23 research outputs found

    Descent toward the icehouse: Eocene sea surface cooling inferred from GDGT distributions

    Get PDF
    The TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0–33.9 Ma). Here we compile published TEX86 records, critically reevaluate them in light of new understandings in TEX86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, % GDGTRS, which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX86H and TEX86L(ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of ~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO2) was the likely driver of surface water cooling during the descent toward the icehouse

    Carbonate, stable isotope data, abundance of pyrite and siderite, pyrite alteration and nannofossil Whole Shield Index during the PETM

    No full text
    A transect of paleoshelf cores from Maryland and New Jersey contains an ~0.19 m to 1.61 m thick interval with reduced percentages of carbonate during the onset of the Paleocene‐Eocene Thermal Maximum (PETM). Outer paleoshelf cores are barren of nannofossils and correspond to two minor disconformities. Middle paleoshelf cores contain a mixture of samples devoid of nannofossils and those with rare specimens characterized by significant dissolution (i.e., etching). The magnitude of the decrease in carbonate cannot be explained by dilution by clastic material or dissolution resulting from the oxidation of organic matter during early diagenesis. The observed preservation pattern implies a shoaling of the calcite compensation depth (CCD) and lysocline to the middle shelf. This reduced carbonate interval is observed during the onset of the PETM on other continental margins raising the possibility that extreme shoaling of the CCD and lysocline was a global signal, which is more significant than in previous estimates for the PETM. An alternative scenario is that shoaling was restricted to the northwest Atlantic, enhanced by regional and local factors (eutrophication from rivers, microbial activity associated with warming) that exacerbated the impact of acidification on the shelf
    corecore