173 research outputs found

    Functional Fv fragment of an antibody specific for CD28: Fv-mediated co-stimulation of T cells

    Get PDF
    AbstractThe most predominant co-stimulation pathway, which is critical for T cell activation and proliferation, is the CD28-B7 pathway. The anti-CD28 monoclonal antibody (mAb) also provides a co-stimulatory signal to T cells. In order to construct a functional Fv fragment (complex of VH and VL domains) of anti-CD28 antibody using a bacterial expression system, cDNA encoding the variable regions of immunoglobulin from 15E8 hybridoma cells was cloned and expressed in Escherichia coli. The Fv fragment was obtained as a soluble protein from the periplasmic fraction and showed a binding pattern similar to parental IgG. The Fv fragment induced proliferation of peripheral blood mononuclear cells in the presence of anti-CD3 or anti-CD2 mAb and enhanced anti-tumor activity of anti-MUC1×anti-CD3 bispecific antibody when tested with lymphokine-activated killer cells with T cell phenotype. Thus, the anti-CD28 Fv fragment will be promising not only for the study of co-stimulation, but also for cancer immunotherapy

    Emergence of Quasiparticles in a Doped Mott Insulator

    Full text link
    How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-TcT_c cuprates, we study the single-particle spectrum for the doped Hubbard model using cluster perturbation theory on superclusters. Starting from extremely low doping, we identify a heavily renormalized quasiparticle dispersion that immediately develops across the Fermi level, and a weakening polaronic side band at higher binding energy. The quasiparticle spectral weight roughly grows at twice the rate of doping in the low doping regime, but this rate is halved at optimal doping. In the heavily doped regime, we find both strong electron-hole asymmetry and a persistent presence of Mott spectral features. Finally, we discuss the applicability of the single-band Hubbard model to describe the evolution of nodal spectra measured by angle-resolved photoemission spectroscopy (ARPES) on the single-layer cuprate La2−x_{2-x}Srx_xCuO4_4 (0≤x≤0.150 \le x \le 0.15). This work benchmarks the predictive power of the Hubbard model for electronic properties of high-TcT_c cuprates.Comment: 7 pages, 5 figure

    Increased plasma thrombopoietin levels in patients with myelodysplastic syndrome: A reliable marker for a benign subset of bone marrow failure

    Get PDF
    Although myelodysplastic syndromes are heterogeneous disorders comprising a benign subset of bone marrow failure similar to aplastic anemia, no laboratory test has been established to distinguish it from bone marrow failures that can evolve into acute myeloid leukemia. Plasma thrombopoietin levels were measured in 120 patients who had myelodysplastic syndrome with thrombocytopenia (< 100 × 109/L) to determine any correlation to markers associated with immune pathophysiology and outcome. Thrombopoietin levels were consistently low for patients with refractory anemia with excess of blasts, while patients with other myelodysplatic syndrome subsets had more variable results. Patients with thrombopoietin levels of 320 pg/mL and over had increased glycosylphosphatidylinositol- anchored protein-deficient blood cells (49.1% vs. 0%), were more likely to have a low International Prognostic Scoring System (IPSS) score (≤1.0, 100% vs. 65.5%), a higher response rate to immunosuppressive therapy (84.2% vs. 14.3%), and a better 5-year progression-free survival rate (94.1% vs. 63.6% for refractory cytopenia with unilineage dysplasia; 100.0% vs. 44.4% for refractory cytopenia with multilineage dysplasia). In conclusion, increased plasma thrombopoietin levels were associated with a favorable prognosis of bone marrow failure and could, therefore, represent a reliable marker for a benign subset of myelodysplastic syndrome. © 2013 Ferrata Storti Foundation

    Universal scaling relation in high-temperature superconductors

    Full text link
    Scaling laws express a systematic and universal simplicity among complex systems in nature. For example, such laws are of enormous significance in biology. Scaling relations are also important in the physical sciences. The seminal 1986 discovery of high transition-temperature (high-T_c) superconductivity in cuprate materials has sparked an intensive investigation of these and related complex oxides, yet the mechanism for superconductivity is still not agreed upon. In addition, no universal scaling law involving such fundamental properties as T_c and the superfluid density \rho_s, a quantity indicative of the number of charge carriers in the superconducting state, has been discovered. Here we demonstrate that the scaling relation \rho_s \propto \sigma_{dc} T_c, where the conductivity \sigma_{dc} characterizes the unidirectional, constant flow of electric charge carriers just above T_c, universally holds for a wide variety of materials and doping levels. This surprising unifying observation is likely to have important consequences for theories of high-T_c superconductivity.Comment: 11 pages, 2 figures, 2 table

