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Abstract. In probabilistic game structures, probabilistic alternating
simulation (PA-simulation) relations preserve formulas defined in prob-
abilistic alternating-time temporal logic with respect to the behaviour
of a subset of players. We propose a partition based algorithm for com-
puting the largest PA-simulation. It is to our knowledge the first such
algorithm that works in polynomial time. Our solution extends the gen-
eralised coarsest partition problem (GCPP) to a game-based setting with
mixed strategies. The algorithm has higher complexities than those in
the literature for non-probabilistic simulation and probabilistic simula-
tion without mixed actions, but slightly improves the existing result for
computing probabilistic simulation with respect to mixed actions.

1 Introduction

Simulation and bisimulation relations are useful tools in the verification of finite
and infinite state systems. State space minimisation modulo these relations is a
valuable technique to fight the state explosion problem in model checking, since
bisimulation preserves properties formulated in logics like CTL and CTL∗ [8]
while simulation preserves the universal (or safe) fragment of these logics [14].

In some situations, however, it is necessary to model quantitative aspects
of a system. It is the case, for instance, in wireless networks, where we often
need to assume that there is a chance of connection failure with a given rate.
This requires modelling network systems with randomised behaviours (e.g., by
pooling a connection after uncertain amount of time to minimise conflict). An-
other important fact of real-world systems is that environment changes, such as
unexpected power-off, are often unpredictable. Therefore, we need to encode ap-
propriate system behaviours to handle such situations, and in order to do so, it is
sometimes crucial to employ probabilistic strategies to achieve the best possible
outcomes [24]. One simple example is the rock-scissor-paper game where there is
no deterministic strategy to win since the other player’s move is unknown, but
there is a probabilistic strategy, sometimes called mixed strategy, to win at least
a third of all cases in a row, regardless of what the other player does.4

4 A mixed strategy also ensures an eventual win but deterministic strategies do not.
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A probabilistic game structure (PGS) is a model that has probabilistic tran-
sitions, and allows the consideration of probabilistic choices of players. The
simulation relation in PGSs, called probabilistic alternating simulation (PA-
simulation), has been shown to preserve a fragment of probabilistic alternating-
time temporal logic (PATL) under mixed strategies, which is used in character-
ising what a group of players can enforce in such systems [25]. In this paper we
propose a polynomial-time algorithm for computing the largest PA-simulation,
which is, to the best of our knowledge, the first algorithm for computing a simu-
lation relation in probabilistic concurrent games. A PGS combines the modelling
of probabilistic transitions from probabilistic automata (PA), and the user inter-
actions from concurrent game structures (GS). In PA, the probabilistic notions
of simulation preserve PCTL safety formulas [20]. The alternating simulation [2]
in GS has been been proved to preserve a fragment of ATL∗, under the se-
mantics of deterministic strategies. These simulation relations are computable
in polynomial time for finite systems [26, 2].

Related work. Efficient algorithms have been proposed for computing the largest
simulation (e.g., see [15, 22, 4, 13, 23]) in finite systems, with a variety of time
and space complexities. In particular, Gentilini et al. [13] developed an effi-
cient algorithm with an improved time complexity based on the work of Hen-
zinger et al. [15] without losing the optimal space complexity. Van Glabbeek and
Ploeger [23] later found a flaw in [13] and proposed a non-trivial fix. So far the
best algorithm for time complexity is [18]. To compute probabilistic simulation,
Baier et al. [3] reduce the problem of establishing a weight function for the lifted
relation to a maximal flow problem. Cattani and Segala [5] reduce the problem
of deciding strong probabilistic bisimulation to LP problems. Zhang and Her-
manns [27] develop algorithms with improved time complexity for probabilistic
simulations, following [3, 5]. A space efficient probabilistic simulation algorithm
is proposed by Zhang [26] using the techniques proposed in [13, 23].

