

o .these± s,-y a-T -can L-e accurately predicted prior to - launch and assembly._.

yti

n^	

s

1.k
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In many circumstances, it will be necessary to control the shapes

of the antenna or collector surfaces to within centimeters or even
s.

milli eters by using a variety of sensor-actuator systems to be positioned

k throughout the flexible members.1

To address some of these unprecedented problems a special IndusPre	 p	 P	 try

Workshop on Large Space Structures 2 was held at NASA Langley Research

Center in Feb. 1976.	 Among the principal conclusions . was that technology

- development is most critically needed in: 	 the definition of large space
t

structural confi	 ations • improved model'	 and seal'	 techniques; and
'	 pro 	

^	 ^	
q

' the interaction between the control system and structural dynamic responses.

xs It was also stated that some of these development techniques would utilize

inwroved computerized analytical models. 	 Concern was also expressed over.

possible resonant interactions between some of the flexible structural

Xk;

-
modes (with frequencies greatly reduced as compared with more conventional

structures) and the frequencies associated with the attitude control

systems., Analytic areas requiring modal development also include the

4.
precision determi nattion of : graua ty-gradient forces and moments acting on

such tar ge structures .2
z-

The AIAA Symposium. on Dynamics and Control of Large Flexible Space-

craft3 held at Virginia Polytechnic Institute and State University,

June 1977 provided a review of the state of the art in this area. 	 It

reflected the tremendous;. strides made in nrxdeling and analysis of space-

craft in the last two decades. 	 Yet the next two decades are Likely to	 j^	 y

place a severe strain on the cu-rent 'state of the art if some of the
t,

`advanced concepts,is	 such as solar Popper sateL tes or s^'P	 a	 Pace colonies, are

to be convevted into rea' i` y .

t _

2



In this ragard, this symaosium raised as many questions as it answered
x

f
and, in the process, it pointed to areas of future research.

r It was stated in Ref. 2 (Page 12) that to assure the availability

of the large space structures technology to support fixture missions

a comprehensive research and. development program. must be defined.

Three	 the	 a programof	 objectives of such	 are:2x

(1) development of active surface control techniques and

systems which can measure and correct surface deformations

to within millimeters of accuracy.

.(2) development of attitude control techniques for the

X, painting and stabilization of very large, inherently
f.

flexible space structures.

(3) develo	 t of analysis and simulation techniques whichAmen	 y	 q

" can extend subscale. ground test experience to high-confidence

predictions of full-scale performance in the space environment.

The present study represents a preliminary contribution to the accompli sIu.n;--nt

of the second stated objective.

n'-	 aim-	 e development	 raticalIn this repo_ t, Chapter 2 deals with th 	 pment of a maLber

model which describes the rotation and def-ection of a longs,hn,_flexible

beam. in the 'orbital plane. 	 It is assmued that the beam is represented

discretized	 -theby a main body and a series of 	 particles and	 rmdel pre--

vously developed by Meirovitch and Nelson is used as a starting point

This model is extended to include first order, effects of gravity-gradi ent

torques.

f

i

I
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The discrete models are developed under the assumptions, first, that

the beam is represented by a massless rod connected by two end masses,,

and, secondly, that the bean is represented by four discrete particles,

two at the . ends and two located at points taken half-way between the

canter of the undeflected beam and the end points. The equations are

developed and linearized for the cases of small amplitude rotations and

deflections. These equations are then cast in the proper form for the

application of the mode control concept (Chapter 4) as expounded in a

recent contract report by Rockwell International.

A moregeneral case of a flexible beam system using Three discretized

masses without a central body is considered in Chapter 3. The nonlinear

equations of motion are developed using the Lagrangian formulation. These

equations are then linearized assuming smal l amplitude deformations about

two equilibriun positions	 (1) aligmim-it along the local vertical and

(2) alignment along the local horizontal or orbit - tangent. Stability

conditions for system motion taken about these equilibrium positions	
ry

are obtained.

The mode control concept for controlling a spacecraft by rode-'

pendently controlling motions of the rigid body and the vibrational modes is

presented in Chapter 4. Development of the mode control concept is based

on two coordinate transformations.

In Chapter 5, the mode control concept described in Chapter 4 is

applied to the linearized equations developed in Chapter 3 fox, -the three-

mass system. The uncontrolled dynamics, as well as thewdyna-nics of the

T.	 -7



.r

system with two actuators (equal to the number of vibrational modes),

or one actuator, are sin-ilated numerically using closed form expressions.

The concluding comments from this study and suggestions for future

sized inirk are	 Chapter S.

-:1
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2 .	 MAIN BODY WITH TWO r"=-,YT _ .r 'BEAMS	 j
E

a 2.1 Equations of Motion--Torque Free System

2,.1:1 Each beam .modelled by an end mass

The configuration of the system considered ;.5 shown in Fig. 2.1.
-	 i

y	 •iThe system center of mass. ^-;, assumed to move in a circulate orbit and

the system is constrained to move in the orbital plane. 	 Thesystem

consists. of a.m zr -body (Mc) with two beams attached to. the main body.

Each beam, modelled by an end mass (jili) , is attached to the main body

.+ as shoran in Fig. 2.1.. The equations of motion for the system will be

derived by use of the L.&mrangzaa formulation.	 One generalized coordinate

x of the system will be the angle 8 which represents the rigid. body pitch

angle.	 The other, generalized coordinates. will be the deflections vl

and v2 of the end masses, 1hl and m2 ; respectively i . nelative to the

undeformed (but rotated.) body z axis.

Me total kinetic energy of the system, in terns of. the -rota tonal..

and translational energies, is

' T = Tr + Tt + const. due to circular orbital motion .	 (2.1).