    Individual hematopoietic stem cells in human bone marrow of patients with aplastic anemia or myelodysplastic syndrome stably give rise to limited cell lineages

    Get PDF
    Mutation of the phosphatidylinositol N-acetylglucosaminyltransferase subunit A (PIG-A) gene in hematopoietic stem cells (HSCs) results in the loss of glycosylphosphatidylinositol- anchored proteins (GPI-APs) on HSCs, but minimally affects their development, and thus can be used as a clonal maker of HSCs. We analyzed GPI-APs expression on six major lineage cells in a total of 574 patients with bone marrow (BM) failure in which microenvironment itself is thought to be unaffected, including aplastic anemia (AA) or myelodysplastic syndrome (MDS). GPI-APs-deficient (GPIAPs-) cells were detected in 250 patients. Whereas the GPIAPs- cells were seen in all six lineages in a majority of patients who had higher proportion ([dbmtequ]3%) of GPIAPs- cells, they were detected in only limited lineages in 92.9% of cases in the lower proportion (<3%) group. In all 250 cases, the same lineages of GPI-APs- cells were detected even after 6-18-month intervals, indicating that the GPIAPs- cells reflect hematopoiesis maintained by a self-renewing HSC in most of cases. The frequency of clones with limited lineages seen in mild cases of AA was similar to that in severe cases, and clones with limited lineages were seen even in two health volunteer cases. These results strongly suggest most individual HSCs produce only restricted lineages even in a steady state. While this restriction could reflect heterogeneity in the developmental potential of HSCs, we propose an alternative model in which the BM microenvironment is mosaic in supporting commitment of progenitors toward distinct lineages. Our computer simulation based on this model successfully recapitulated the observed clinical data. © AlphaMed Press

    Increased glycosylphosphatidylinositol-anchored protein-deficient granulocytes define a benign subset of bone marrow failures in patients with trisomy 8

    Get PDF
    Trisomy 8 (+8), one of the most common chromosomal abnormalities found in patients with myelodysplastic syndromes (MDS), is occasionally seen in patients with otherwise typical aplastic anemia (AA). Although some studies have indicated that the presence of +8 is associated with the immune pathophysiology of bone marrow (BM) failure, its pathophysiology may be heterogeneous. We studied 53 patients (22 with AA and 31 with low-risk MDS) with +8 for the presence of increased glycosylphosphatidylinositol-anchored protein-deficient (GPI-AP-) cells, their response to immunosuppressive therapy (IST), and their prognosis. A significant increase in the percentage of GPI-AP- cells was found in 14 (26%) of the 53 patients. Of the 26 patients who received IST, including nine with increased GPI-AP- cells and 17 without increased GPI-AP- cells, 14 (88% with increased GPI-AP- cells and 41% without increased GPI-AP- cells) improved. The overall and event-free survival rates of the +8 patients with and without increased GPI-AP- cells at 5 yr were 100% and 100% and 59% and 57%, respectively. Examining the peripheral blood for the presence of increased GPI-AP- cells may thus be helpful for choosing the optimal treatment for +8 patients with AA or low-risk MDS. © 2014 John Wiley & Sons A/S

    New findings on the fungal species Tricholoma matsutake from Ukraine, and revision of its taxonomy and biogeography based on multilocus phylogenetic analyses

    Get PDF
    Publisher Copyright: © 2022 Elsevier B.V.. All rights reserved.Matsutake mushrooms are among the best-known edible wild mushroom taxa worldwide. The representative Tricholoma matsutake is from East Asia and the northern and central regions of Europe. Here, we report the existence of T. matsutake under fir trees in Eastern Europe (i.e., Ukraine), as confirmed by phylogenetic analysis of nine loci on the nuclear and mitochondrial genomes. All specimens from Japan, Bhutan, China, North Korea, South Korea, Sweden, Finland, and Ukraine formed a T. matsutake clade according to the phylogeny of the internal transcribed spacer region. The European population of T. matsutake was clustered based on the β2 tubulin gene, with a moderate bootstrap value. In contrast, based on analyses of three loci, i.e., rpb2, tef1, and the β2 tubulin gene, T. matsutake specimens sampled from Bhutan and China belonged to a clade independent of the other specimens of this species, implying a genetically isolated population. As biologically available type specimens of T. matsutake have not been designated since its description as a new species from Japan in 1925, we established an epitype of this fungus, sampled in a Pinus densiflora forest in Nagano, Japan.Peer reviewe

