1,650 research outputs found

    Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation

    Get PDF
    The notion of quiescence - the absence of outputs - is vital in both behavioural modelling and testing theory. Although the need for quiescence was already recognised in the 90s, it has only been treated as a second-class citizen thus far. This paper moves quiescence into the foreground and introduces the notion of quiescent transition systems (QTSs): an extension of regular input-output transition systems (IOTSs) in which quiescence is represented explicitly, via quiescent transitions. Four carefully crafted rules on the use of quiescent transitions ensure that our QTSs naturally capture quiescent behaviour. We present the building blocks for a comprehensive theory on QTSs supporting parallel composition, action hiding and determinisation. In particular, we prove that these operations preserve all the aforementioned rules. Additionally, we provide a way to transform existing IOTSs into QTSs, allowing even IOTSs as input that already contain some quiescent transitions. As an important application, we show how our QTS framework simplifies the fundamental model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582

    An Event Structure Model for Probabilistic Concurrent Kleene Algebra

    Full text link
    We give a new true-concurrent model for probabilistic concurrent Kleene algebra. The model is based on probabilistic event structures, which combines ideas from Katoen's work on probabilistic concurrency and Varacca's probabilistic prime event structures. The event structures are compared with a true-concurrent version of Segala's probabilistic simulation. Finally, the algebraic properties of the model are summarised to the extent that they can be used to derive techniques such as probabilistic rely/guarantee inference rules.Comment: Submitted and accepted for LPAR19 (2013

    A balanced formula of essential amino acids promotes brain mitochondrial biogenesis and protects neurons from ischemic insult

    Get PDF
    Mitochondrial dysfunction plays a key role in the aging process, and aging is a strong risk factor for neurodegenerative diseases or brain injury characterized by impairment of mitochondrial function. Among these, ischemic stroke is one of the leading causes of death and permanent disability worldwide. Pharmacological approaches for its prevention and therapy are limited. Although non-pharmacological interventions such as physical exercise, which promotes brain mitochondrial biogenesis, have been shown to exert preventive effects against ischemic stroke, regular feasibility is complex in older people, and nutraceutical strategies could be valuable alternatives. We show here that dietary supplementation with a balanced essential amino acid mixture (BCAAem) increased mitochondrial biogenesis and the endogenous antioxidant response in the hippocampus of middle-aged mice to an extent comparable to those elicited by treadmill exercise training, suggesting BCAAem as an effective exercise mimetic on brain mitochondrial health and disease prevention. In vitro BCAAem treatment directly exerted mitochondrial biogenic effects and induced antioxidant enzyme expression in primary mouse cortical neurons. Further, exposure to BCAAem protected cortical neurons from the ischemic damage induced by an in vitro model of cerebral ischemia (oxygen-glucose deprivation, OGD). BCAAem-mediated protection against OGD was abolished in the presence of rapamycin, Torin-1, or L-NAME, indicating the requirement of both mTOR and eNOS signaling pathways in the BCAAem effects. We propose BCAAem supplementation as an alternative to physical exercise to prevent brain mitochondrial derangements leading to neurodegeneration and as a nutraceutical intervention aiding recovery after cerebral ischemia in conjunction with conventional drugs

    Computing Distances between Probabilistic Automata

    Full text link
    We present relaxed notions of simulation and bisimulation on Probabilistic Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve the usual notions of bisimulation and simulation on PAs. We give logical characterisations of these notions by choosing suitable logics which differ from the elementary ones, L with negation and L without negation, by the modal operator. Using flow networks, we show how to compute the relations in PTIME. This allows the definition of an efficiently computable non-discounted distance between the states of a PA. A natural modification of this distance is introduced, to obtain a discounted distance, which weakens the influence of long term transitions. We compare our notions of distance to others previously defined and illustrate our approach on various examples. We also show that our distance is not expansive with respect to process algebra operators. Although L without negation is a suitable logic to characterise epsilon-(bi)simulation on deterministic PAs, it is not for general PAs; interestingly, we prove that it does characterise weaker notions, called a priori epsilon-(bi)simulation, which we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Transumbilical laparoscopic treatment of Congenital Infantile Fibrosarcoma of the Ileum.

    Get PDF
    Congenital-Infantile Fibrosarcoma (CIF) is a malignant mesenchymal tumor representing 10-20% of soft-tissue tumors. Complete surgical resection is generally the treatment of choice. The most recurrent cytogenetic abnormality was identified as the traslocation t(12;15)(p13:q25), which bears the fusion of Tel gene EVT6 with TrkC gene. This study describes a case of infantile fibrosarcoma of the ileum in a female newborn examined for intestinal occlusion and its laparoscopic treatment

    Testing Reactive Probabilistic Processes

    Full text link
    We define a testing equivalence in the spirit of De Nicola and Hennessy for reactive probabilistic processes, i.e. for processes where the internal nondeterminism is due to random behaviour. We characterize the testing equivalence in terms of ready-traces. From the characterization it follows that the equivalence is insensitive to the exact moment in time in which an internal probabilistic choice occurs, which is inherent from the original testing equivalence of De Nicola and Hennessy. We also show decidability of the testing equivalence for finite systems for which the complete model may not be known

    Ambient Air Pollution, Social Inequalities and Asthma Exacerbation in Greater Strasbourg (France) Metropolitan Area: the PAISA Study

    Get PDF
    International audienceThe socio-economic status (SES) of populations has an influence on the incidence or mortality rates of numerous health outcomes, among which respiratory diseases (Prescott et al., 2003; Ellison-Loschmann et al., 2007). Considering asthma, the possible contribution of SES to overall prevalence –regardless of asthma severity-, remains controversial in industrialized countries. Several studies indicate that allergic asthma is more prevalent in more well-off populations whereas the non-allergic forms of asthma are more common in the deprived ones (Cesaroni et al., 2003; Blanc et al., 2006). On the other hand, severe asthma whatever its etiology appears to be more frequent in the latter populations, as compared to the more affluent (Basagana et al., 2004). Risk factors for exacerbations (e.g., passive smoking (Wright Subramanian, 2007), psychosocial stress (Gold & Wright, 2005), cockroach allergens (Kitch et al., 2000), and suboptimal compliance with anti-inflammatory medication (Gottlieb et al., 1995)) are generally more common among people with asthma and low SES than their better-off counterparts. These observations support the hypothesis that some factors more present in deprived populations contribute to asthma exacerbation (Mielck et al., 1996)

    Probabilistic Bisimulation: Naturally on Distributions

    Full text link
    In contrast to the usual understanding of probabilistic systems as stochastic processes, recently these systems have also been regarded as transformers of probabilities. In this paper, we give a natural definition of strong bisimulation for probabilistic systems corresponding to this view that treats probability distributions as first-class citizens. Our definition applies in the same way to discrete systems as well as to systems with uncountable state and action spaces. Several examples demonstrate that our definition refines the understanding of behavioural equivalences of probabilistic systems. In particular, it solves a long-standing open problem concerning the representation of memoryless continuous time by memory-full continuous time. Finally, we give algorithms for computing this bisimulation not only for finite but also for classes of uncountably infinite systems
    corecore