115 research outputs found
Landscapes of loss and destruction: : Sámi elders’ childhood memories of the second world war
The so-called Lapland War between Finland and Germany at the end of the Second World War led to a mass-scale destruction of Lapland. Both local Finnish residents and the indigenous Sámi groups lost their homes, and their livelihoods suffered in many ways. The narratives of these deeply traumatic experiences have long been neglected and suppressed in Finland and have been studied only recently by academics and acknowledged in public. In this text, we analyze the interviews with four elders of one Sámi village, Vuotso. We explore their memories, from a child’s perspective, scrutinizing the narration as a multilayered affective process that involves sensual and embodied dimensions of memory. © 2019 Museum Tusculanum Press. All rights reserved.Peer reviewe
A novel multigrid method for electronic structure calculations
A general real-space multigrid algorithm for the self-consistent solution of
the Kohn-Sham equations appearing in the state-of-the-art electronic-structure
calculations is described. The most important part of the method is the
multigrid solver for the Schroedinger equation. Our choice is the Rayleigh
quotient multigrid method (RQMG), which applies directly to the minimization of
the Rayleigh quotient on the finest level. Very coarse correction grids can be
used, because there is no need to be able to represent the states on the coarse
levels. The RQMG method is generalized for the simultaneous solution of all the
states of the system using a penalty functional to keep the states orthogonal.
The performance of the scheme is demonstrated by applying it in a few molecular
and solid-state systems described by non-local norm-conserving
pseudopotentials.Comment: 9 pages, 3 figure
Optical properties and charge-transfer excitations in edge-functionalized all-graphene nanojunctions
We investigate the optical properties of edge-functionalized graphene
nanosystems, focusing on the formation of junctions and charge transfer
excitons. We consider a class of graphene structures which combine the main
electronic features of graphene with the wide tunability of large polycyclic
aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we
show that, upon convenient choice of functional groups, low energy excitations
with remarkable charge transfer character and large oscillator strength are
obtained. These properties can be further modulated through an appropriate
width variation, thus spanning a wide range in the low-energy region of the
UV-Vis spectra. Our results are relevant in view of designing all-graphene
optoelectronic nanodevices, which take advantage of the versatility of
molecular functionalization, together with the stability and the electronic
properties of graphene nanostructures.Comment: J. Phys. Chem. Lett. (2011), in pres
Asymmetric Genome Organization in an RNA Virus Revealed via Graph-Theoretical Analysis of Tomographic Data
Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug desig
Recommended from our members
Tuning chelation by the surfactant-like peptide A6H using predetermined pH values
We examine the self-assembly of a peptide A6H
comprising a hexa-alanine sequence A6 with a histidine (H) “head group”, which chelates Zn2+ cations. We study the self assembly of A6H and binding of Zn2+ ions in ZnCl2 solutions, under acidic and neutral conditions. A6H self-assembles into nanotapes held together by a β-sheet structure in acidic aqueous solutions. By dissolving A6H in acidic ZnCl2 solutions, the carbonyl oxygen atoms in A6H chelate the Zn2+ ions and allow for β-sheet formation at lower concentrations, consequently reducing the onset concentration for nanotape formation. A6H mixed with water or ZnCl2 solutions under neutral conditions produces short sheets or pseudocrystalline tapes, respectively. The imidazole ring of A6H chelates Zn2+ ions in neutral solutions. The internal structure of nanosheets and pseudocrystalline sheets in neutral solutions is similar to the internal structure of A6H nanotapes in acidic solutions. Our results show that it is possible to induce dramatic changes in the self-assembly and chelation sites of A6H by changing the pH of the solution. However, it is likely that the amphiphilic nature of A6H determines the internal structure of the self-assembled aggregates independent from changes in chelation
Immunological Mechanisms Mediating Hantavirus Persistence in Rodent Reservoirs
Hantaviruses, similar to several emerging zoonotic viruses, persistently infect their natural reservoir hosts, without causing overt signs of disease. Spillover to incidental human hosts results in morbidity and mortality mediated by excessive proinflammatory and cellular immune responses. The mechanisms mediating the persistence of hantaviruses and the absence of clinical symptoms in rodent reservoirs are only starting to be uncovered. Recent studies indicate that during hantavirus infection, proinflammatory and antiviral responses are reduced and regulatory responses are elevated at sites of increased virus replication in rodents. The recent discovery of structural and non-structural proteins that suppress type I interferon responses in humans suggests that immune responses in rodent hosts could be mediated directly by the virus. Alternatively, several host factors, including sex steroids, glucocorticoids, and genetic factors, are reported to alter host susceptibility and may contribute to persistence of hantaviruses in rodents. Humans and reservoir hosts differ in infection outcomes and in immune responses to hantavirus infection; thus, understanding the mechanisms mediating viral persistence and the absence of disease in rodents may provide insight into the prevention and treatment of disease in humans. Consideration of the coevolutionary mechanisms mediating hantaviral persistence and rodent host survival is providing insight into the mechanisms by which zoonotic viruses have remained in the environment for millions of years and continue to be transmitted to humans
Real-Space Mesh Techniques in Density Functional Theory
This review discusses progress in efficient solvers which have as their
foundation a representation in real space, either through finite-difference or
finite-element formulations. The relationship of real-space approaches to
linear-scaling electrostatics and electronic structure methods is first
discussed. Then the basic aspects of real-space representations are presented.
Multigrid techniques for solving the discretized problems are covered; these
numerical schemes allow for highly efficient solution of the grid-based
equations. Applications to problems in electrostatics are discussed, in
particular numerical solutions of Poisson and Poisson-Boltzmann equations.
Next, methods for solving self-consistent eigenvalue problems in real space are
presented; these techniques have been extensively applied to solutions of the
Hartree-Fock and Kohn-Sham equations of electronic structure, and to eigenvalue
problems arising in semiconductor and polymer physics. Finally, real-space
methods have found recent application in computations of optical response and
excited states in time-dependent density functional theory, and these
computational developments are summarized. Multiscale solvers are competitive
with the most efficient available plane-wave techniques in terms of the number
of self-consistency steps required to reach the ground state, and they require
less work in each self-consistency update on a uniform grid. Besides excellent
efficiencies, the decided advantages of the real-space multiscale approach are
1) the near-locality of each function update, 2) the ability to handle global
eigenfunction constraints and potential updates on coarse levels, and 3) the
ability to incorporate adaptive local mesh refinements without loss of optimal
multigrid efficiencies.Comment: 70 pages, 11 figures. To be published in Reviews of Modern Physic
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Advanced capabilities for materials modelling with Quantum ESPRESSO
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software
- …