`die rotational kinetic energy of the main body is

Tr	 = 2 I2

and the translational energy, due to the end masses 	 can be -Witten as 6, 7.,
2

Pr 2L	 2F

a
where

yi =
i ^	 ri	 (2y!^}

M-^I0^2m W

i14 A i" no,
-,^,''^II^
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^ The coordinates of the two masses 	 and	 with respect to point^	
2	

P	 ^

. 0 (Fig. 2.1) are given in terns of the position vectors,

r1 - vlj + a k;	 (2.6)	
a

F2=..v2j.-ak	 (2.7)

After substitution of Eqs. (2.2) -- (2.7) into Eq. (2.1), the resulting 	 ?

expression for the kinetic energy is
- 3

j T - 2	 12 1 Q

^. 3 + 2	 v12+ v2 2 +(v12	v	 + 29 a(22) 92 vl 	v2}]

- 2''	 Cv	 -- v2 ) 2 	 2	 2--	 $
l 
	 + const.	 (2.8)+ (Vi	 v2}

where

r - 2	 2T2 +2ma	 and 	 m/NI

r'

a Initially the effect of gravity-gradient forces will be neglected so that

the potential energy consists of the elastic energy, plus a constant dale
y

to the assumed circular orbital motion of the mass center.

V = U + const. = 7
	

(v
12 	 v22 ) + const.	 (2.9)

where k is the stiffness of each beam (k = 3EI /a3 } .

` The Lagrangian equations of motion, for the system have the form

(d/dt) M/6gi) - (@L/agi) = 0	 (2.10)

where q, assumes the values; 	 9, v , and ,v	 The Langrangian hasz	 1	 2

the form

L	 T -- V = T •- U + coast..

t where T is the kinetic energy and U is the elastic potential energy of

r

' the. system.

7	
'



Considering only the linear terms, the equations of motion; can be
;I

represented in matr3x-farm as

ma	 ma	 9	 0	 0	 0	 B

ma	 m,m., 	m vi 0	 k	 0 vl	 _ ^ 0^	 (2.11)

ma	 1W. 	 m-ma v2 0	 0	 k v2

If the control forces (including the control torques also) acting on the
.i

system are represented by, F, then Eq. (2.11) is reduces: to the standard
i

r	
i

f form

M X.+ K X= F	 (2.12)

J For the special case, when the deflections of the end masses are asauned

to be antisymmetric 	
(v
l = v2 - v) a Egs. (2.11) and (2.12) reduce to the

following equation:

1'2
	 2rma	 9	 0	 .0	 .9	 Te

..	 r	
(2.13)

Ira	 2m -	 - - - v	 0	 2k	 v_	 _

7

2.1.2 Each beam modelled by two masses

The matherratical model for the system considered now consists of

a rn,-in body and two- flexible beams which are attached to the mailt body.

Each beam is modelled by. two masses as shown in Fig. 2.2. 	 For siptiluity,

it is assumed also that the elastic motion of the bea-Ts is antisymmetric,

that is va = va ' and vb = fib ' .

'	
1
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_ With these restrictions, the kinetic energy expression takes the form

T ^ 2.,.= 	 g 2 + m	 [(Va + ga.) 2 + L2 (va2 tvb2 } + fvb+gb )2]

+ coast.	 (2.14)

' The elastic strain energy is

U _ kllva2 + 2 12v	 b + k22vb2
	

(2.15)

For small displacements, the equations of motion cars be written as

Z2fr	 2ma	 2irb 8 6	 0	 0	 6	 T8

2ma	 2m	 0 a	 + (2.26)Q	 211 
2 12	 va	 F

va
2mb	 0	 2m vb

LR	
2k12 2k22 	 vb	 Fib

K

where

': r r 2	 2-= I2	 21n (a	 + b -

Eq.	 (2.16) is in the form of Eq. (2.12) where X = (G va vb ) T and F

(TgF )
T.

<r a	 b

t^ The stiffness matrix [s] for the beam modelled by n masses can be

obtained from the flexibility matrix [a] using -the relation [s] = [a] ^1

8The displacements :(vi) in terms of the flexibility influence 	 coefficients

(aij-) and the forces (	 ) which axe associated with the displacements can

1 , be writ ten as

vx = all fl + a12f2 +.. ,+ aIn fn

t	 ^

vn = c:	 f1 + n2f2 +.: •.+ ar^ fn

In natrix. fexm, we can write

f, VI
	

_	 [a] f	 (2.17)



beam isFor the case where each	 modelled by tcgo masses, the stiffness

n t»ix becomes (b = a/2)

kl	 k12	 8 El 2	 --5
Is]	 = -	 3

k12	 k22	 7 a
-
	 16

(2.18)

-t

^l
2.2 Equations of Motion - Gravitational Effects

2.2.1 Each beam modelled by an end mass

41 The configuration of the system. with main body and two .flexible

beams attached to -the main body is shown in Fig. 2.3. 	 Here, each beam

is modelled by an end mass and the elastic motion is assumed to result

y
_	 _ric bending Cv	 v '	 v).only from antisymmet	 kinetic1 -	 2 -	 '?'he energy of 

the system can be written

1	 2	 '2	 •2	 2'2	 '
T= 2 	(12 +2ma ) 8	 +m [v	 ^v9	 +29av

+ const. due to circular orbital	 t-xon (2.19)

The elastic strain energy is re presented by

U
(2.2Q)	 3

The potential energy duo to gravity forces is.expressed as

V -- v8 - ^n ( l+	 ; where u - G earl^	 i	 !	f ) (2 , 21)

a
where the potential due to the main body' is

V0 = -	
X02 (I -
	 13) cos 2 8

and the radial distances of ml and m2 from the center of the earth

are

[rfl2 + a2 - 2 r0 a Cos 117	 - (8 + °/a)

^r2 	[r82 + a2 - 2 70 a cos (S + ^'/a)	 12

10
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y By use of the binomial theorem and neglecting terms of order C a`/r0 }

and higher, one can develop for the gravitational potential, V, the

.rY
? expresslon

V	 =- 3 w	 C I	 -- I) Cos 2	 --	 2m	 I

^, 4	 0	 1	 3	 r6

^
-- w0 

2	

{l + 3 cos 2 (9	 v/a)}	 12.22)

Lagrange's equations of motion can be obtained and them linearized as

k'
T2t	 2ga 9 3w©2 CII ' - I3 )	 6w Ma	 B	

TO

' 2ma	 2m v 6w02ma	 6w 02m+ v (,FV

(2.23)
t

where	 ^
r	 -T	 - ^1 + 2^fk1

2.2.2	 Each beam modelled by two masses

Thetions of motion, with -Uie a.ssunp tions stated. foraqua	 ^	 ^ w	 P

' the case where each beam..is modelled by two masses On - mb = m), can

be devel ped in a manner similar to that used in Section 2.2 ,.l.	 Here

^.I the final	 form	 linearized equations isji only	 matrix	 of the	 presented:

1itt 12	
2ma	 2mb

2ma	 2m	 0 va

21• 2ma	 0	 2m vb

' 3w
2 	 ^r	 2	 ^-	 6w	 ma	 6w	 rib0 {Il	 .3	

0	 0
) 8	 T

0

+ 6w0 ma	 6w02m+2k1l	 2k'-2 vd	 -	 FF	 (2.24)
a

6w02mb	 2k12	 ew02m+2k22
tvb 	 vb

where
 21, T 2ni (a+ b2)'

^+
Iz



t 3.	 THREE-Iv.ASS SYS=

3.1 Equations of Mb ion-Kcal Vertical

The long bear, modelled by three masses as illustrated in Fig. 3-1

consists of two end masses (ml = m2 = M) and an interior (point) mass,

m3 .	 The system center of mass is assumed to move in a circular orbit

and the system is constrained to move in -the orbital plane.	 The equations

c
of motion are derived ' using the lagrangian. fonnu_lation.	 The generalized I
coordinates 01 and 02 represent 'the relative -ingular motions of bath

end masses relative to the undefl:ected orientation of the beam.

3.1.x. Expression for kinetic energy

The total kinetic energy, of the system can be written as

s T - ^ +Tt +Tc 	(3-1)

The rotational and orbital energies are

v' Tr = 3, c - 2 M R2wo2	 _	
(3.2)

and the translational energy is obtained as 6,7

r

2
Tt - 2 m	 ( i	 Vi) -`	 (E Vi	 V^}	 C 3.3)2M

f where M = 2m + m., w0 - orbital angular velocity and R	 orbital- radius	 l

The velocities Vl and V2 can be obtained front Eq. (2.4) as (Fig. 3-i)

ail = w	 j x 
Cpl 

i +	 k)
yl

wy	 1 x (^l sinc i i + Xl cos 0, k)	 (3.4)

12



V 2 =m	 x C-	 2 ; - ^2k)
Y2},_

r^t
cos d^ k)	 (3.5)= (tly 	 j x (- Q, 2.5 n^ 2 1 — Q2	 2

2
fr, 1

q

where
WW	 +cps; Yz W 6	 + ^ 2	 ( 3 .6)

By substitution of Eqs. (3.2) - (3.6) in Eq. (3.1), we find that
:

1a	

2:

T = — M'	 { (w9.)	 sino, 	 (w	 +	 ) 2	 sin	 }2	 01	 1	 '?	 0	 2	 2	 ^'2

A. +	 {(w	 +^)	 cost	 + (w	 + ^) !C	 cost¢ }20	 1	 1	 1	 0	 2	 2	 2

+ m0 {(w0 + 01) 2 "12	
('00 + X2 )2 

Q22}]

+ M R2m 2 /2	 (3.7)0

where M	 = m2 /M, the sysfiem reduced mass, and rn 0 =mo/m.	 It should be noted

that the last term in Eq. (3': •7) is a constant for the case of a circular

orbit and does not affect the equations of motion.

"	 e 3.1.2	 Expression for potential energy
.Y

k The potential- energy V of the system zn.an inverse square force

field is given by

lrif	 I F21	 Ir01

where u = GPI is the earth's gravitational. `. constant , . and [ ri [ is the distance

of .from the center of the spherical earth.	 Then 1F. 1 m?y be expressed,

an terms of R	 and the coordinates of i in the local vertical system
with origin: at the center of the beam., as

[(R +	 l +
	

q^)	 + (^1 + ^Cm) 	 2	 (3,9)1	 1 { 	2	
2

-
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2	 2	 can	 ' 2	 cm

0	 cm	 cm

whys the coordinates of the system center of mass measured with respect

to point, m,) , on the beam are given by

ECM -

	

 -- m ( 1 - 2 )li^I ;	 - m Cs^	 2 )IM	 (3.1.2)

The expression for V, after omitting the terms of order 1 ! R and h? gher. .
in the binom al expans-i on of ? ri ,becomes

	

22 1	 2

	

V = -wa M* [{(Q cos t 	cosc^2) _ CAII sine + Q2 sin^2 } }

r	 7

	

+m^ {Q12 co 2 GOS2^2) - 2 CR12 sia2j +X22 sin2c 2}}^ {3.13)
iPi

3 1.3 Expression for elastic energy

The elastic energy is.obtained by assuming that the end masses 	 4

rive as cantilevers with respect to the reference point, m^ on the beam

(Fig 3.2) Thus the elastic enemy in tarms of elastic deformations

l andd 2 is expressed as

1	 2	 2

1 2	 2=	 [kl k1 san '	 2^j + k2 R2 sin c 2?	 (g .l )

For the laws appr+oxinate mr)delling of the elastic deflections of . a free--

fr+ee beam it will be convenient to assume thatA, _ ^2 Z such that m^

and -fhe system center of mass will be coincident when' ^	 ¢	 o . (see Fig.l _ 2 -

4

a



N

3.1.4	 Lagrange 's equations of motion

The	 eneral equations of notion , iar . developed using	 lagrangian-theg

formlation for the vari abi es. ^i, 1 = ^ ^^,a	 Tn^ Lagrange 's equations

are

d	

(- aT	 N\

—}	 -	 +	 +ao.	
W	 `^'^.	 (3.15)

1	 ^-

i

1	 1	 1

The equations of oration are obtained using Eqs:	 (3 7), (3.13)'.and (3.14)
ti
R
a

in Eq. (3.15), as

M:: L{[	 Q	 Sind	 (W +(	 } Q	 COO	 (	 + 0	 1	 sinex 1	 I	 o	 1	 1	 l	 l	 2	 2	 2

(^yo;^p2},2 cos¢^22 } QI sinc^l

s

+ {(w04	 Q^sin cal+ (w3+cp 2) L	 sirn^2 }t 	Cosa' ^
5

.^

+ {^l Q
l cos^l - (wo+$1) Zl sinc	 $	 +	 2 z	 cos^r2

-- (w +c 2 ) Q2 sin $2 ^2} 91	 ccsc

R
)	 Q,	 cos	 +	 (rat	 •	 }	 Q.	 COS	 } Q	 sin^l	 }—	 { (w + l^'D1	 0

+
 ^2	 2	 2	 1	 1	 1

s^

`^l Q7^m
i

-M	 [{	 041). Q1 sine, + (110+^2) 92 ssnY Ql cosc l (W,+$l)