Studies on stochastic games have actually been carried out since as early as
the 1950s [21], and a rich literature has developed in recent years (e.g. see [10,
9, 11, 6]). One existing approach called game metrics [12] defines approximation-
based simulation relations, with a kernel simulation characterising the logic quan-
titative game µ-calculus [9], an extension of modal µ-calculus for concurrent
games where each state is assigned a quantitative value in [0, 1] for every for-
mula. However, so far the best solutions in the literature on approximating the
simulation as defined in the metrics for concurrent games potentially take ex-
ponential time [7]. Although PA-simulation is strictly stronger than the kernel
simulation relation of the game metrics in [12], the algorithm presented in the pa-
per has a more tractable complexity result, and we believe that it will benefit the
abstraction or refinement based techniques for verifying game-based properties.

2 Preliminaries

Probabilistic game structures are defined in terms of discrete probabilistic dis-
tributions. A discrete probabilistic distribution ∆ over a finite set S is a function



of type S → [0, 1], where
∑
s∈S ∆(s) = 1. We write D(S) for the set of all such

distributions on a fixed S. For a set T ⊆ S, define ∆(T ) =
∑
s∈T ∆(s). Given a

finite index set I, a list of distributions (∆i)i∈I and a list of probabilities (pi)i∈I
where, for all i ∈ I, pi ∈ [0, 1] and

∑
i∈I pi = 1,

∑
i∈I pi∆i is obviously also

a distribution. For s ∈ S, s is called a point (or Dirac) distribution satisfying
s(s) = 1 and s(t) = 0 for all t 6= s. Given ∆ ∈ D(S), we define d∆e as the set
{s ∈ S | ∆(s) > 0}, which is the support of ∆.

In this paper we assume a set of two players {I, II} (though our results can
be extended to handle a finite set of players as in the standard game structure
and ATL semantics [1]), and Prop a finite set of propositions.

Definition 1. A probabilistic game structure G is a tuple 〈S, s0,L,Act, δ〉, where

– S is a finite set of states, with s0 the initial state;
– L : S → 2Prop is the labelling function which assigns to each state s ∈ S a

set of propositions that are true in s;
– Act = ActI ×ActII is a finite set of joint actions, where ActI and ActII are,

respectively, the sets of actions for players I and II;
– δ : S ×Act→ D(S) is a transition function.

If in state s player I performs action a1 and player II performs action a2 then
δ(s, 〈a1, a2〉) is the distribution for the next states. During each step the players
choose their next moves simultaneously. We define a mixed action of player I

(II) as a distribution over ActI (ActII), and write ΠI (ΠII) for the set of mixed
actions of player I (II).5 In particular, a is a deterministic mixed action which
always chooses a. We lift the transition function δ to handle mixed actions. Given
π1 ∈ ΠI and π2 ∈ ΠII, for all s, t ∈ S, we have

δ(s, 〈π1, π2〉)(t) =
∑

a1∈ActI,a2∈ActII

π1(a1) · π2(a2) · δ(s, 〈a1, a2〉)(t)

Simulation relations in probabilistic systems require a definition of lifting [16],
which extends the relations to the domain of distributions.6 Let S, T be two sets
and R ⊆ S × T be a relation, then R ⊆ D(S)×D(T ) is a lifted relation defined
by ∆RΘ if there exists a weight function w : S × T → [0, 1] such that (1)∑
t∈T w(s, t) = ∆(s) for all s ∈ S, (2)

∑
s∈S w(s, t) = Θ(t) for all t ∈ T , (3) sR t

for all s ∈ S and t ∈ T with w(s, t) > 0.
The intuition behind the lifting is that each state in the support of one distri-

bution may correspond to a number of states in the support of the other distri-
bution, and vice versa. The example in Fig. 1 is taken from [19] to show how to
lift one relation. We have two set of states S = {s1, s2} and T = {t1, t2, t3}, and
R = {(s1, t1), (s1, t2), (s2, t2), (s2, t3)}. We have ∆RΘ, where ∆(s1) = ∆(s2) =

5 Note ΠI is equivalent to D(ActI), though we choose a different symbol because the
origin of a mixed action is a simplified mixed strategy of player I which has type
S+ → D(ActI). A mixed action only considers player I’s current step.