    An oxyl/oxo mechanism for dioxygen bond formation in PSII revealed by X-ray free electron lasers

    Get PDF
    Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II (PSII) with linear progression through five S-state intermediates (S0 to S4). To reveal the mechanism of water oxidation, we analyzed structures of PSII in the S1, S2, and S3 states by x-ray free-electron laser serial crystallography. No insertion of water was found in S2, but flipping of D1 Glu189 upon transition to S3 leads to the opening of a water channel and provides a space for incorporation of an additional oxygen ligand, resulting in an open cubane Mn4CaO6 cluster with an oxyl/oxo bridge. Structural changes of PSII between the different S states reveal cooperative action of substrate water access, proton release, and dioxygen formation in photosynthetic water oxidation

    Melatonin Enhances the Usefulness of Ionizing Radiation: Involving the Regulation of Different Steps of the Angiogenic Process

    Get PDF
    Radiotherapy is a part of cancer treatment. To improve its efficacy has been combined with radiosensitizers such as antiangiogenic agents. Among the mechanisms of the antitumor action of melatonin are antiangiogenic effects. Our goal was to investigate whether melatonin may modulate the sensitivity of endothelial cells (HUVECs) to ionizing radiation. Melatonin (1 mM) enhanced the inhibition induced by radiation on different steps of the angiogenic process, cell proliferation, migration, and tubular network formation. In relation with the activity and expression of enzymes implicated in estrogen synthesis, in co-cultures HUVECs/MCF-7, radiation down-regulated aromatase mRNA expression, aromatase endothelial-specific promoter I.7, sulfatase activity and expression and 17?-HSD1 activity and expression and melatonin enhanced these effects. Radiation and melatonin induced a significant decrease in VEGF, ANG-1, and ANG-2 mRNA expression. In ANG-2 and VEGF mRNA expression melatonin potentiated the inhibitory effect induced by radiation. In addition, melatonin counteracted the stimulatory effect of radiation on FGFR3, TGF?, JAG1, IGF-1, and KDR mRNA expression and reduced ANPEP expression. In relation with extracellular matrix molecules, radiation increased MMP14 mRNA expression and melatonin counteracted the stimulatory effect of radiation on MMP14 mRNA expression and increased TIMP1 expression, an angiogenesis inhibitor. Melatonin also counteracted the stimulatory effect of radiation on CXCL6, CCL2, ERK1, ERK2, and AKT1 mRNA expression and increased the inhibitory effect of radiation on NOS3 expression. In CAM assay, melatonin enhanced the reduction of the vascular area induced by radiation. Melatonin potentiated the inhibitory effect on the activation of p-AKT and p-ERK exerted by radiation. Antiangiogenic effect of melatonin could be mediated through AKT and ERK pathways, proteins involved in vascular endothelial (VE) cell growth, cell proliferation, survival, migration, and angiogenesis. In addition, radiation increased endothelial cell permeability and melatonin counteracted it by regulating the internalization of VE-cadherin. Radiation has some side effects on angiogenesis that may reduce its effectiveness against tumor growth and melatonin is able to neutralize these negative actions of radiation. Additionally, melatonin potentiated radiation-induced antiangiogenic actions on several steps of the angiogenic process and enhanced its antitumor action. Our findings point to melatonin as a useful molecule as adjuvant to radiotherapy in cancer treatment.FUNDING: This work was supported by grants from the Spanish Economy and Competitiveness Ministry (SAF2016-77103-P) and from the Instituto de Investigación Sanitaria Valdecilla (IDIVAL) (APG/12)

    Local Signal Time-Series during Rest Used for Areal Boundary Mapping in Individual Human Brains

    Get PDF
    It is widely thought that resting state functional connectivity likely reflects functional interaction among brain areas and that different functional areas interact with different sets of brain areas. A method for mapping areal boundaries has been formulated based on the large-scale spatial characteristics of regional interaction revealed by resting state functional connectivity. In the present study, we present a novel analysis for areal boundary mapping that requires only the signal timecourses within a region of interest, without reference to the information from outside the region. The areal boundaries were generated by the novel analysis and were compared with those generated by the previously-established standard analysis. The boundaries were robust and reproducible across the two analyses, in two regions of interest tested. These results suggest that the information for areal boundaries is readily available inside the region of interest
    • …
    corecore