1,998 research outputs found
Testing Reactive Probabilistic Processes
We define a testing equivalence in the spirit of De Nicola and Hennessy for
reactive probabilistic processes, i.e. for processes where the internal
nondeterminism is due to random behaviour. We characterize the testing
equivalence in terms of ready-traces. From the characterization it follows that
the equivalence is insensitive to the exact moment in time in which an internal
probabilistic choice occurs, which is inherent from the original testing
equivalence of De Nicola and Hennessy. We also show decidability of the testing
equivalence for finite systems for which the complete model may not be known
An Algorithm for Probabilistic Alternating Simulation
In probabilistic game structures, probabilistic alternating simulation
(PA-simulation) relations preserve formulas defined in probabilistic
alternating-time temporal logic with respect to the behaviour of a subset of
players. We propose a partition based algorithm for computing the largest
PA-simulation, which is to our knowledge the first such algorithm that works in
polynomial time, by extending the generalised coarsest partition problem (GCPP)
in a game-based setting with mixed strategies. The algorithm has higher
complexities than those in the literature for non-probabilistic simulation and
probabilistic simulation without mixed actions, but slightly improves the
existing result for computing probabilistic simulation with respect to mixed
actions.Comment: We've fixed a problem in the SOFSEM'12 conference versio
Timed Parity Games: Complexity and Robustness
We consider two-player games played in real time on game structures with
clocks where the objectives of players are described using parity conditions.
The games are \emph{concurrent} in that at each turn, both players
independently propose a time delay and an action, and the action with the
shorter delay is chosen. To prevent a player from winning by blocking time, we
restrict each player to play strategies that ensure that the player cannot be
responsible for causing a zeno run. First, we present an efficient reduction of
these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state}
(i.e., untimed) parity games. Our reduction improves the best known complexity
for solving timed parity games. Moreover, the rich class of algorithms for
classical parity games can now be applied to timed parity games. The states of
the resulting game are based on clock regions of the original game, and the
state space of the finite game is linear in the size of the region graph.
  Second, we consider two restricted classes of strategies for the player that
represents the controller in a real-time synthesis problem, namely,
\emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a
limit-robust winning strategy, the controller cannot choose an exact
real-valued time delay but must allow for some nonzero jitter in each of its
actions. If there is a given lower bound on the jitter, then the strategy is
bounded-robust winning. We show that exact strategies are more powerful than
limit-robust strategies, which are more powerful than bounded-robust winning
strategies for any bound. For both kinds of robust strategies, we present
efficient reductions to standard timed automaton games. These reductions
provide algorithms for the synthesis of robust real-time controllers
On coalgebras with internal moves
In the first part of the paper we recall the coalgebraic approach to handling
the so-called invisible transitions that appear in different state-based
systems semantics. We claim that these transitions are always part of the unit
of a certain monad. Hence, coalgebras with internal moves are exactly
coalgebras over a monadic type. The rest of the paper is devoted to supporting
our claim by studying two important behavioural equivalences for state-based
systems with internal moves, namely: weak bisimulation and trace semantics.
  We continue our research on weak bisimulations for coalgebras over order
enriched monads. The key notions used in this paper and proposed by us in our
previous work are the notions of an order saturation monad and a saturator. A
saturator operator can be intuitively understood as a reflexive, transitive
closure operator. There are two approaches towards defining saturators for
coalgebras with internal moves. Here, we give necessary conditions for them to
yield the same notion of weak bisimulation.
  Finally, we propose a definition of trace semantics for coalgebras with
silent moves via a uniform fixed point operator. We compare strong and weak
bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page
Characterising Probabilistic Processes Logically
In this paper we work on (bi)simulation semantics of processes that exhibit
both nondeterministic and probabilistic behaviour. We propose a probabilistic
extension of the modal mu-calculus and show how to derive characteristic
formulae for various simulation-like preorders over finite-state processes
without divergence. In addition, we show that even without the fixpoint
operators this probabilistic mu-calculus can be used to characterise these
behavioural relations in the sense that two states are equivalent if and only
if they satisfy the same set of formulae.Comment: 18 page
Distribution-based bisimulation for labelled Markov processes
In this paper we propose a (sub)distribution-based bisimulation for labelled
Markov processes and compare it with earlier definitions of state and event
bisimulation, which both only compare states. In contrast to those state-based
bisimulations, our distribution bisimulation is weaker, but corresponds more
closely to linear properties. We construct a logic and a metric to describe our
distribution bisimulation and discuss linearity, continuity and compositional
properties.Comment: Accepted by FORMATS 201
Probabilistic Bisimulation: Naturally on Distributions
In contrast to the usual understanding of probabilistic systems as stochastic
processes, recently these systems have also been regarded as transformers of
probabilities. In this paper, we give a natural definition of strong
bisimulation for probabilistic systems corresponding to this view that treats
probability distributions as first-class citizens. Our definition applies in
the same way to discrete systems as well as to systems with uncountable state
and action spaces. Several examples demonstrate that our definition refines the
understanding of behavioural equivalences of probabilistic systems. In
particular, it solves a long-standing open problem concerning the
representation of memoryless continuous time by memory-full continuous time.
Finally, we give algorithms for computing this bisimulation not only for finite
but also for classes of uncountably infinite systems
A tutorial on interactive Markov chains
Interactive Markov chains (IMCs) constitute a powerful sto- chastic model that extends both continuous-time Markov chains and labelled transition systems. IMCs enable a wide range of modelling and analysis techniques and serve as a semantic model for many industrial and scientific formalisms, such as AADL, GSPNs and many more. Applications cover various engineering contexts ranging from industrial system-on-chip manufacturing to satellite designs. We present a survey of the state-of-the-art in modelling and analysis of IMCs.\ud
We cover a set of techniques that can be utilised for compositional modelling, state space generation and reduction, and model checking. The significance of the presented material and corresponding tools is highlighted through multiple case studies
Probabilistic Anonymity
The concept of anonymity comes into play in 
a wide range of situations, varying from voting
and anonymous donations to postings on bulletin
boards and sending mails. A formal definition of
this concept has been given in literature in
terms of nondeterminism. In this paper, we
investigate a notion of anonymity based on
probability theory, and we we discuss the relation
with the nondeterministic one. We then formulate
this definition in terms of observables for 
processes in the probabilistic -calculus, and 
propose a method to verify automatically the 
anonymity property. We illustrate the method by 
using the example of the dining cryptographers
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
- …