6 In a probabilistic system without explicit user interactions, state s is simulated by
state t if for every s

a→ ∆1 there exists t
a→ ∆2 such that ∆1 is simulated by ∆2.



Fig. 1. An example showing how to lift one relation.

1
2 and Θ(t1) = Θ(t2) = Θ(t3) = 1

3 . To check this, we define a weight function
w by: w(s1, t1) = 1

3 , w(s1, t2) = 1
6 w(s2, t2) = 1

6 , and w(s2, t3) = 1
3 . The dotted

lines indicate the allocation of weights required to relate ∆ to Θ via R. By lifting
in this way, we are able to extend the notion of alternating simulation [2] to a
probabilistic setting.

Definition 2. Given a PGS 〈S, s0,L,Act, δ〉, a probabilistic alternating I-simulation
(PA-I-simulation) is a relation v ⊆ S × S such that if s v t, then

– L(s) = L(t),
– for all π1 ∈ ΠI, there exists π′1 ∈ ΠI, such that for all π′2 ∈ ΠII, there exists
π2 ∈ ΠII, such that δ(s, 〈π1, π2〉) v δ(t, 〈π′1, π′2〉).

If s PA-I-simulates t and t PA-I-simulates s, we say s and t are PA-I-simulation
equivalent.7

PA-I-simulation has been shown to preserve a fragment of PATL which covers
the ability of player I to enforce certain temporal requirements [25]. For example,
if in state s player I can enforce reaching some states satisfying p within 5
transition steps and with probability at least 1

2 , written s |= 〈〈I〉〉≥ 1
2♦≤5p, then

for every state t that simulates s with respect to I, i.e., s v t by some PA-I-
simulation ‘v’, we also have t |= 〈〈I〉〉≥ 1

2♦≤5p.

General Coarsest Partition Problem
The general coarsest partition problem (GCPP) provides a characterisation of
(non-probabilistic) simulation in finite state transition systems [13]. Informally,
in this approach, states that are (non-probabilistic) simulation equivalent are
grouped into the same block, and all such blocks form a partition over the (fi-
nite) state space. Based on the partition, blocks are further related by a partial
order �, so that if P � Q, then every state in block P is simulated by every
state in block Q. The GCPP is to find, for a given PGS, the smallest such set
of blocks. In the literature such a methodology yields space efficient algorithms
for computing the largest (non-probabilistic) simulation relation in a finite sys-
tem [13, 23]. Similar methods have been adopted and developed to compute the
largest simulation relations in the model of probabilistic automata [26].

7 Alternating simulations and equivalences are for player I unless stated otherwise.



We briefly review the basic notions that are required to present the GCPP
problem. A partition over a set S, is a collectionΣ ⊆ P(S) satisfying (1)

⋃
Σ = S

and (2) P ∩ Q = ∅ for all distinct blocks P,Q ∈ Σ. Given s ∈ S, write [s]Σ for
the block in partition Σ that contains s. A partition Σ1 is finer than Σ2, written
Σ1 CΣ2, if for all P ∈ Σ1 there exists Q ∈ Σ2 such that P ⊆ Q.

Given a set S, a partition pair over S is (Σ,�) where Σ is a partition over
S and � ⊆ Σ × Σ is a partial order. Write Part(S) for the set of partition
pairs on S. If Υ C Σ and � is a relation on Σ, then � (Υ ) = {(P,Q) | P,Q ∈
Υ,∃P ′, Q′ ∈ Σ,P ⊆ P ′, Q ⊆ Q′, P ′ � Q′} is the relation on Υ induced by �. Let
(Σ1,�1) and (Σ2,�2) be partition orders, write (Σ1,�1) ≤ (Σ2,�2) if Σ1CΣ2,
and �1⊆�2 (Σ1). Define a relation v(Σ,�)⊆ S×S as determined by a partition
pair (Σ,�) by s v(Σ,�) t iff [s]Σ � [t]Σ .