- { (Wp+^l)	 l cost	 + (w	 912) 9,2 cosO2} Rl sink	 (w0l}^ 3

2 0 vjo:	 {Q 1 cos¢1 + Q2 cos^2 } kl sincpl

2 {Q.^ sinc	 + Q2 sz-n^ 2 } Ql cosch

f mtj 
(2) 

Q12 sino^ coscj
i

^
+ kl Ill sine	 cosh	 W T^	 (3.16

1
i

i
P
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[{^1 Ql aims I + (w0l) . 9.1 cos0l ^l + c 2 t2 sin^2.

(w +	 ) 9	 cost	 $ } %	 sink0	 2	 2	 2	 2	 2	 .2^

-^ { (000+;l) Ql s n^l	 - (w0+c 2 ) Q	 sins	 I Q2 coO 2:	 2  .
r^

+ {^ Q	 t	 - (w -;	 ) Q	 sin	 Q	 cos1	 1 cos	 0 ^l	 1	 1 ^'	 .-2	 2	 2
'

— Cw0 2) .RI	 sin^2 	 2 }	 ,2 cos t

— { (W-) !	 cosh	 a- (w	 c) Q	 aoscp }Qi^^
0	 1	 1	 l	 0	 22?	 2	 2- z

;
N..

{'	 }•	 ^	 1

IZ
- Mr	 {(w01) Q, sin^l (w,+^ .) Q2 s nb2} Q2 cos^2 ( w02)

-- { Cw ^	 ) k.	 cosh	 t (w +	 ) Q	 co.0 } Q	 sink	 (m fcp )0	 1	 1	 1	 2..	 2	 2	 2	 2,	 0	 2.0

+ 2 w02M,; [{Ql'cos c ]- + Q2 cos^21 2,	 sin^2

r !
f+ 1 9'	 sin1	 + 9,	 sin?	 Q	 COO

2	 1	 1	 2	 2	 2_

+ m 
C 2) Z22 sine	 cos^21

k2 922 
sine 2 co"2 =

 Td)	
(3.17 )

3.1. 5 	 Linearized equations of motion

Eqs. (3.16) and (3,17) are linearized about the local vertical for

sma11 amvli►ude motions such that sink j = ^^ and cosh. = 1.	 Also as-	 -.
indicated in section 3.1.3, we now assume, in order to model a free--free

beam, Ql = Q2 =:Z and k,	 k2 - k.

I

-
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By lert-ing ^l - vl/Q and ^ 2	 v2/ Q, the linearized equations of motion

can be represented as

M^	 (1+ m0 )	 MI* vl

M *(1 m0 ) 2

:. 36- ,  M* (24-m	 + k	 00	 0 v	 v1+ 1	 y
(3.--

3m0 `MM (2+m0} + k v2 Fv2

^y	 fi The control forces that are assumed to act on ml and m2 are represented by

r Fvl and Tv 2) respectively.	 .For the special case of a two mass system

with m = 0, Eq. (3.18) reduces to

M.	 m	 v	 3m 2m+k	 0	

v	

F l	 0.	 l	 12	 2
+ -

m	 m v 0	 3m0 m+k2 Fv22	 2	 -

`Inne characteristic equation for this two-miss system is obtained as

s2 + (3w0 2	+ k/m) _ 0

This equation shows -that -..tie system is forced to oscillate in an anti

sy=etric mode if the flexible beam is mi delled only by the - 	 pnd masses.

i	 \
an 3,1.6	 5tabil. --analysis

The characteristic equation for the tIA ee-mass system frc m. Eq. (3.18) is

17
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QT*) (250 + 
502)5	

K

+ 2M* (1+m0) { 3 0 2m M {2+m0 ) -E- kls

+ Ouj02M. (2+ri0) + k 12 = 0	 (3.19)

The magnitudes of the two natural frequencies, w 1 and w2 , as a function

of the central mass,`m0 , with M = 2m + m0 = constant, as obtained by

solving Eq. (3.19), is given in Table 3.1.

M0	
w,
	

w2

3 M	 [3w02+(3k
/M)^^ 	[3f3w02+(3k/M)l]^

t.
z

3 M	 [3w02+(2k/M)]^	 [2f3w02+(2k/M)l1	 ^I

5 M	 [3w02+(5k/3M)]	 L3{3w02+ (5k/3M)}]

2 — -	 2	 ^	 3	 2	 ^ 	 ''

3 M	 [3w0 +(3k/2M)^ 	 [3 f3w0 +(3k/2M)l],

`fable 3.1	 Variation of w	 and w2 with	 0	 '
Ir

The following systen parameters and Initial conditions are assumed

for numerical study:	 L = 2Q = 100m; orbital altitude = 463 Rm z250 nautical

miles); EI = 7.707197x10 3 N-r2 ; k = 3LI/.Z	 M = 1000 kg; v1(0) = 0.015 and	 Ea

V2 (0) = v1(0) = V2 (0) = 0.	 Structural parameters are taken for a beam

made of 'ought aluminum " (2014 T6) and CYlind-ical in shape.	 'die outer

diamete , of the beam. is 50nm . and the thickness is 5rm. The variation of the

two natLwal frequencies, wl and w2, with :zb is shown in Fig. 3. 2. 	Also shoran

in the figure are the variations of wl and w2 with m0 when k = "0, indicated

by 	 and 
10	 20-

18
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We observe that w10 remains constant at w0 (which is the frequency

at which a rigid dumbell satellite will oscillate), but w20 decreases

with an increase of m0 . For the general case, wl increases with m0,

but w2 decreases up to a certain value of m0 but then increases with

ar increase of m0.