Let →⊆ S × S be a (transition) relation and L : S → 2Prop a labelling
function, then a relation v is a simulation on S if for all s, t ∈ S with s v t, we
have (1) L(s) = L(t) and (2) s→ s′ implies that there exists t′ such that t→ t′

and s′ v t′. Let (Σ,�) be a partition pair on S, then it is stable with respect to
→ if for all P,Q ∈ Σ with P � Q and s ∈ P such that s→ s′ with s′ ∈ P ′ ∈ Σ,
then there exists Q′ ∈ Σ such that P ′ � Q′ and for all t ∈ Q, there exists t′ ∈ Q′
such that t→ t′. The following result is essential to the GCPP approach, as we
derive the largest simulation relation by computing the coarsest stable partition
pair over a finite state space.8

Proposition 1. [13, 23] Let (Σ,�) be a partition pair, then it is stable with
respect to → iff the induced relation v(Σ,�) is a simulation (with respect to →).

Given a transition relation on a state space there exists a unique largest sim-
ulation relation. Thus, solutions to GCPP provide the coarsest stable partition
pairs, and they have been proved to characterise the largest simulation relations
in non-probabilistic systems [13, 23].

3 Solving GCPP in Probabilistic Game Structures

In this section we extend the GCPP framework to characterise PA-simulations
in PGSs. Given a PGS G = 〈S, s0,L,Act, δ〉, a partition pair over G is (Σ,�)
where Σ is a partition over S. Write Part(G) for the set of all partition pairs
over S. We show how to compute the coarsest partition pair and prove that it
characterises the largest PA-simulation for a given player.

Since in probabilistic systems transitions go from states to distributions over
states, we first present a probabilistic version of stability, as per [26]. Let →⊆
S × D(S) be a probabilistic (transition) relation. For a distribution ∆ ∈ D(S)
and Σ a partition, write ∆Σ as a distribution on Σ defined by ∆Σ(P ) = ∆(P )
for all P ∈ Σ. Let (Σ,�) be a partition pair, it is stable with respect to the

8 We choose the word coarsest for partition pairs to make it consistent with the stan-
dard term GCPP, and it is clear in the context that coarsest carries the same meaning
as largest with respect to the order ≤ defined on partition pairs.



relation →, if for all P,Q ∈ Σ with P � Q and s ∈ P such that s→ ∆, then for
all t ∈ Q there exists t→ Θ such that ∆Σ �ΘΣ .

Another obstacle in characterising PA-simulation is that the concerned player
can only partially determine a transition. That is, after player I performs an
action on a state, the exact future distribution on next states depends on an
action from player II. Therefore, we need to (again) lift the stability condition
for PA-I-simulation from distributions to sets of distributions.

Let ≤ ⊆ S × S be a partial order on a set S, define ≤Sm⊆ P(S)×P(S), by
P ≤Sm Q if for all t ∈ Q there exists s ∈ P such that s ≤ t. In the literature
this definition is known as a ‘Smyth order’. In a PGS, we ‘curry’ the transition
function by defining δ(s, π1) = {δ(s, 〈π1, π2〉) | π2 ∈ ΠII}, which is the set of
distributions that are possible if player I takes a mixed action π1 ∈ ΠI on s ∈ S.

Definition 3. (lifted stability) Let (Σ,�) be a partition pair on S in a PGS, it
is stable with respect to player I’s choice, if for all π ∈ ΠI, P,Q ∈ Σ with P � Q
and s ∈ P , there exists π′ ∈ ΠI such that δ(s, π)Σ �Sm δ(t, π′)Σ for all t ∈ Q.

Intuitively, the Smyth order captures the way of behavioral simulation. That is,
if δ(t, π′) is at least as restrictive as δ(s, π), then whatever player I is able to
enforce by performing π in s, he can also enforce it by performing π′ in t, as
player II has fewer choices in δ(t, π′) than in δ(s, π). At this point, for the sake of
readability, if it is clear from the context, we write W for WΣ as the distribution
W mapped onto partition Σ.

For simulation relations, it is also required that the related states agree on
their labelling. Define Σ0 as the labelling partition satisfying for all s, t ∈ S,
L(s) = L(t) iff [s]Σ0 = [t]Σ0 . Write Part0(G) ⊆ Part(G) for the set of partition
pairs (Σ,�) satisfying (Σ,�) ≤ (Σ0, Id), where Id is the identity relation.

Lemma 1. For all (Σ,�) ∈ Part0(G), if (Σ,�) is a stable partition pair with
respect to player I’s choice then v(Σ,�) is a PA-I-simulation.

Obviously every PA-I-simulation is contained in the relation induced by
(Σ0, Id), and moreover, the above lemma asserts that every stable partition pair
smaller than (Σ0, Id) is a PA-I-simulation. In the following, we try to compute
the coarsest partition pair by refining (Σ0, Id) until it stabilises. The resulting
stable partition pair can be proved to characterise the largest PA-I-simulation
on the state space S as required.

We say t simulates s with respect to player-I’s choice on a partition pair
(Σ,�) if for all π ∈ ΠI, there exists π′ ∈ ΠI such that δ(s, π)�Sm δ(t, π′). For
better readability, sometimes we also say t simulates s on (Σ,�) if it is clear
from the context. Let (Σ1,�1) ≤ (Σ2,�2), we say (Σ1,�1) is stable on (Σ2,�2),
if for all P,Q ∈ Σ1 with P �1 Q, s ∈ P and t ∈ Q, t simulates s on (Σ2,�2).

Definition 4. Define an operator ρ : Part(G) → Part(G), such that ρ((Σ,�))
is the largest partition pair (Σ′,�′) ≤ (Σ,�) that is stable on (Σ,�).

The operator ρ has the following properties.

Lemma 2. 1) ρ is well defined on Part(G). 2) ρ is monotonic on (Part0(G),≤).



Lemma 1 ensures that for all (Σ,�) ∈ Part0(G), v(Σ,�) is a PA-I-simulation
if ρ((Σ,�)) = (Σ,�), i.e., (Σ,�) is a fixpoint of ρ. However, we still need
to find the largest PA-I-simulation. The following result indicates that if S is
finite, the coarsest stable partition pair achieved by repetitively applying ρ on
(Σ0, Id) indeed yields the largest PA-I-simulation.9 Define ρ0(X) = X and
ρn+1(X) = ρ(ρn(X)) for partition pairs X.

Theorem 1. Let (Σ,�) =
⋂
i∈N ρ

i((Σ0, Id)), then v(Σ,�) is the largest PA-I-
simulation on G.

Proof. (sketch) Let v+ be the largest PA-I-simulation on G. Define a set Σ+ =
{{t ∈ S | s v+ t ∧ t v+ s} | s ∈ S}. Since v+ is the largest PA-I-simulation, it
can be shown that v+ is reflexive, symmetric and transitive within each block
P ∈ Σ+. Moreover, we define a relation �+ by P �+ Q if there exists s ∈ P
and t ∈ Q such that s v+ t, and it can be shown that �+ is a partial order on
Σ+. Then (Σ+,�+) forms a partition pair on G, and furthermore, it is stable,
and we also have (Σ+,�+) ≤ (Σ0, Id).

We apply ρ on both sides. By Lemma 2(2) (monotonicity), and (Σ+,�+)
being stable, we have (Σ+,�+) = ρi((Σ+,�+)) ≤ ρi((Σ0, Id)) for all i ∈ N. As
Part(G) is finite, there exists j ∈ N, such that ρj((Σ0, Id)) = ρj+1((Σ0, Id)).
Therefore, ρj((Σ0, Id)) is a stable partition pair, and vρj((Σ0,Id)) is a PA-I-
simulation by Lemma 1. Straightforwardly we have v+⊆vρj((Σ0,Id)). Since v+

is the largest PA-I-simulation by assumption, we have v+=vρj((Σ0,Id)), and the
result directly follows. ut