3.2 Equations of Motion - Local Horizontal

3.2.1 Linearized equations of motion

ln.order to develop the small amplitude equations of motion for the

case where the beam is nominally aligned along the local horizontal,  we

begin, by replacing ^,- in Eqs. (3.16) and {3.17) by (rC2 + ^.). After

appropriate simplification and subsequent linearization the equations

of motion may be represented in matrix form as:

..M=y(IiROL)	 M-4 v1

I	 M:;	 M: {1)	 v
2

{3w0 2M' (1-t-m )- k}	 - 3w0 I.;	v	 Fy,,
0	 1	 1

3w0 2M:.	 - {3w0 * (14E0 )-- k}	 v2	 Fv2

(3.20)

For the two-mass system with m	 0 Eq. (3.20) reduces to
0

v	 -(^ :Id ^n k) - 3 w 2m	 v	 FV
2	 2	 1	 2 0	 2 0	 1	 1

m M	 32	 3 2	 F
2	 2	 v2	 w0 m	 -(2 w0 m-k)	 v,2	 `f2



t

The characteristic equation for the two-rass system is

--	 _s2 +(k/^n)	 3w32 	0
I

The'system behaves like a duThell for k > 3w^ m and is unstable for	 i

i k < 3w32m.

3.2.2	 Stability analysis.

. The charactexistic equation for the three-mass system can be

developed from Eq. (3,20) as

(M ) 2 (2mp+R 2)s
a
r^

j 2	 s	 I[6 (M=-) 2w02 -- 2M:: (1-Fmo) ^3w0 M	 CI+EO 	- k}j s2	 I

r --^

?	 --+. [{3w3 M` (14MO) -- k 2 - Swo 	(M)	 = Q	 (30.21..	 -
y

The variation of w^ and w2 wi` .-h mO is shown. in. Table 3.2 with 1^ =

2m + l`rj = constant,

ML, w1 w

[(3k/M) -- 3w^ 2 ^ [3{(3k/M) - w0^]

M [(2k/M) -- 3w 2]^ [2((2k/g-)-1; Sw ?11"2

IJ
M [(5k/3M) -- 3wQ 2^ [	 {(5k/3M) - 118wa2}];1

-1
.}

2 M
3

[	 k/2Mj - 3w 2]
Q

[3	 (3k/2i;} - 2w 2 }'^
2	 0

Table 3.2. Variation of wl and .w with ink

I theThe variation of the two natural frequencies, to l an	 2	 three-massd w 21 for

! M system with mQ is shaven. :Z Fib. 3.3. , For the assumed system numerical

parameters; both w1 and w2 decrease with an increase of ma.

Ik
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^.a A concept is presented in a recent Rockwell International Report-

(Ref . 5) for controlling a flexible space structure by independently

controlling motions of the structures T s rigid body and vibrational
H

• modes.	 The mode cont rol concept leads to criteria for locating

actuators and algorithms for their combined use. 	 Development of the

mode control concept is based on two coordinate transformations. 	 Dis-

crete displacements and discrete forces are transformed to modal coordi-

nates and distributed actuator variables thereby completely uncouplinga	 y.	 P	 Y	 P	 g

the system equations.	 In ''i..his chapter, the mode control. conce pt is
'

outlined briefly for our specific application but more complete details

are available in Ref. S.

'c4..i Equations^u q

y
_ ^ A flexible space structure ,is Moaelled as many rigidbodies inter-3

4
connected by massless, elastic structural elements. 	 Then small amplitude

motions are described by the linear differential equation

COM X + K X , =f	 (4.1)

where X is an N x l vector of discrete coordinates measuring the angular

and translational displacements of each body relative to its inertially

,m fixed rest ,posy don, X is the real N x N:mass matrix, K is a real,

symmetric DT x N stiffness rnatrix, and f {c) is -an N x l vector of the

control forces.,

21



4.2 E gen -Analysis

The eigenvalues (modal fregaencies), w, , - ^- -- , wN, and associated

N x 1 eigenvectoxs (mode shapes ), (l) _ _ 	 (N), are obtained from

the homogenous part of Eq. (4.1) . 	 The orthogonality properties of

the modes provide that

(i)T 	 (j)	 5	 j
M	 _	 (4.2)

nt,	 _
z	 3

y
0	 a.	 jT

j

where mi is referred to as the generalized mass for mode i. 	 Next, a

a
coordinate transformation is performed utilizing an N x N matrix, D.,

1 constructed from the N eigenvectors
i

1	 (2

t. 
q

A transformation is introduced by assuming that a given displacement

{ W, profile may be expressed in terms of a series of •the shape functions

ci
(mode shapes) multiplied by time-dependent weighting factors (modal

~ coordinates qi) ; i.e. X =	 C1) ql	 Cz) q	 ^- , - . +	 (N} qN^ or
Y1
^a

X =	 q	
C.4)

Substitution of Eq. (4.4) into Eq. (4.1) and premultiplication byT

produces
4i

T M	 q + CPT x( q 	 J fCG)	 (4.5)

OM
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1
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Finally, the transformed equation of motion is obtained with the aid of

i the orthogonality conditions, Eqs . ( 4.2) and (11.3) , as

Cl +	 W.	 1/m.	 T f(c)
1	 q_.	 ,	 ^,	

(4.6)

3 The advantages of the modal formulation are that the left-hand side

of each scalar equation associated with Eq. (4.6) is uncoupled in qi
3

and criteria can be easily developed for truncation purposes. Generally,

f(c) has low frequency components. 	 Thus a few low frequency modal

. equations can be used to predict the response of a dd5mamic model. which.. r

has been ;model I ed initially with a larger number of discrete coordinates. a

4.3	 Actuation T	 a

Lj 4.3.1 Number of actuators equal to the number of modes

The discrete control forces, f (c) , are transformed into generalized 4.

control forces , f {g)	 by

f (g) _	 ^``	
l/	
i T f{Q }	 (4.7)i

Independent actuation of all of the.N modal equations can be achieved if

N actuators are used in such a way so as to produce a generalized force

in any given mode without. forcing the other modes. 	 Then we obtaui

f(g) = u if we let

f	 - M m u	 (4.8)

where uj represent -",he independent actuator variables. 	 After c tstitution I
I

of: Eq. (4.8) into Eq. ' { 4. 6) one arrives at

2
C1	 .	 q= u 	(4.9)

i
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I E:
The mode control implementation for this case, where the number of inde--

pendent actuators is equal to the number of modes of the system, is shown

in Fig. 4.l.

4.3.2 Number of actuators less than the number of modes
i.

In most instances, independent control of all the N modes [^ f a

dynamic model using N act iat .ors is impractical since N is ust3 "1y

vexy large number. Additionally, control is often requa.red of only a f-vu

of the lower frequency modes. For these reasons -, it is necessary to modify

the foregoing procedure to establish a means of indepencevtly controlling

only a selected small number of the system's modal coordinates.

Here an expample is illustrated taking the number o` actuators (P)

as 2 and the number of modes (N) of the system as 3 such that P < N.

[The general theory is available in Ref. 5.] The control force for

this case can be written as

Wi(e)	 1	 0	 fl
f(e)	 f2(c}	 _	 0	 1	 f2	 -	 F f	 (4.10)

f(c}	 0	 0
3	 --

where fl andf2 represent the scalar actuator viables. The generalized

control foree-; Eq. (4.7) , is

f(g) `	1/m.	 IDT t f

iJ

 (4.11)

A . transformation of tie form

w	 f = T u	 (4.122)

F:
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Here T provides a transformation from discrate actuator variables to

=buteddistriactuator variables such that u. produces 	 actuationindependent

of the it" moda3. equation.	 Eqs. (4.1) and (4.12) are combined to yield

f(g)	 l 
/mi	 (DT F T u {x.13)

Eq. ( 4.13) can be written, with N = 3 and P = 2 , as

f (g)	 1/	 0	 Q1	 Mi $ll	 21	 31

J

(g)f2-0 1/m2	 0 ^'l2	 X22	 X32
(g)f3 10	 /m3

L

x'13	 X 23	 X33
L

F 1	 3ll	 T12 u l
.0	 1	 T21,	 T22 u 2	 (4-14) 

0	 0

E%Ta.nding Eq. (4-14), we obtain

fl(g)
{ill T11	 ^21 T21) 1 (^U T12	 X21 T22) ul

2Cg, m2 (x'12 T11 + `^22 T21) j:2 {^l	 T12	 x'22	 T22) u

f {g)3 l

M3 (x'13 711	 X23 T21)
l
113 T12	 '23	 T22)

(4.15)

fig
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J^

The transfonration matrix, T, is obtained by noting that for independent
J:

control of the first two modes,. we need
\l

f (g)	 u13 f2 
(g) u2 : `	 ( 4. x.6)

After a comparison, of Eqs. (4-15) 'and (4.16) for fl(g) 
and f2{g), we

can . obtain T. Mowing T, the residual coupling coefficients, f(^'j) and

f(r2) 5 for the third mode can be obted by .rewriting Eq. (4.15) using

Eq. (4.16) as
(g)

f1'	 ,;^ 1 	 6 	 ul	 ^.

f {g)	 u2

	

o	 (4.17)

f (g)-2)3	 f	 i

Thus, f { r1) and f C'02) are obtained .fran the last row of Eq. (4. 15)  after

the determination af. T.

An interesting (and useful) result "cif this e ` pie is that, for

the general case, only modes i-1 to P are needed tc deternne T, and,,
only ¢s and T are needed to obtain the re' dual co, 	 elements for

qi(i = P^1, . , . , N) " ^`Mus, for the case where^',P<N, iii ependent control

of modes. i = 1 to P' ^ ' possible and the respon^F of tl modes, N>P,

depends on the residual coupling due to the P ac'„uatorE^L The mode control

concept described in this c1lapter will be applied' ^o.	 a. xong beam in space

modelled by the three":Ltmass system with the numbe , of act' tars equal
1.

to or less than J̀ -he nmber of modes of the systn^
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1	 s24ca	 ab	 svl(0)-^1 (0)

A
(s	 -6b	 s2 ^ca) 2- (eb) 2	 2+ca	 sv2(0)-^v2(0)

S.	 MODAL CONTROL OF TIE THREE-MASS SYSTEM

5.1 Three-Mass System-Local Vertical

The modal control of the three-mass system (Fig. 3.1) is now

considered.	 The linearized equations of motion [Chapter 3, Eq. (3.18)]

are

a	 b C	
0

vl Fv,

b	 a	 v2	 0	 c v2
FV2

where
a = M* (1-17c0 )	 b = M*

c = 3w 2 M'=	20	 (0) 
+ k

The uncontrolled dynamics of the system is considered first and then the

mode control concept outlined. in Chapter 4 is applied to obtain the

controlled system response.

5.1.1 Uncontrolled motion

Using the Laplace transform method wi^`^ F = 0, Eq.	 (5,1) can be•

written as



I

I

I

I

The soluti6n to Ect. (5'..2) . is obtained, under the assumption that

V, (0)	 2 (0) v2  (0)	 0, but V, (0) 9 0, as

. :Vl(t) 2 [cos;wt + cos w2t] vl(0)	 (5.3)

v2(t)	 2 [cos; wlt	 cos w2t] 'Vl ( 0)	 (5.4)

where
W	 [C/ (a+b) 2

The motion of the center of the beam, mo , is obtained ,.,fi-om Eq. (8.12),

and noting that Ei Y, Sill ^j V. :rI,

%n	 (mlffl) cos W 2 
t VI(0); ^Cnl 0	 (5.5)

The uncontrol4ed motion of the system with -die assumed system para-

meters and initial 'conditions stated in Section 3.1.6 is obtained as

vi(t) = 5 {cos 0.023631 5t + cos 0.040937T.) m	 C5.6)

v2 (t) =  5 (cos 0-0236351 cos 0.040937t) mm.	 (5-7)

Lol cos 0.0409371 mm	 (5.8)CM	 ..3

The time response ,, : of the beam end deflections, v, and v2,
 s Shown in

Fig. 5.1. When	 0, the deflections v, and V2 are -the same indicating:

that the system -behaves like a duT ybell satellite. The presence of vq-
0

produces the second frequency, w2') and the deflections due to w
2 are

superimposed 0.'4 v, andV2 as seen -L	 Eq s (5.3) and (5 4).