4 A Decision Procedure for PA-I-Simulation

Efficient algorithms for simulation in the non-probabilistic setting sometimes
apply predecessor based methods [15, 13] for splitting blocks and refining parti-
tions. This method can no longer be applied for simulations in the probabilistic
setting, as the transition functions now map a state to a state distribution rather
than a single state, and simulation relation needs to be lifted to handle distri-
butions. The algorithms in [27, 26] follow the approaches in [3] by reducing the
problem of deciding a weight function on lifted relations to checking the value
of a maximal flow problem. This method, however, does not apply to combined
transitions, where a more general solution is required. Algorithms for deciding
probabilistic bisimulations [5] reduce the problem on checking weight functions
with combined choices to solutions in linear programming (LP), which are known
to be decidable in polynomial time [17].10

Simulation relations are characterised by partition pairs in the solutions to
the GCPP. We propose the following characterisation of lifting in order to handle

9 The following proof resembles the classical paradigm of finding the least fixpoint in
an ω-chain of a complete partial order by treating (Σ0, Id) as ⊥. However, here we
also need that fixpoint to represent the largest PA-I-simulation.

10 The maximal flow problem is a special instance of an LP problem, which can be
solved more efficiently.



the partial order relation on partitions. Let S be a finite set and � a partial
order on S. Define bsc� = {t ∈ S | s � t}, which is called the up-closure of
s. The following lemma reduces the problems of finding a weight function for
two distributions on a partition pair to comparing weights of each up-closed
block, and the latter problem can be easily encoded in LP when checking PA-I-
simulation on a given partition pair between two states (as shown in Lemma 7).

Lemma 3. Let S be a set with a partial order �⊆ S × S and ∆1, ∆2 ∈ D(S),
then ∆1�∆2 iff we have ∆1(bsc�) ≤ ∆2(bsc�) for all s ∈ S.

When deciding whether s is able to simulate t with respect to I’s choice on
a certain partition pair, we need to examine potentially infinitely many mixed
actions in ΠI. This problem can be moderated by the following observations.
First we show that for s to be simulated by t, it is only required to check all
deterministic choices of player I on s.

Lemma 4. Let (Σ,�) be a partition pair, then t simulates s on (Σ,�) if for
all a ∈ ActI, there exists π ∈ ΠI such that δ(s, a) �Sm δ(t, π).

The next lemma states that for checking a Smyth order δ(s, π)�Sm δ(t, π′), it
suffices to focus on player II’s deterministic choices in δ(t, π′), since all proba-
bilistic choices can be represented as interpolations from deterministic choices.

Lemma 5. δ(s, π) �Sm δ(t, π′) if for all a ∈ ActII, there exists π′′ ∈ ΠII such
that δ(s, 〈π, π′′〉)� δ(t, 〈π′, a〉).
Combining the above two lemmas, we have the following.

Lemma 6. Let (Σ,�) be a partition pair, then t simulates s with respect to
player-I’s choice on (Σ,�) if for all a1 ∈ ActI, there exists π1 ∈ ΠI such that
for all a2 ∈ ActII, there exists π2 ∈ ΠII such that δ(s, 〈a1, π2〉) � δ(t, 〈π1, a2〉).

The following lemma states how to check if the action a can be followed by
a mixed action from ΠI.

Lemma 7. Given a partition pair (Σ,�), two states s, t ∈ S and a ∈ ActI, there
exists π ∈ ΠI such that δ(s, a)�Sm δ(t, π), iff the following LP has a solution:
Let ActI = {a1, a2, . . . , a`} and ActII = {b1, b2, . . . , bm}∑̀

i=1

αi = 1 (1)

∀i = 1, 2, . . . , ` : 0 ≤ αi ≤ 1 (2)

∀j = 1, 2, . . . ,m :

m∑
k=1

βj,k = 1 (3)

∀j, k = 1, 2, . . . ,m : 0 ≤ βj,k ≤ 1 (4)

∀B ∈ Σ : j = 1, 2, . . . ,m :

m∑
k=1

βj,k · δ(s, a, bk)(bBc�) ≤
∑̀
i=1

αi · δ(t, ai, bj)(bBc�) (5)



Here α1, α2, . . . , α` are used to ‘guess’ a mixed action from player I, as con-
strained in Eq. 1 and Eq. 2. To establish the Smyth order �Sm, by Lemma 6,
for every player II action bj with j = 1, 2, . . . ,m, we ‘guess’ a mixed action
from ActII represented by βj,1, βj,2 . . . , βj,m, as constrained in Eq. 3 and Eq. 4.
Then for each block B in Σ, the established distributions need to satisfy the
lifted relation �, which is characterised by the inequalities on the up-closure of
B with respect to the order �, by Lemma 3.