1)18



5.1.2	 Number of actuators equal to the number of modes

s Considering the homogeneous part of Eq. (5.1) , the eigen values are

y	 t Al - wl2 = c/(a b); ^2 = w22 = CAa.-b) (5.9)

R
The coordinate transformation: m^atri x, ^, 35 determined fr+o :the : eigen-

vectors as	
1	 1

1	 -1

" The gene_rialized mass matrix, frOlm Eq. (4. 2), is

mi 	 d,T M m = 2(a+b)	 0 (5.1 1)
0	 2 (a-b)i

The modal equation given by Eq. (4.9) for this case becomes

q1 Al 	Q ql	 U.

(^ .12)-

q2 0	 X2 q2 j ^ u2

We assume a proportional displacement and rate feedback for u l and

u2 in the form:

u1 _	 flq - 
E2 q

l {5.13)

u2 _ -- f^ q2 - f4 q2 (5.14)

The equation for ql i di th con.-.rol ul is written as

ql +	 2 qI ± ("I"fl) al = 0 (5.15)

29
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The solution of Ee, C5.15) is

2 f

ql(t) = e	 2	 [cos w12t + ^
	

s'	 w1 2t] 91 ( 0 ) (5.16)
12

where

w12 - [X1	 fl - (f2 2/4)]	 q, (0)	 vi(0)/2 (5.17)
i^

simi3.ax1y, '

IM 2 r`J- LL

q2 (t) = e	 [cos w34t +2	 wl	 sin. w34t] 9.2 (0) (5.18)
34

where
2"14 ') '^	 ti 0) = v1 (0) /2wX 2 + f^ : ,; Cf"4 	 q234	 [	 :_.	 ^	 ^ (5.19)

The discrete coordinates, v 	 andv , ere related to the modal coo-rdinates,
1	 2

qI and q2 , using Egs. ; (4.4) and (5.10),

v1 	q1 + q2; v2 	q] - q2 (5.20)

a

J

d The control forces are obtained fZ'cln Eq ,, (4.8) as

t 1	 3	 3

+(f2+f4)v 	 + (f2- f4}v]'1	 2.
(5.21)

4 3	 3

s
F r	 -2	 [(rl-f3 ) vl + (E--1 ^3) v2

t

2	 3	 3

(f2-f^ ) vl + (f2-f3 ) v2] (5.22)

30
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As. a special case, when f2 = f4 and also, x'12 = '34, we note that

ql(t) = q2(t) ^t!d that the displacemnent v 2 (t) = 0 and v1 = 2q1 for

the assumed	 n; teal conditions . 	 This condition s s achieved i f f3 = f

Ei Al -- x2 and f2 = f4 .	 Thus, by properly selecting the feedback control

gains, it may be possible to control a portion of the beam such that it
mill not be subject to any deflections.

The uncontrolled motion of the system, obtained by setting f. = 0,

3. : = Z, 2,3,4 in Eqs.	 (5.16) and (5.18) and in turn in Eqs, (5.20), is

illustrated in Fig. 5.1. 	 The dynamic response of the controlled system

with. fi = 1 is shown in Fig. 5.2. 	 It is observed that the tip deflection

amplitude, v1, is reduced to 0.01 mm from an initi^.l 77alue of 10 mm w?thi n

12 secs.	 The initial control forces Fv and Fv2 are calculated to be
l

-2.22N and-1.11N, respectively.. The time history of the control forces

is shown in Fig. s#.3... The initial amplitude of -the control forces can

be reduced by reducing the feedback gains.	 Fig, 5.4 illustrates -the

time response of the system with f 	 = 0. 1, a value which is 1/10 of - .̀.he

K previously considered value for, fi .	 In this case, the time required to

reach a deflection amplitude of 0.01 mm from, an initial value of 10 rnm

for the tip deflection v, is about 120 secs.	 Thus a reduction in the

control force increases the tine constants of the system proportionally,

as expected for a linear system. 	 -

5.1.3	 Number of actuators lmss than the number of modes

Following : Section 4.3.2, we obtain. he equations for .q, and q 2 as

q1 ̀ + 11 al = u	 (5.23)

q	 '- A2 q2 = {(alb)/(a-b)} ul	 v (5.24)	
I

II
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Eq . (5.23) can be cone+ Q l.ed independently as in Section 5 . l . 2. Using

ul = -fl fly - f2 ql , Eq, (5.24.) becomes

q2 + a2 q2 =-g (fl: ql + f2 ql )	 (5.25)

where

a+b / a--b

(Note that as long as -Tn0>0, a>b, see Eq. (5.1).) Using. Laplace transform

tecbnicues, the ?response of the .ode q2 due to the residual coupling of

the actuator Pl is

q2 (t) = q2(0) Cos met + g f2 q1(0)
sin mgt

w2

-f2 t
_g	

SZIL (wit + 1) ' -12 e 
2 sin (w12t '+ c 2 ) ] 4l (0 )

2	 (5.25)

where

(fl - w22 } 2 + (1 + it ) 2 w2

l	 f2
m2	 f 2

(2 + w12 2 - m2 2 ) 2 
+ {f2m2)2

FL2
 (1 --}	 +f } 2 	

fl f^	
, Y + w

1
 2{(l +fl2l2	 f2 2	 _	 W2	 ^22

'72 
wl2

	 w12 2 - u^2 2 ) 2	
{ f2w2) 2
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f
1	 (1 + f2 ^2	 1	

y2 m2

	cp1 ' = tan-	 Z	 f -a	 - 2	 -f1 f22	 2
4 +t^1.2 -W2

	W12;{(1 + f	 -- f2

¢ -

	

tar 	 -	 - -2
	

- -	 - - -	 tan -1
	

- i 2 w2
2	 2	 2

f - w1^2 U + fl ) f + ^l	 f -X122 m22
2

-For large t, ql(t) is conmletely damped out [Eq. (5.16)] but a (L) oscillates

at the frequency, m2 q. (5.26)].	 -

The control force, Fvl, is obtained as

Frc1 = -M [fl (vl + v2 ) + f2 (vl + v2)3 (5.27)

The time responp.6 of the system wi "I -the . number of. actuators less than the

number of modes is shown in Fig. 5.5. 7he figure shows that the v2.response

bec mes oscillatory as time increases 'even though: its i^tial value kms

zero. The maxiimm ahiDlitude of the oso-i lation. for v2 reaches :a value

of 10 nun. It should be noted that as -one increases both v1 and v2

oscillate at the same frequency - .. e. that of the (second) uncontrolled

mode.
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isFor the three mass system where only two modes are present, it

;possible to keep one portion of the beam without any displacement by

properly selecting the feedback control. gazes for the. assumed initial

conditions of the system.