We define a predicate CanFollow such that CanFollow((Σ,�), s, t, a) decides
whether there exists a mixed action of player I from t which simulates action
a ∈ ActI from s on the partition pair (Σ,�). CanFollow establishes an LP prob-
lem from its parameters (see Lemma 7). We further define a predicate CanSim
which decides whether a state simulates another with respect to player I’s
choice on (Σ,�) for all actions in ActI, i.e., CanSim((Σ,�), s, t) returns true
if CanFollow((Σ,�), s, t, a) returns true for all a ∈ ActI.

Algorithm 1 Refining a block to make it stable on a partition pair

INPUT: a partition pair (Σ,�), a block B ∈ Σ
OUTPUT: a partition pair (ΣB ,�B) on B
function Split ((Σ,�), B)

ΣB := {{s} | s ∈ B}; �B := {(s, s) | s ∈ B}; Σ′ := ∅; �′:= ∅
while ΣB 6= Σ′∨ �B 6=�′ do
Σ′ := ΣB ; �′:=�B

for each distinct B1, B2 ∈ ΣB do
pick any s1 ∈ B1 and s2 ∈ B2

if (CanSim((Σ,�), s1, s2) ∧ CanSim((Σ,�), s2, s1)) then
ΣB := ΣB \ {B1, B2} ∪ {B1 ∪B2}
�B :=�B ∪ {(X,B1 ∪B2) | X ∈ Σ : (X,B1) ∈�B ∨ (X,B2) ∈�B}

∪{(B1 ∪B2, X) | X ∈ Σ : (B1, X) ∈�B ∨ (B2, X) ∈�B}
\{(Bi, X), (X,Bi) | X ∈ Σ : (Bi, X), (X,Bi) ∈�B ∧ i ∈ {1, 2}}

else if (CanSim((Σ,�), s1, s2)) then
�B :=�B ∪{(B2, B1)}

else if (CanSim((Σ,�), s2, s1)) then
�B :=�B ∪{(B1, B2)}

endfor
endwhile
return (ΣB ,�B)

Algorithm 1 defines a function Split which refines a block B ∈ Σ into a par-
tition pair corresponding the maximal simulation that is stable on (Σ,�). It
starts with the finest partition and the identity relation (as the final relation
is reflexive). For each pair of blocks in the partition, we check if they can sim-
ulate each other by picking up a state from each block. If they are simulation
equivalent on (Σ,�) then we merge the two blocks as well as all incoming and
outgoing relation in the current partial order. If only one simulates the other
we add an appropriate pair into the current ordering. This process continues
until the partition pair stablises.



Algorithm 2 Computing the Generalised Coarsest Partition Pair

INPUT: a probabilistic game structure G = 〈S, s0,L,Act, δ〉
OUTPUT: a partition pair (Σ,�) on S
function GCPP (G)

Σ := {{t | L(t) = L(s)} | s ∈ S}; � := {(B,B) | B ∈ Σ}
Σ′ := ∅; �′:= ∅
while Σ 6= Σ′∨ �6=�′ do
Σ′ := Σ; �′:=�
for each B ∈ Σ do

(ΣB ,�B) := Split((Σ′,�′), B)
Σ := Σ \ {B} ∪ΣB

� := � ∪ �B

∪{(B′, X) | X ∈ Σ : B′ ∈ ΣB : (B,X) ∈�}
∪{(X,B′) | X ∈ Σ : B′ ∈ ΣB : (X,B) ∈�}
\{(B,X), (X,B) | X ∈ Σ : (X,B), (B,X) ∈�}

endfor
endwhile
return (Σ,�)