5.	 When the three mass system contains only bee actuators the

modal  control produces a; complete control of the first mode, but the

ICJ

sedond mode is not dontral.l.ed.	 This indicates the disadvantage of

the Trade control concept when all the Modes can not be completely,

controlled.

6. 2 . Recommendations for Fine Work

As a result of this investigation the following topics are suggested

for future ' xaork

1.	 In Chapter 3 ? the long beam is modelled by three discrete masses.

.. For a better ulnderstand	 g of the 'system response, the Tnodell^ng of the
i

beam by :a g^---:^ter number of discrete mass points should be considered.

i 2.	 The study could be extended to consider the three dimensional

I ;. motion of the beam' by following the approach descr =ibed 1n this report for
r

a

-	 _pl.a=, motion.

3,	 Optimal, contr	 theory could be used to obtain control laws

by minimizing certain cost functionals involving the state variables

y and elements of the control vector,

4.	 The mode control, concept could be applied to consider the control

tof a: continuum model, of the beau and the system response obtained from this

I model could be compared with the system response obtained here for the-	 mpar	 y	 -

El

_
discr'st ized model, of the long beam.

y

4
f



h

5.	 The deformation of the bean due . to ex e--na11y induced solar

radiation effects should be considered both during steady-state and

controlled responses:
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Fig. 5.3. Time history of the control forces with-..the
number of actuators e qual to the number of modes
(fi	 1)
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^A pAGB

BOORCDMPLTt`ER PROGRAM	
POOR

1/28/73	 10:50.;5
IJOB.	 [READ	 ICI' AT 	 10:49:551SELLAPPAN]

;FORT/A/8/E/P/S-"FORT.LSIL
!LISTING

C.. ..+^.._._-----ate. - ..__ — a.._ - 4	 FORTRAN	 STATEMENT

C	 MODAL cnNTROL
EXTERNAL	 RGSOI,.RGS02
DIMENSIO N 	 PARM( 5),x(4),DX(.4:),SIZE(tt)rWORK(8,4)
COMM O N !	 F1,F2,F3,F4rG
CALL.	 INOUT (2r5)
GALL	 OPEN	 (1 r 	'SELL.APPAN'	 ,3,IER)
IF'(FER.NE.1:)	 STOP UNABLE TO OPEN FILE

READ(2,91)	 TMAX,STEPrTOL
READ(2,91)	 X
READ.C 2, 9 1)	 SIZE

W. READ(2,91)	 F1,F2sF3,F4rG
91	 FORMAT(	 8F10.0

PA R &I-M=00

_PARM(2)=TMAX
PARM(3)=5TEPN=U

WRLTE(502)	 TMAXrSTEPrTOL.

El
92	 FORMAT(	 '1TMAX,'rF8. 2, 10X ► °STEP=•rF8.4r10Xr'T0L='rF8.5) 3

{ .. CALL	 RKSCL-(.NrSI ZE, DX, TOL r.P.ARM)

CALL RKGS( P ARM,X,DX N,IHLF,RGS01rR GS02r W 0 RK ) i

WRITE(5,99)IHLF^
99 F0RMAT(`01HLF='r I3)

CALL EXIT..

^
END

3

COMP ILATION SUCCESSFUL	 OBJECT CODE IN FILE NAM ED 001.PR. a

1 FOR T/A/B_/ELP/,S FORT.LS/L.
!LISTING

r

J§;
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3

CFORTRANI STATEM ENT	 ------------e •! •^^_---------------    -a—are

S UBROU T IN EU TIN E Rf7 S Q I (.T-! .^ / rJ X

DIMENSION XC 4 ), DX( 4)
COMMON Fl#F2,F'3,Fp,G
DX(l)=x(2)

140=4.001115
AK 0 0005549
AL1=3110 *'rJO*''NG+AK	 i
©XC2)=—F2*X(2)-(AL1+FY)*X(l)
DX(3)=X(4)
AL2z3.0*AL)
DX (t!) =-F4*X ( 4) - C AL2+F3) *X (3) —G*F2*X ( 2) -G*F1 *X ( 1 )
RETURN
END

CO MP%ATION SUCC;ESSFUL
.

	OAJECT CODE_ IN FILE NA M ED 002.P6
a

IFORT/A/B/E/P/S F5PT. LS/L
:LISTING

C..	 ------	 FORTRAN STATEMENT - a,^ ^.^..--.•.,.,

SUBROUT_TNE RGS02CT,X,DX,IHLF',M,P3

LOGICAL RKNXT
DIMENSION X(4) rDX(4.) v0UMMY(4)
COMMON Fl,F2 ► F3,F4,G
CALL RC501(TrX,C?lfm!Y)
U1-AF L*X(i). , F2 *XC^) 	;
U2=-F3*X (3) -Ftr*X(4)
AM =10.00, 0/3.0
FVI=AM*(Ui+(. U2/3.0) )
FV2= AM*CUl—(U2/3.0))
V1:4X(l) +X(3)
V2=X(l)- X(3)
V3=X(2)+X(4)
V4 m X(21 — x(4)	 -
VCM=- ( 2.0./3.0) *X C 3 )
IF C o NOT RKNXTCTV. L F )).GO TO 8
WRITE(Sri) T,XCI) f X(3)PV1rV2,VCMp FV1,FV2rV3,V4

i FOP-MAT (tX,F9.1,4F13.7)
WRITE RINARY(I) TrFV2,FV .i,VCM, V2,Vl,X(3),X(1l

8 CONTINUE
RETURN
END	 ---

COMPILATION SUCCESSFUL	 OBJECT CODE IN-FILE NAMED 003,RB

MOR TMP/S SYS/E 001 002 003 DPO:SSP. LB I=ORT.LS
'LOADED
1OELETr-/V SELLAPPAN
DELETED SELLAPPAP!
;CREATE SELLAPPAty
!EXEC

oidGINIAL PAGE I^
0 , P(Wpi, QUALITY
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