Algorithm 2 is based on the functionality of Split in Algorithm 1. Starting
from the partition (Σ0, Id), which is identified as ({{t | L(t) = L(s)} | s ∈
S}, {(B,B) | B ∈ Σ0}), the algorithm computes a sequence of partition pairs
(Σ1,�1), (Σ2,�2) . . . until it stabilises, which is detected by checking the con-
dition Σ 6= Σ′ ∨ �6=�′. At each iteration we have (Σi+1,�i+1) ≤ (Σi,�i), and
moreover, (Σi+1,�i+1) is the maximal partition pair that is stable on (Σi,�i).
The correctness of the algorithm is justified by Theorem 1, which states that it
converges to the coarsest partition pair that is contained in (Σ0, Id) and returns
a representation of the largest PA-I-simulation.

Space complexity. For a PGS 〈S, s0,L,Act, δ〉, it requires O(|S|) to store the
state space and O(|S|2 · |Act|) for the transition relation, since for each s ∈ S
and 〈a1, a2〉 ∈ Act it requires an array of size O(|S|) to store a distribution.
Recording a partition pair takes O(|S| log |S| + |S|2) as the first part is needed
to record for each state which equivalence class in the partition it belongs, and
the second part is needed for the partial order relation � which takes at most
O(|S|2). The computation from (Σi,�i) to (Σi+1,�i+1) can be done in-place
which only requires additional constant space to track if the partition pair has
been modified during each iteration. Another extra space-consuming part is for
solving LP constrains, which we assume has space usage O(γ(N)) where N =
1 + |ActI| + |ActII| + |ActII|2 + |S| · |ActII| is the number of linear constraints
at most, and γ(N) some polynomial. The space complexity roughly sums up to
O(|S|2 · |Act|+ |S| log |S|+ γ(|Act|2 + |S| · |Act|)). (The first part O(|S|2 · |Act|+
|S| log |S|) for the PGS itself can be considered optimal, while the second part
depends on the efficiency of the LP algorithm being used.)

Time complexity. The number of variables in the LP problem in Lemma 7 is
|ActI|+|ActII|2, and the number of constraints is bounded by 1+|ActI|+|ActII|+



|ActII|2 + |S| · |ActII|. The predicate CanSim costs |ActI| times LP solving. Each
Split invokes at most |B|2 testing of CanSim where B is a block in Σ. Each
iteration of GCPP splits all current blocks, and the total number of comparisons
within each iteration of GCPP is be bounded by |S|2. (However it seems heuristics
on the existing partition can achieve a speed close to linear in practice by caching
previous CanSim checks [27].) The number of iterations is bounded by |S|. This
gives us time complexity which is in the worst case to solve O(|ActI| · |S|3) many
such LP problems, each of which has O(|S| · |Act|+ |Act|2) constraints.

Remark. By removing the interaction between players (i.e., the alternating part),
our algorithm downgrades to a partition-based algorithm computing the largest
strong probabilistic simulation relation in probabilistic automata, where com-
bined transitions are needed. The algorithm of [27] for computing strong proba-
bilistic simulation has time complexity of solving O(|S|2 ·m) LP problems, where
m is the size of the transition relation comparable to O(|S|2 · |Act|). They have
O(|S|2) constraints for each LP instance. The improvement achieved in our al-
gorithm is due to the use of partitions in each iteration instead of working on
the whole relation, which is made possible by applying Lemma 3.

The space-efficient algorithm [26] for probabilistic simulation (without com-
bined transitions) has the same space complexity but better time complexity
than ours, which is due to the reduction to the maximal flow problem.

5 Conclusion

We have presented a partition-based algorithm to compute the largest probabilis-
tic alternating simulation relation in finite probabilistic game structures. To the
best of our knowledge, our work presents the first polynomial-time algorithm for
computing a relation in probabilistic systems considering (concurrently) mixed
choices from players. As aforementioned, PA-simulation is known as stronger
than the simulation relation characterising quantitative µ-calculus [12], though
it is still a conservative approximation which has a reasonable complexity to be
useful in verification of game-based properties.
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